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Abstract 

In bank stress tests, the role of a satellite model is to tie bank-specific risk variables to 

macroeconomic variables that can generate stress. For valid stress tests it is important 

to develop a comprehensive satellite model that both preserves the sense of known 

economic relationships and also exhibits high predictive ability. However, it is often 

difficult to achieve these desiderata in a single satellite model. Multicollinearity of 

key macro variables and limited data may militate against inclusion of all important 

stress variables, thus limiting the range of stress scenarios. In order to address this 

problem we depart from the custom of using a single model as the "true" satellite. 

Instead, we generate a full space of candidate models that we then screen for 

reasonable candidates that remain sufficiently rich to cover a wide range of stress 

scenarios. We then develop composite models by combining the surviving candidate 

models through weighting. The result is a composite satellite model that includes all 

the desired macroeconomic variables, reflects the expected relationships with the 

dependent variable (NPL growth) and exhibits more than 20% lower RMSE compared 

to a commonly used benchmark model. An illustrative stress testing application shows 

that this approach can provide policy makers with prudent estimates of credit risk. 

 

Keywords: Financial stability; Macroprudential policy; Non-performing loans; 

Forecast combination; Predictive modelling 

 

JEL-classifications: C53; E58; G28 

 

Acknowledgments: This research has been co‐financed by the European Union 

(European Social Fund – ESF) and Greek national funds through the Operational 

Program "Education and Lifelong Learning" of the National Strategic Reference 

Framework (NSRF) ‐ Research Funding Program: THALES. Investing in knowledge 

society through the European Social Fund. 

 

Correspondence: 

Savas Papadopoulos 
Bank of Greece, 

Department of Financial Stability 

10250 Athens, Greece 

Tel.:0030-210-3205106 

Email: sapapa@bankofgreece.gr  

 

mailto:sapapa@bankofgreece.gr


3 
 

1. Introduction 

An integral part of any advanced stress testing framework is the satellite model, 

which maps various macroeconomic scenarios into bank-specific variables that mirror 

the risk under consideration. That model needs to include an adequate number of 

important macroeconomic variables to allow for the implementation of a wide variety 

of scenarios reflecting the impact of the economic environment in a comprehensive 

manner. For that reason special care needs to be taken to ensure that the relationships 

of the various macroeconomic variables with the dependent risk are appropriately 

captured. At a minimum, the modelled relationships should be consistent with 

economic theory and display high statistical significance. Another essential property 

of a satellite model is high predictive ability – i.e., providing reliable estimates of 

bank risk variables under various scenarios. The purpose of this study is to develop 

such a model for credit risk, assess its forecasting performance and determine its 

effectiveness in a stress testing application. 

Past experience has shown that among the various risks that the banking sector 

faces, such as liquidity, market, operations, counterparty and credit risk, credit risk is 

the most important source of insolvency problems for banks (Buncic and Melecky, 

2013). Moreover, elevated credit risk can trigger liquidity risk, with cascading 

consequential risks (Matz and Neu, 2006).  Mutually reinforcing feedback loops can 

lead to a severe financial crisis (Borio, 2010). Spillover to the real economy is a real 

risk. If deleveraging and a credit crunch develop, very adverse effects on a society's 

well-being can ensue, including high rates of unemployment and severely deteriorated 

economic conditions. Therefore it is paramount for supervisors to have a credit risk 

stress testing framework in order to monitor the resilience of a financial system under 

possible macroeconomic shocks and assess the impact of shocks. 

It is generally accepted in the literature that many macroeconomic and financial 

factors affect credit risk. Therefore a satellite model should be richly endowed with as 

many important factors as possible. There are two advantages to casting a wide net for 

predictive factors. The first is to minimize estimation bias due to possibly omitted 

variables. The second is to expand the range of scenarios to be examined in a stress 

testing framework, thus helping policy makers to unveil potential weaknesses and 

design proper corrective actions. However constructing a general model that includes 

all possible candidate predictors is not a trivial task. Missing data can limit the 
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maximum number of independent variables to be used for developing such a model. 

Even in the case of sufficiently long time series, near multicollinearity of related 

predictors may distort true relationships and force practitioners to formulate a model 

using a small subset from the full set of possible predictors. 

The practice of using a single non-comprehensive model as if it is the “true” 

model might result in bias due to omitted variables and as a consequence in possible 

misestimation of risk. In fact while the importance of stress testing exercises is largely 

accepted, concerns are being raised about their ability to identify serious 

vulnerabilities before the onset of the financial crisis (Galati and Moessner, 2013; 

Haldane, 2009). In a stress testing framework the satellite model is entrusted with the 

task of linking macro-financial scenarios to bank-level risk parameters. Consequently 

and understandably, “Financial institutions have an incentive to choose equations that 

imply lower provisioning needs and therefore capital requirements conditional on a 

scenario while conforming to the minimal requirements for economic and statistical 

soundness.” (Gross and Población, 2015) It is therefore important that a model enjoy 

high forecasting performance conditional on a scenario. 

The related literature on satellite models of credit risk displays a high degree of 

heterogeneity as regards the dependent risk variable modelled, methods used and level 

of aggregation. In a detailed survey of several major supervisory authorities' and 

central banks' approach to credit risk modelling, Foglia (2009) finds that the credit 

risk measures that are modelled may be divided into two categories defined by Cihák 

(2007). The first includes measures of loan portfolio performance such as non-

performing loans (NPLs), loan loss provisions (LLPs) or their ratios to total loans, 

while the second includes measures of corporate or household sector default risk. In 

the main, the predictor variables are much more homogeneous. The main explanatory 

variables found to affect credit risk are a small set of macroeconomic indicators, 

including GDP growth rate, unemployment rate, inflation rate and short and long-term 

interest rates. The methodology used varies from simple OLS regressions to time-

series and non-linear panel data techniques. In a similar study focused on Central and 

South Eastern European Central Banks (CSEECBs) Melecky and Podpiera (2010) 

find that the most common general approach for mapping macroeconomic variables to 

NPLs among CSEECBs is panel or time-series regressions with the same explanatory 
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variables mentioned in Foglia (2009), supplemented with the exchange rate and 

certain bank-specific predictors.  

Other interesting examples from the large literature on credit risk modelling 

include the following: Jiménez and Saurina (2006) use annual data and find that GDP 

growth, real interest rates and the fourth lag of loan growth have a significant impact 

on Spanish banks' NPLs. Jakubík and Schmieder (2008) develop credit risk models 

for the Czech Republic’s and Germany’s corporate and household default rates. For 

the Czech Republic’s corporate sector they find that the impact of real exchange rate 

and inflation is significant while for the household sector, unemployment and real 

interest rate affect credit risk. The respective models for Germany included nominal 

interest rate and GDP for the corporate sector and income and household debt to GDP 

for the household sector. Louzis et al. (2012) identify GDP growth, unemployment 

rate and lending rates as important determinants of NPL growth in Greece. Vasquez et 

al. (2012) using quarterly data construct a credit risk model for the Brazilian banking 

sector in which the previous value of NPLs, GDP growth rate and its first and second 

past values affect NPLs significantly. Finally Buncic and Melecky (2013) use a panel 

of 54 high and middle income countries and construct a macroprudential stress testing 

framework for credit risk. The satellite model linking macroeconomic scenarios to 

NPLs is estimated from annual data and includes the previous value of the dependent 

variable, GDP growth, inflation and the lending rate.  

Despite the diversity in the aforementioned academic research and regulatory 

practice, all use a single equation model with a small number of statistically 

significant and easily interpretable explanatory variables. A reasonable assumption 

would be that a similar approach is followed by the banking industry to make 

conditional forecasts of their credit risk under baseline and adverse scenarios. 

Although specific information is scarce, “in the course of the 2014 stress test and the 

quality assurance process led by the ECB, the documentation provided by the 

participating banks very clearly confirmed that virtually all institutions operate, 

indeed, with single equation approaches.” (Gross and Población, 2015). One 

noteworthy exception comes from the European Central Bank (Henry et al., 2013; 

Gross and Población, 2015) where the authors model corporate distance to default 

(DD) for 18 EU countries using a Bayesian model averaging approach to construct 

scenario-conditional forecasts. Their illustrative stress test results show that even 
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models that may meet basic tests of economic and econometric soundness can 

overoptimistically underestimate risk. 

In our study we depart from the use of a single model and employ various 

weighting schemes inspired by the forecast combination literature to link the NPL 

growth rate to macroeconomic variables for stress testing purposes. We focus our 

attention on a sample of 91 banks in EU15 countries during the period of 2006 – 

2013. This period allows us to capture the behaviour of credit risk under deteriorated 

economic conditions. The performance of the models constructed with our approach 

is assessed through several goodness-of-fit measures. The results show that our 

models compare more than favourably to their single equation counterparts. In 

addition, we illustrate their predictive ability conditional on a scenario in a stress test 

simulation. The results are in line with Gross and Población (2015) and demonstrate 

that many single equation models, despite the fact that they meet economic 

plausibility and econometric correctness criteria, yield substantially optimistic 

predictions conditional on an adverse scenario, thus causing an underestimation of 

risk and as a consequence a false sense of security. Our model provides adequate 

estimation of the level of risk and provision needs. Overall our approach presents 

improved forecasting properties both in- and out-of-sample as well as conditional on a 

scenario, while retaining a clear economic meaning of the explanatory variables used. 

Therefore our combination approach can be a very useful tool both for policy makers 

and other practitioners in the field of credit risk modelling and stress testing. 

 

2. Methodology 

Our approach for the development of the models draws from the forecast 

combination literature. At the core of this methodology is the assumption that no 

single model is “true.” Each single model is, at best, an approximation. Models may 

be combined by assigning larger or smaller weights to the predictions of individual 

models according to their performance. The hope is that pooling the collective 

predictions of a set of models may result in a better prediction than any single model 

individually – by analogy with the well-known statistical properties that data averages 

enjoy over a single datum. Of course, for a weighted collective prediction to do 

substantially better than a single model, each model in the collective should contribute 
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new information to the collective. That is, the models being averaged should not be 

substantially the same model. 

Forecast combination is closely related to model averaging and indeed some 

authors (Moral-Benito, 2015) consider it as a predecessor of the Frequentist Model 

Averaging (FMA) approach. In fact, in linear models, Hansen (2008) demonstrated 

that the combination of forecasts is equivalent to the forecast produced by the 

weighted average of the parameter estimates over the different models. 

The model averaging literature is composed of two strands: The Bayesian 

Model Averaging (BMA) and the Frequentist Model Averaging (FMA) approaches. 

For the former, a very comprehensive review can be found in Hoeting et al. (1999); 

whereas for the latter, the works of Buckland et al. (1997), Burnham and Anderson 

(2002) and Claeskens and Hjort (2008) provide excellent references. In a more recent 

paper Moral-Benito (2015) summarizes the state of the art in both approaches. 

It is well-known in the literature (Geweke and Amisano 2011; 2012) that under 

the BMA and FMA approaches the weight assigned to the best performing model is 

disproportionately large compared to the rest of the model space, essentially 

diminishing the contribution of other models. This is due to the fact that these 

methods operate under the assumption that the model space is complete, meaning that 

there is a “true” model and the “true” model is included in the model space (Del 

Negro et al. 2014). 

In our study we employ three methods from the forecast combination literature: 

and in particular the method proposed in the seminal paper of Bates and Granger 

(1969), as well as the equal weights and the median forecasts, which are found to 

perform satisfactorily in various empirical applications (Stock and Watson 1998, 

2004, 2006; Aiolfi et al. 2010; Bjørnland et al. 2012). A detailed review is provided 

by Timmermann (2006). 

In general, if one has forecasts f1, f2, …, fm , a forecast combination is defined as 

the weighted sum of the individual forecasts: 

 
𝑓 = ∑ 𝑤𝑖 ∙  𝑓𝑖

𝑚

𝑖=1

 , (1) 
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where w1, w2, …, wm  are the corresponding weights and m the number of forecasts, 

or in our case the number of models producing each forecast.   

The simplest way for combining forecasts from several models is to take the 

average of all forecasts – that is assign equal weights to each point forecast in order to 

create the composite forecast. Another similarly simple way is to take the median 

forecast, with weight 1 on the median and 0 on all other forecasts. Despite their 

simplicity, these combining schemes are found to perform equally well or even better 

than more sophisticated combination methods in several empirical studies and 

simulations (Palm and Zellner 1992; Stock and Watson 2006; Timmermann 2006). 

Timmermann (2006) shows that equal weights are indeed optimal when the individual 

forecast error variances are equal and pair-wise correlations are the same. Since this 

may not necessarily hold in our case we also implement the weighting scheme of 

Bates and Granger (1969). In an early influential work Bates and Granger (1969) 

suggested the construction of a linear combination of forecasts using empirical 

weights based on out-of-sample forecast variances. The corresponding weights are: 

 𝑤𝑖 =  
𝜎𝑖̂

−2

∑ 𝜎𝑖̂
−2𝑚

𝑖

 , (2) 

where 𝜎𝜄̂ is the out-of-sample RMSE of model i and m the number of models.  

Another important finding of the literature (Granger and Jeon, 2004; Aiolfi and 

Timmermann, 2006; Timmermann, 2006) is that trimming the model space leads to 

improved performance. This is particularly evident in a situation in which very poorly 

performing models are combined using the equal weights scheme, as Winkler and 

Makridakis (1983) point out. Consequently along with the full model space 

combination, we will also generate combinations of the top 25% and top 50% of 

individual models in the model space, as ranked by their forecasting performance. 

The forecasting performance of each single model, as well as of the 

combinations, is assessed through six standard goodness-of-fit measures (GoF). 

We use three absolute GoF measures to assess the performance of the various 

models and their combinations directly in the same units as the variable under 

consideration. These GoF measures are mean absolute error (MAE), median absolute 

error (MdAE) and root mean squared error (RMSE). Among these measures RMSE 
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puts a higher penalty on large errors whereas MAE equally weights errors. Therefore 

large differences between the two could serve as an indication of significant variation 

in the magnitude of errors. Depending on whether there is a strong preference for 

avoiding particularly large errors or not, one can use the respective GoF as a guide. In 

addition MdAE can be used when robustness against possible outliers in the forecast 

error distribution is of importance. 

We use two relative GoF measures to assess performance in percentage terms: 

Mean absolute percentage error (MAPE) and median absolute percentage error 

(MdAPE). These GoF measures present the size of the error in an intuitive way, 

however one should bear in mind that MAPE treats prediction errors in an asymmetric 

manner by potentially putting “a heavier penalty on forecasts that exceed the actual 

than those that are less than the actual” (Armstrong and Callopy, 1992), since 

downward errors for positive financial variables are limited to 100%, but upward 

errors are unlimited. 

The last GoF measure is pseudo-R2 which is estimated as the squared 

correlation coefficient between the actual and the predicted values (Wooldridge, 

2012).1 The corresponding formulas for each GoF measure are reported in the 

Appendix. 

In order to get more robust results on the performance of each combination 

scheme we apply the method of k-fold cross-validation, setting k = 5. This procedure 

involves splitting the sample repeatedly into two uneven subsamples, called the 

training set and the validation set. The training set retains 80% of the data for model 

estimation. The training set estimates are then applied to the validation set, where the 

GoF measures are estimated in the remaining 20% of the data. The procedure is 

applied five times in a cyclical manner as to ensure that every element appears in the 

validation set once and only once. Finally the five GoF results are averaged and 

reported. 

 

3. Data 

The analysis is performed on a dataset covering EU15 countries using annual 

                                                           
1 For OLS regression models, pseudo-R2 is the actual R2. 
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data from the period from 2006 until 2013. This period reflects the behaviour of NPLs 

under adverse economic conditions since the period includes the financial crisis of 

2008 and the sovereign debt crisis of 2010. Thus the results not only demonstrate the 

feasibility and potential of the proposed methodology for stress testing purposes but 

can also serve as a benchmark on how NPLs could develop under a severe, real life 

scenario. 

The dependent variable used to model credit risk is the growth rate of the stock 

of NPLs. The reasons behind choice of this instead of other frequently used variables 

such as probabilities of default (PDs) or the ratio of NPLs to total loans are two. First, 

information on PDs is often unavailable. However, if needed, PDs can be 

approximated by the formula (Hardy and Schmieder, 2013):    

 𝑃𝐷𝑡 = (𝑁𝑃𝐿 𝑟𝑎𝑡𝑖𝑜)𝑡+1 − (𝑁𝑃𝐿 𝑟𝑎𝑡𝑖𝑜)𝑡 + 𝛼 ∙ (𝑁𝑃𝐿 𝑟𝑎𝑡𝑖𝑜)𝑡−1 . (3) 

The parameter α denotes the share of loans that are written-off in period t-1.  

Hardy and Schmieder (2013) note as a rule of thumb, that in the years before a crisis 

NPLs are fully written off in about two years which is equivalent to an α of 0.5. After 

the crisis this period increases to three years, therefore parameter α can be set to 0.33. 

The second reason for choosing to model the growth rate of NPLs is to allow for more 

flexibility in a stress testing framework.  By modelling the numerator of the NPL ratio 

one can model loans separately, apply several scenarios on them and combine the 

results to form the respective ratio. 

Data for NPLs are collected from Bankscope database for banks that satisfy 

specific conditions. The sample includes commercial banks that reside in each of the 

EU15 countries and for which the asset side of their balance sheets exceeds 2 billion 

EUR as of 2010. In addition, banks are required to fulfil SSM's significance criteria 

(SSM, 2015). The latter condition increases bank homogeneity and ensures that the 

significant part of the banking sector of each country is taken into account. 

However, the sample banks are subject to events that have a significant impact 

on NPL growth rate, albeit not directly related to macroeconomic conditions. These 

events include mergers and acquisitions, or even possible changes in accounting 

practices that lead to changes in NPLs, unrelated to variations of the general economic 

environment. Since we are interested in modelling the relationship of NPL growth rate 

with macroeconomic variables we clean the dataset by keeping only observations that 
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meet the following additional criteria:  

1. NPLs > 0.2 billion EUR 

2. -60% < NPL growth rate < 130% 

3. 1% < NPL ratio < 40%. 

One final condition is that we keep only individual banks that have at least four 

observations after the application of the previous criteria. The aforementioned criteria 

are considered sufficient for capturing the behaviour of NPL growth rate under stress 

while neutralizing the effect of events such as mergers and acquisitions without 

leading to a grave reduction of the original dataset. The final sample is an unbalanced 

dataset consisting of 91 banks and 557 observations for NPL growth rate (hereby 

simply referred as NPL).  

The macroeconomic variables are collected from Eurostat and cover a broad 

part of an economy’s activity including GDP (GDP), inflation (INF), unemployment 

measured in thousand persons (UN), long-term unemployment rate (ULT), household 

consumption expenditure (HHCE), net disposable income (NDI), compensation of 

employees (CE) and government debt to GDP (GDEBT) for each one of the EU15 

countries. 

Following Kalirai and Scheicher (2002) the variables used relate to a country’s 

overall economic activity, price stability, household and government sectors. The first 

category includes GDP. A decline in GDP signifies a deteriorating economy which in 

turn can lead to a deterioration of banks' loan books due to borrowers' payment 

difficulties. Thus a negative relationship with NPLs is expected. The indicator related 

to price stability is inflation (INF). Being close to 2 percent before the crisis for EU15 

countries, falling inflation indicates weakening economic conditions. In addition, 

declining inflation implies higher real interest rates and as a consequence is likely to 

result in increased loan defaults. The group of household sector indicators includes net 

disposable income (NDI), consumption expenditure (HHCE), compensation of 

employees (CE), overall unemployment (UN) and long-term unemployment rate 

(ULT). Higher disposable income, employee compensation and consumption relate to 

a positive economic environment and adequate debt servicing ability for households. 

Therefore these variables are expected to be inversely related to credit risk. On the 

contrary, increase of either of unemployment indicators indicates a deterioration of 
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households' repayment ability and as a result suggests a positive correlation with loan 

defaults. The state of government sector is represented by the variable of government 

debt to GDP. Several studies (Reinhart and Rogoff, 2011; Perotti, 1996; Louzis et al., 

2012) have detected a positive link between rising government debt and NPLs. In 

particular two transmission channels have been identified: Government measures of 

fiscal nature such as tax increases or cuts in spending can have an impact on 

households' disposable income and lead to an increase in loan defaults (Perotti, 1996). 

In addition, weakening public finances can affect banks' credibility and give rise to 

liquidity problems (Reinhart and Rogoff, 2011). This in turn can result in a decrease 

in banks' lending and thus to refinancing problems for debtors. 

In the following analysis all variables are log-differenced (equivalent to growth 

rates in percent) unless explicitly mentioned otherwise. For the variables that are 

already expressed in ratios such as government debt to GDP and long-term 

unemployment rate their first difference is used. 

The descriptive statistics of the variables reveal the adverse economic situation 

that many countries found themselves in and consequently the problems that 

borrowers and banks had to face during the study period. 

Table 1 indicates that the average annual increase in banks' NPLs was nearly 

20% over the eight year study period. On its face, this implies considerable and 

continuing deterioration in loan portfolios. Banks did experience serious problems in 

their loan books due to financial pressure on their borrowers. At the same time, 

macroeconomic variables such as GDP, income and consumption either remained 

mostly stagnant or even decreased, whereas government debt ratio and unemployment 

on the other hand presented considerable increases. However, these statistics are not 

differentiated by year.  Further, most of these rates of change exhibit high volatility, as 

reflected in the standard deviations, minima, and maxima. This is an indication of the 

different degree of severity by which countries and banks experienced the recent 

economic crisis. 

In Table 2, the correlation matrix of NPLs with the macroeconomic variables 

reveals the underlying relationships which in all cases are statistically significant and 

have the expected signs. 

As expected, there is a negative and statistically significant relationship of NPLs 
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with variables such as GDP, household consumption expenditure, net disposable 

income and compensation of employees, the growth of which would indicate a 

prosperous economy. On the other hand, the relationship is positive with variables 

such as government debt ratio and unemployment, the growth of which signals that 

the economy is declining. The results are in line with Kalirai and Scheicher (2002), 

who present a thorough discussion about the expected relationships of 

macroeconomic variables with credit risk. 

An important observation from Table 2 is that a few pairs of macroeconomic 

variables exhibit high correlation coefficients exceeding 0.9. This indicates that 

inclusion of the full set of predictor variables or one of these highly correlated pairs in 

a single model will probably give rise to multicollinearity issues. In fact, variance 

inflation factors (VIF) of several predictors in the full model do signal the presence of 

multicollinearity. The use of the proposed methodology circumvents this issue by 

combining sufficiently small, econometrically and economically sound models while 

simultaneously displaying improved performance in various GoF measures compared 

to the single equation counterparts. 

 

4. Empirical results 

For the development of the models and their combinations we implement a 

multi-stage procedure. 

The first stage is the generation of the model space. Its size depends on the 

maximum number of regressors that can be included in a model, conditional on data 

availability. Specifically, the number of all possible models having at least one 

independent variable is 2q-1, with q being the number of regressors. Our full sample 

consists of 557 observations, whereas the 5-fold cross-validation includes 445. 

Following the rule of thumb to have an observation-to-predictor ratio of at least ten to 

one in order to avoid overfitting (Harrell, 2013), we conclude that all macroeconomic 

variables and the dynamic term (Δln(NPLt-1)) can be used. Hence the total number of 

models is m = 29-1 = 511.   

The next stage plays a central role in the procedure and involves the estimation 

of each of the 511 models. The estimation method is decided through the means of 

standard econometric tests. If the dynamic term is included in the regressors then the 



14 
 

Arellano-Bond (1991) GMM estimator is utilized. This provides a consistent 

estimator of the dynamic term’s coefficient and is used widely in similar studies 

(Vasquez et al., 2012; Buncic and Melecky, 2013). In the case of static panel data 

models, Hausman’s specification test (Hausman, 1978) is used to inform the selection 

between fixed or random effects estimators. All models are estimated with bank-

clustered standard errors to correct for heteroskedasticity and serial correlation. 

Before proceeding to the stage of GoF estimation and model combination, the full 

model space is screened for certain desiderata. In particular, models that do not meet 

sign or statistical significance criteria are discarded from the model space. For the 

expected signs we follow economic reasoning as discussed in detail by Kalirai and 

Scheicher (2002). Thus, we require variables whose increase indicates deterioration of 

economic conditions such as GDEBT, UN and ULT to have a positive relationship 

with NPLs while a negative one is expected to hold for the rest. With respect to the 

significance criteria we demand all variables in a model to be statistically significant 

at 10% level, having p-values less than 0.1. This specific part essentially imitates the 

procedure an econometrician would follow to build a sound satellite model for a stress 

testing framework. After these conditions are applied, the size of the model space is 

significantly reduced and we end up with 22 models forming the effective model 

space. The diagnostic tests reported in Tables A1 and A2 indicate that the models are 

econometrically sound. The residuals are generally well-behaved without any 

significant serial correlation as suggested by the AR(2) tests and the exogeneity of the 

instruments used is supported by Sargan’s (1958) test.  

Table 3 shows the predictor variables that distinguish the 22 survivor models 

that constitute the effective model space. The 22 models are numbered in ascending 

order by their RMSE. A detailed report of the models' coefficients and their 

performance is given in Tables A1 to A3 in the Appendix. It is clear that models 

including the dynamic term largely outperform static ones. Another noticeable fact is 

that the most frequently appearing macroeconomic variable is GDEBT, used in 8 

models. The next most frequent variables are GDP and UN in 5 models each and NDI 

used in 4 models. The rest appear sporadically and mostly exhibit medium or poor 

performance. Despite the fact that NDI is the third most frequent macroeconomic 

variable, the performance of the models that include it is consistently above average 

indicating the high explanatory power it has on NPLs. This is expected because it is 
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the variable which is most directly associated with the borrowers' ability to repay their 

loans in this group of macroeconomic variables, also reflected in the high correlation 

between the two variables (Table 2). Another important observation is that models 

with GDP also display adequate performance. This is encouraging since GDP is one 

of the most frequently forecasted, easy to interpret and therefore relevant variables for 

stress testing purposes (Hardy and Schmieder, 2013). In fact, GDP is included in 

virtually every satellite model for credit risk and along with UN are the two core 

variables used in every modern stress testing exercise (Jobst et al. 2013). Thus, the 

model that includes both of these variables can serve as an appropriate benchmark for 

comparison with the various combination schemes. However, as shown in Table 3, 

this model ranks 13th according to its full-sample RMSE. Consequently, the need for 

using a model that includes GDP and UN can lead to eventually ignoring many 

models that exhibit better performance. 

Now we turn to the construction of the forecast combinations. We essay three 

weighting combinations applied to the 22 models in the effective model space. The 

estimated weights for the first two weighting schemes are reported in Table 4. Each of 

these two weighting schemes is applied to three subsets of the effective model space – 

respectively, all 22 models, the top 10 models, and the top 5 models, as shown by the 

three columns of weights under each scheme. 

Obviously the weights in the equal weighting scheme are: 

 𝑤𝑖 =  {
1

𝑚∗
, 𝑖 ≤  𝑚∗

0, 𝑖 > 𝑚∗
 (4) 

where i is the ranked model index number and m* is the number of models used in the 

combination. The Equal Weights ranks by MAE differ only slightly from the Bates-

Granger ranks by RMSE. In particular, the change that essentially differentiates the 

two approaches is that M4 is the 6th best model under the MAE order. The Bates – 

Granger model weights are very homogeneous, especially in the case of the trimmed 

subset model spaces. The relative difference of RMSE between the poorest 

performing model and the best one is around 33%, whereas this figure drops to 14% 

in the case of the 10 best models, to reach a mere 8% in the most aggressive subset 

trimming case (Table A3). 
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The third stage involves estimation of GoF measures for each single model and for 

model combinations. We note here that model predictions are back-transformed from 

log scale and all GoF measures are estimated in the levels of NPLs since that is the 

variable of our main focus. Bates – Granger model weights are obtained using RMSE 

and Equation 2, while implementation of the equal weights and median combination 

schemes is straightforward. The performance of the models according to their GoF is 

used for trimming the model space. We applied two levels of trimming. An aggressive 

one, discarding 75% of the models, thus keeping the top 5 (≈25%), and a milder one, 

keeping the 10 best models (≈50%). For the Bates – Granger model combination 

scheme RMSE is used for model ranking, while for the equal weights and median 

schemes models are ranked according to MAE. The choice of MAE is made due to its 

symmetrical treatment of errors both in respect to their magnitude as well as their 

direction. The results are robust under the use of MdAE while performance was better 

compared to the use of MAPE and MdAPE. 

For the purpose of comparison and demonstration of its appropriateness, the full 

model is estimated and presented in Equation 5. 

 

𝛥 ln(𝑁𝑃𝐿) = 0.225∗∗∗ ∙ 𝛥 ln(𝑁𝑃𝐿𝑡−1) − 1.530 ∙ 𝛥 ln(𝐺𝐷𝑃) +  0.178𝛥 ln(𝐻𝐻𝐶𝐸) 

−0.837∗∗∗ ∙ 𝛥 ln(𝑁𝐷𝐼) + 1.721∗ ∙ 𝛥 ln(𝐶𝐸) + 3.133∗∗ ∙ 𝛥 ln(𝐼𝑁𝐹) 

                      +0.619∗∗∗ ∙ 𝛥𝐺𝐷𝐸𝐵𝑇 + 0.131 ∙ 𝛥 ln(𝑈𝑁) + 1.221 ∙ 𝛥𝑈𝐿𝑇 − 0.318 

(5) 

legend: * p-value<.05; ** p-value<.01; *** p-value<.001 

It is evident from Equation 5 that the estimation and use of the full model is 

problematic in many aspects. Half of the macroeconomic variables included are not 

statistically significant while three of them (HHCE, CE and INF) do not have the 

expected signs. Furthermore there is a serious problem of multicollinearity as 

indicated by the mean predictor VIF, which exceeds the empirical threshold of 4, 

suggested by Fox (1991). 

The exclusive use of linear models allows us to express their combination of 

forecasts as the weighted average of the parameter estimates over the different models 

since in this occasion the two approaches are equivalent (Hansen, 2008). This point 

deserves further discussion. For example, suppose we have the top five models in one 
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of our weighting schemes and the weights satisfy the regularity conditions 1
5

1
 i iw , 

10  iw . Then the five models may be written  

iiii

iiii

xxY

xxY
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








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   (6) 

The subscript i indexes observations. All 9 possible predictors appear on the 

right-hand-side, but the  coefficients may be restricted to zero in order to delete 

predictors from the models as required. Each model uses the same data set

),...,,,( 921 iiii xxxY , i=1, 2,…,n. So the only differences among the models lie in the 

pre-set pattern of zeroed-out  coefficients. The zeroing out of various predictors in 

the effective model space is a key attraction of the combination method. By this 

means, different models can reflect different stress-testing scenarios among the 

macroeconomic predictors without engaging the problematic issues (e.g., 

multicollinearity, coefficient signs, statistical significance) that ensue from trying to 

force all predictors into one satellite model. The combination model is produced by 

estimating (6), applying the weights, and summing: 
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1 91
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1 1

5

1 0

5

1

)( ˆˆˆˆ  
    (8) 

The combined estimate of NPL is shown on the left-hand-side of (8). The right-

hand-side of (8) shows that the coefficients of the combination model may be 

obtained by analogously weighting and combining the coefficients of the 5 single 

models that (7) comprises. The combination model (8) may be viewed as an 

alternative estimate of each single equation in (6). If each single equation in (6) were 

estimated by OLS, and OLS specifications were met, then the coefficient estimates in 

parentheses in (8) would not be optimal on account of the Gauss-Markov theorem. 

We should then expect that the RMSE of (8) would be larger than that of any single 

equation in (6). In fact, we find that the RMSE and other GoF measures for the 

combination models are generally among the best. One explanation is that (8) will 
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generally carry more non-zero coefficients than any of the individual equations of (6) 

(where zeroing restrictions apply). Thus, (8) brings additional explanatory power in 

the form of variables omitted from (6). In addition, the combination method may 

spread the risk of model misspecification that may exist in some individual models 

over a pool of models. Therefore, the combination method may also enjoy some 

robustness in its applications. 

The respective combined models as well as the benchmark model (M13) along 

with their 5–fold cross validation GoF measures are reported in Table 5. In practice 

we apply the multi-stage procedure described previously (formation of the effective 

model space, estimation of the models, estimation of GoF measures, formation of 

model combinations and estimation of their performance) five times in a cyclical 

manner as to ensure that every element appears in the validation set once, or 

equivalently is included in the training set exactly four times. 

For the case of the benchmark model all variables are statistically significant 

and have the correct signs as required by our procedure. Its low mean VIF value of 

1.26 indicates that it does not suffer from multicollinearity issues. As mentioned, this 

model is of special interest since GDP and UN are used regularly in the context of 

stress testing exercises for the generation and implementation of various scenarios 

(Hardy and Schmieder, 2013; Jobst et al. 2013). 

Several interesting findings are revealed regarding the combined models and 

their performance. First, the values of the simple average coefficients for all- and 10-

model combinations are very similar to corresponding Bates – Granger coefficients. 

This is expected because the models use the same variables and the weights are 

similar. Second, in line with the related literature (Winkler and Makridakis, 1983; 

Granger and Jeon, 2004; Stock and Watson, 2004; Aiolfi and Favero, 2005; 

Timmermann, 2006), we find that trimming the model space improves performance. 

This holds for all three combination schemes and for every GoF measure used in this 

study. Another empirical finding, also observed and explained in related studies 

(Stock and Watson, 2003; Timmermann, 2006), is the fact that simple combination 

methods perform equally or even better than more sophisticated ones that employ 

differential weighting. The comparison of model combinations to the benchmark 

single-equation model shows that the former present significantly improved 

performance in every GoF measure. Specifically, all 5-model combinations perform 
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similarly to the 5-model median combination that has the best overall performance 

compared to the benchmark. It has above 20% lower MAE, MdAE and RMSE and 

about 3% and 4.5% lower MAPE and MdAPE respectively. The differences in 

pseudo-R2 values, although in favour of the combined models, are not very large.  

A more complete picture of the performance of each individual model as well as 

their combinations is given in Figures 1 and 2 and Table A4. The single-equation 

models are denoted as M1 – M22. Model combinations use the names A for average, 

Md for median and BG for Bates-Granger followed by a number which indicates the 

number of models used to form the respective combination. 

Figs. 1 and 2 and Table A4 show that the trimmed, simple model combination 

schemes consistently dominate their single-equation counterparts in the model space. 

The 5-model median combination (Md5) ranks first in the GoF measures of MdAPE, 

RMSE and pseudo-R2, second but still outperforming all individual models in MdAE 

and performs equally well to the second individual model in the cases of MAE and 

MAPE. The benchmark model including GDP and UN (M13) exhibits generally poor 

performance always occupying places in the lowest half of the performance range and 

even being the 5th worst in the GoF measures of MdAE and MdAPE. A pattern that 

emerges regarding the performance of the model combinations is that the 5-model 

combinations rank first, followed closely by their 10-model counterparts with the all-

model ones lying in the middle of the performance scale for all GoF measures. 

 

5. Stress testing application 

The previous analysis is reassuring as regards to the forecasting performance of 

model combinations compared to their single-equation counterparts. In this part we 

examine the application of model combinations in a stress testing framework in order 

to test their operational properties. 

Stress scenarios can be generated from macroeconomic models, historical 

events, expert judgment or a combination of these (Jones et al., 2004; Cihák, 2007; 

Isogai, 2009). For the needs of this illustrative application, we use the historical 

approach. Specifically, we select the most adverse 1% from the distribution of each 

macroeconomic variable per country in the period 2006 – 2013. This translates to the 

bottom 1% percentile of the variables whose growth is associated with a growing 
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economy and the top 1% percentile otherwise. This essentially captures the stressed 

economic environment that many countries and banks faced since the outbreak of the 

financial crisis of 2008 and thus poses a realistic, internally consistent and sufficiently 

negative scenario. 

We use the estimated models to make a forecast conditional on the scenarios 

from Table 6 on a bank by bank basis. Next we create the forecast combinations and 

plot the results for 8 representative banks in Figure 3 and Figure 4. The last three 

years of historical data as well as the scenario conditional forecasts of the individual 

models and their combinations are plotted in order to get a clearer picture of their 

forecasting performance. 

In Fig. 3 are presented the historical values of NPLs up to 2013 and the 

conditional forecasts in 2014 for 4 banks from the non-stressed countries while in Fig. 

4 from the stressed countries. The shaded area marks the range of the forecasts 

conditional on the adverse scenario from the single-equation models.   

In fact, the same pattern as in Figs 3 and 4 is exhibited from every bank in our 

sample. The conditional forecasts from the individual models display a considerable 

divergence in their results, ranging from very mild to aggressive, while the 

combination schemes appear in the middle of the forecast space as expected. 

One can clearly see that the two modelling approaches can have significantly 

different implications for the future path of the stock of NPLs conditional on the 

adverse evolution of the macroeconomic variables and consequently on the provision 

needs of the banks and the stability of the financial system in general. Although every 

single-equation model meets the criterion of basic economic plausibility and is 

econometrically sound, there are individual models that yield very mild forecasts 

conditional on the adverse macroeconomic scenario. On the other hand, the forecasts 

of virtually all combination schemes appear in the middle of the forecast space as 

expected. This indicates that all combination methods employed in this analysis are 

just as appropriate for stress testing purposes, therefore potential users can choose the 

combination method that is more suitable for them on the basis of performance or 

even computational complexity. A comparison between the most benign individual 

predictions conditional on the stress scenario and those from the model combination 
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schemes can assist in quantifying the magnitude of the differences and their 

implications. The results from all 91 banks in our sample are presented in Table 7.  

From Table 7 it is evident that the differences are important. On average, model 

combination conditional forecasts are over 3 billion EUR larger than those of their 

mildest counterparts. The median difference fluctuates around 800 million EUR 

depending on the method, which is a smaller, but still significant amount. Even the 

minimum values are positive, although very low at around 40 thousand EUR. The 

most striking observation is that the maximum difference can be as large as 24 billion 

EUR, a figure which could have serious implications for a bank's solvency and capital 

needs. The distribution of the previous differences in Figure 5 gives a clearer picture. 

Because of the very similar pattern exhibited by all combination methods as presented 

in Table 7, we plot the results for the 5-model median combination as a representative 

case for every combination method. 

In Fig. 5 one can see the scenario-conditional forecast differences of 5-model 

median combination compared to the minimum obtained from the individual models. 

For nearly 60% of the cases these differences are positive but kept below 2.5 billion 

EUR. There is however a significant tail in the distribution, with differences 

appearing nearly uninterrupted until the very high figures of above 20 billion EUR. 

Therefore the proposed model combination approach can prove a useful tool for a 

more prudent estimation of risk. 

Apart from yielding more conservative numerical estimates, the combination 

approach can assist credit risk modelling practitioners in other practical ways by 

serving as an objective benchmark to assess a model’s ability to produce sufficiently 

aggressive forecasts conditional on a stress scenario. From the supervisors' point of 

view it could serve as a threshold which the supervised financial institutions' models 

should pass in a stress testing exercise as argued by Gross and Población (2015). In 

addition, it can inform risk management of private financial intermediaries in a more 

robust way about the level and potential implications of the assumed risk. Therefore, 

in both cases, it helps establishing a greater sense of security about the stability of the 

financial system and the risks associated with it. 
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6. Conclusions 

The paper proposed an alternative approach for modelling credit risk and 

implementing baseline and adverse scenarios within a stress testing framework 

through the use of satellite models. Its performance was studied and compared to the 

currently used approach while a simple exemplary application demonstrated its 

potential. Departing from the standard way of using a single model which is often 

studied in the literature and used by policy makers and the industry, the analysis 

showed that model combination can consistently outperform its individual 

counterparts in terms of forecasting ability - oftentimes by a significant margin.  The 

empirical finding that simple combination schemes such as the average and median 

are found to perform equally well or better than more sophisticated weighting 

schemes is consistent with other studies. In addition, model space trimming is found 

to improve the performance of every combination method. Therefore the model space 

should be carefully designed, either including only adequately performing models or 

being large enough to allow for trimming yet leaving a significant number of models 

for combining their forecasts. 

The proposed method combines meaningful and powerful models and brings 

order to model space. The paper provides twenty two models as a basis or a set of 

influential points for model space. Stress testers could also generate a space of 

interesting and appropriate models for scenario analysis. For instance, the paper 

provides the best meaningful model for prediction purposes, the best model that 

includes GDP or unemployment or both, and several other useful models.  

The current study also shows that the variables net disposable income and the 

government debt to GDP are strong predictors for NPL growth for EU15 banks. These 

variables could be used effectively to improve the predictive ability despite the 

existence of multicollinearity. 
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Table 1: Descriptive statistics of NPLs and macroeconomic variables 

 

Variable, [%] Mean 
Standard 

deviation 
Median Min Max 

Δln(NPL) 19.250 29.520 13.970 -57.450 129.900 

Δln(GDP) 0.980 4.779 1.891 -13.670 17.550 

Δln(HHCE) 1.110 4.551 2.108 -13.480 16.170 

Δln(NDI) -0.139 10.690 3.170 -45.150 25.550 

Δln(CE) 1.147 4.582 1.444 -13.260 13.810 

Δln(INF) 2.101 1.145 2.195 -1.667 4.591 

ΔGDEBT 4.830 6.378 3.499 -14.440 25.330 

Δln(UN) 5.451 13.890 3.643 -17.900 60.740 

ΔULT 0.370 0.950 0.200 -1.200 5.700 

 

 

 

 

Table 2: The correlation matrix of NPLs, its lag and macroeconomic variables 

 
 Δln(NPL) Δln(NPLt-1) Δln(GDP) Δln(HHCE) Δln(NDI) Δln(CE) Δln(INF) ΔGDEBT Δln(UN) ΔULT 

Δln(NPL) 1.000          

Δln(NPLt-1) 0.352* 1.000         

Δln(GDP) -0.345* -0.145* 1.000        

Δln(HHCE) -0.294* -0.165* 0.958* 1.000       

Δln(NDI) -0.510* -0.203* 0.690* 0.630* 1.000      

Δln(CE) -0.240* -0.223* 0.912* 0.927* 0.630* 1.000     

Δln(INF) -0.116* -0.169* 0.210* 0.209* 0.927* 0.136* 1.000    

ΔGDEBT 0.415* 0.271* -0.503* -0.481* 0.209* -0.497* -0.151* 1.000   

Δln(UN) 0.444* 0.363* -0.581* -0.562* -0.481* -0.501* -0.207* 0.545* 1.000  

ΔULT 0.228* 0.368* -0.328* -0.357* -0.562* -0.498* -0.199* 0.388* 0.590* 1.000 

legend: *: significant at 5% 
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Table 3: The effective model space 

 
Model Δln(NPLt-1) Δln(GDP) Δln(HHCE) Δln(NDI) Δln(CE) Δln(INF) ΔGDEBT Δln(UN) ΔULT 

M1          

M2          

M3          

M4          

M5          

M6          

M7          

M8          

M9          

M10          

M11          

M12          

M13          

M14          

M15          

M16          

M17          

M18          

M19          

M20          

M21          

M22          

 

  



25 
 

Table 4: Equal and Bates-Granger model weights 

 

 

Bates-Granger Weights 

 

Equal Weights 

 

(models ranked by RMSE) 

 

(models ranked by MAE) 

Model       Model       

  All 22 Top 10 Top 5 

 

All 22 Top 10 Top 5 

M1 0.0613 0.1153 0.2171 Μ1 0.0455 0.1000 0.2000 

M2 0.0612 0.1151 0.2168 Μ2 0.0455 0.1000 0.2000 

M3 0.0547 0.1029 0.1938 Μ3 0.0455 0.1000 0.2000 

M4 0.0528 0.0994 0.1873 Μ5 0.0455 0.1000 0.2000 

M5 0.0522 0.0982 0.1850 Μ6 0.0455 0.1000 0.2000 

M6 0.0520 0.0979 0 Μ4 0.0455 0.1000 0 

M7 0.0502 0.0945 0 Μ7 0.0455 0.1000 0 

M8 0.0501 0.0943 0 Μ10 0.0455 0.1000 0 

M9 0.0498 0.0938 0 Μ8 0.0455 0.1000 0 

M10 0.0471 0.0886 0 Μ9 0.0455 0.1000 0 

M11 0.0463 0 0 Μ11 0.0455 0 0 

M12 0.0416 0 0 Μ12 0.0455 0 0 

M13 0.0412 0 0 Μ14 0.0455 0 0 

M14 0.0401 0 0 Μ15 0.0455 0 0 

M15 0.0394 0 0 Μ13 0.0455 0 0 

M16 0.0385 0 0 Μ18 0.0455 0 0 

M17 0.0384 0 0 Μ17 0.0455 0 0 

M18 0.0382 0 0 Μ16 0.0455 0 0 

M19 0.0377 0 0 Μ19 0.0455 0 0 

M20 0.0376 0 0 Μ21 0.0455 0 0 

M21 0.0351 0 0 Μ20 0.0455 0 0 

M22 0.0344 0 0 Μ22 0.0455 0 0 
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Table 5: Coefficients of combined and benchmark models and 5–fold cross validation 

GoF measures (validation set) 

 
Benchmark 

model 
Average Median Bates-Granger 

  All 10 5 All 10 5 All 10 5 

Δln(NPLt-1)  0.133 0.223 0.266 - - - 0.150 0.223 0.221 

Δln(GDP) -0.806* -0.293 -0.280 -0.560 - - - -0.292 -0.280 -0.528 

Δln(HHCE)  -0.166 -0.131 0 - - - -0.155 -0.124 0 

Δln(NDI)  -0.200 -0.440 -0.353 - - - -0.244 -0.459 -0.636 

Δln(CE)  -0.090 0 0 - - - -0.071 0 0 

Δln(INF)  -0.232 0 0 - - - -0.214 0 0 

ΔGDEBT  0.449 0.388 0.528 - - - 0.431 0.383 0.321 

Δln(UN) 0.644*** 0.145 0.105 0.085 - - - 0.138 0.100 0 

ΔULT  0.230 0.506 0 - - - 0.267 0.503 0.947 

Constant 16.534*** 12.982 9.700 8.022 - - - 12.486 9.740 10.749 

MAE  

[bn EUR] 
1.841 1.665 1.526 1.486 1.653 1.526 1.456 1.628 1.525 1.498 

MdAE  

[bn EUR] 
0.499 0.416 0.398 0.374 0.440 0.418 0.386 0.422 0.415 0.394 

MAPE [%] 18.506 16.711 15.745 15.512 16.643 15.768 15.501 16.458 15.765 15.566 

MdAPE 

[%] 
15.021 12.288 11.488 10.991 11.983 10.993 10.434 12.217 11.250 10.735 

RMSE  

[bn EUR] 
3.995 3.721 3.388 3.250 3.700 3.370 3.186 3.621 3.348 3.254 

Pseudo-R2 

[%] 
94.106 94.780 95.409 95.630 94.745 95.334 95.724 94.962 95.473 95.600 

legend: * p-value<.05; ** p-value<.01; *** p-value<.001 

  



27 
 

Figure 1: 5-fold CV RMSE for single-equation and combined models 

 

 

 

Figure 2: 5-fold CV Pseudo-R2 for single-equation and combined models 
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Table 6: The adverse 1% of the macroeconomic variables per country during 2006 – 

2013 

 
Country Δln(GDP) Δln(HHCE) Δln(NDI) Δln(CE) Δln(INF) ΔGDEBT Δln(UN) ΔULT 

AT -1.987 0.915 -11.780 0.931 0.400 11.210 23.050 0.100 

BE -1.522 -0.240 -12.650 0.806 -0.009 7.027 13.200 0.600 

DE -4.043 -0.498 -11.420 0.353 0.187 7.858 2.892 -0.100 

DK -4.615 -2.354 -16.660 -0.306 0.428 6.981 56.100 0.900 

ES -3.387 -4.601 -30.750 -5.800 -0.244 15.290 47.010 3.000 

FI -6.771 -1.295 -22.550 -1.140 1.624 9.042 25.070 0.600 

FR -2.889 -1.429 -14.120 0.279 0.103 10.910 21.130 0.500 

GB -13.670 -13.240 -33.330 -13.260 2.098 22.980 30.010 0.600 

GR -8.512 -9.157 -24.990 -11.250 -0.860 25.330 32.230 5.700 

IE -10.580 -13.480 -45.150 -9.375 -1.667 25.220 60.740 3.300 

IT -3.698 -2.010 -12.080 -0.683 0.738 10.120 26.370 1.300 

LU -3.882 1.178 -9.313 2.435 0.009 7.285 18.230 0.400 

NL -2.895 -2.938 -12.380 -0.388 0.925 12.060 24.630 0.600 

PT -3.759 -4.398 -26.130 -6.973 -0.909 14.900 21.480 1.600 

SE -12.900 -7.347 -16.690 -9.915 0.440 9.241 29.100 0.500 

 

 

Figure 3: Scenario conditional forecast for non-stressed country banks 
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Figure 4:  Scenario conditional forecast for stressed country banks 

 

 
 

 

 

 

Table 7: Descriptive statistics of differences between model combination and 

minimum individual models' conditional forecasts 

 

Average Median Bates-Granger 

 
All 10 5 All 10 5 All 10 5 

Mean 

[bn 

EUR] 

3.306 3.375 3.107 3.241 3.195 3.448 3.309 3.407 3.860 

Median 

[bn 

EUR] 

0.789 0.846 0.696 0.792 0.679 0.688 0.776 0.855 0.950 

Min. [bn 

EUR] 
0.038 0.034 0.032 0.037 0.030 0.030 0.037 0.034 0.040 

Max.[bn 

EUR] 
21.093 21.380 20.683 21.506 20.676 22.247 21.048 21.592 24.742 
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Figure 5: Conditional forecast difference distribution between 5-model median 

combination and minimum individual model 
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Appendix 

A1. Goodness-of-fit measure definitions 

Equations A1 to A6 define the goodness-of-fit measures used in the study to estimate 

each models' performance. 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

  (A1) 

 

 𝑀𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 −  𝑦𝑖̂|) (A2) 

 

 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

  (A3) 

 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖 −  𝑦𝑖̂

𝑦𝑖
|

𝑁

𝑖=1

  (A4) 

 

 
𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|

𝑦𝑖 −  𝑦𝑖̂

𝑦𝑖
|)  (A5) 

 

 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = (𝑐𝑜𝑟𝑟(𝑦𝑖, 𝑦𝑖̂))
2

  (A6) 
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A2. Regression estimation results 

In Tables A1 and A2 are presented the estimated models forming the effective model space accompanied by standard statistical tests 

that demonstrate their econometric validity as well as their sound economic interpretation. The order in which they are presented is the 

same as in Table 3, ranked according to their full-sample RMSE with the best performing (lowest RMSE) first. 

Table A1: M1 – M10 regression estimation results 
 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Δln(NPLt-1) 
0.231*** 0.251*** 0.270***  0.347*** 0.233*** 0.347***  0.294*** 0.257*** 

(0.050) (0.050) (0.053)  (0.057) (0.048) (0.058)  (0.050) (0.061) 

Δln(GDP) 
  -1.189*  -1.609**      

  (0.517)  (0.560)      

Δln(HHCE) 
      -1.309*    

      (0.626)    

Δln(NDI) 
-0.789*** -0.978***  -1.347***    -1.287***   

(0.164) (0.155)  (0.109)    (0.116)   

Δln(CE) 
          

          

Δln(INF) 
          

          

ΔGDEBT 
0.546*  1.043***   1.052***    1.238*** 

(0.238)  (0.241)   (0.237)    (0.336) 

Δln(UN) 
     0.423***   0.625***  

     (0.125)   (0.143)  

ΔULT 
   5.057**       

   (1.529)       

Constant 
8.693*** 11.566*** 6.045** 17.196*** 10.606*** 3.198 10.457*** 19.075*** 6.176*** 3.991 

(2.018) (1.471) (1.922) (1.242) (1.348) (1.735) (1.478) (0.016) (1.503) (2.262) 

AR(2) 

 (p-value) 
0.752 0.769 0.600  0.616 0.932 0.826  0.757 0.651 

Sargan test 

(p-value) 
0.148 0.212 0.202  0.107 0.173 0.055  0.122 0.047 

legend: * p-value<.05; ** p-value<.01; *** p-value<.001 

Robust standard errors in parentheses 
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Table A2: M11 – M22 regression estimation results 
 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 

Δln(NPLt-1) 
0.347*** 0.361***           

(0.060) (0.062)           

Δln(GDP) 
  -0.806*  -1.060***  -1.776***      

  (0.337)  (0.229)  (0.250)      

Δln(HHCE) 
       -0.795** -1.557***    

       (0.238) (0.244)    

Δln(NDI) 
            

            

Δln(CE) 
         -0.915**  -1.057*** 

         (0.296)  (0.292) 

Δln(INF) 
-2.491*         -2.617*   

(1.117)         (1.180)   

ΔGDEBT 
   1.140*** 1.291***   1.650***   1.922***  

   (0.249) (0.218)   (0.221)   (0.200)  

Δln(UN) 
  0.644*** 0.659***  0.828***       

  (0.159) (0.125)  (0.119)       

ΔULT 
            

            

Constant 
14.237*** 8.497*** 16.534*** 10.151*** 14.056*** 14.737*** 20.994*** 12.168*** 20.983*** 25.803*** 9.969*** 20.467*** 

(2.850) (1.446) (1.131) (1.398) (1.128) (0.649) (0.245) (1.752) (0.271) (2.480) (1.627) (0.335) 

AR(2) 

 (p-value) 
0.431 0.615           

Sargan test 

(p-value) 
0.109 0.054           

legend: * p-value<.05; ** p-value<.01; *** p-value<.001 

Robust standard errors in parentheses
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In Table A3 are reported the full-sample GoF measures for each individual model in the 

effective model space. Ranking according to their RMSE is used to define their names 

throughout the paper. 

 

Table A3: Individual model full-sample GoF measures 

 

Model MAE [bn EUR] MdAE [bn EUR] MAPE [%] MdAPE [%] RMSE [bn EUR] R2 [%] 

Μ1 1.441 0.386 15.286 10.774 3.326 95.198 

Μ2 1.453 0.444 15.607 10.808 3.328 95.076 

Μ3 1.494 0.429 15.770 10.581 3.520 94.755 

Μ4 1.584 0.449 16.620 11.724 3.581 95.017 

Μ5 1.542 0.432 16.623 11.313 3.603 94.175 

Μ6 1.543 0.422 15.806 10.980 3.609 94.780 

Μ7 1.589 0.452 17.018 11.656 3.672 93.995 

Μ8 1.621 0.449 16.971 11.972 3.677 94.517 

Μ9 1.629 0.421 16.755 11.484 3.687 94.207 

Μ10 1.614 0.409 16.281 11.348 3.792 94.137 

Μ11 1.728 0.507 18.174 12.912 3.824 93.390 

Μ12 1.776 0.471 18.113 13.466 4.037 92.981 

Μ13 1.812 0.476 18.324 14.314 4.054 93.939 

Μ14 1.800 0.446 17.962 14.559 4.109 94.599 

Μ15 1.805 0.482 17.902 13.779 4.146 94.069 

Μ16 1.866 0.482 18.696 15.266 4.193 93.734 

Μ17 1.865 0.502 18.830 14.726 4.199 93.052 

Μ18 1.833 0.467 18.124 14.561 4.212 94.149 

Μ19 1.891 0.514 19.218 15.286 4.237 92.966 

Μ20 1.919 0.479 19.597 16.276 4.243 92.817 

Μ21 1.916 0.475 18.425 14.753 4.395 93.915 

Μ22 1.978 0.497 19.585 15.217 4.438 92.619 
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In Table A4 are reported the 5-fold cross validation GoF measures in the validation set, 

for each of the 22 single-equation models.  

Table A4: Single-equation model 5-fold cross validation GoF measures (validation set) 

 
Model MAE [bn EUR] MdAE [bn EUR] MAPE [%] MdAPE [%] RMSE [bn EUR] R2 [%] 

Μ1 1.456 0.387 15.381 10.812 3.289 95.097 

Μ2 1.453 0.407 15.465 11.039 3.245 94.410 

Μ3 1.553 0.450 15.841 11.494 3.454 95.226 

Μ4 1.597 0.456 16.713 12.432 3.605 95.105 

Μ5 1.538 0.457 16.667 11.757 3.596 94.577 

Μ6 1.574 0.425 16.057 11.312 3.561 95.148 

Μ7 1.609 0.450 16.871 11.655 3.655 94.053 

Μ8 1.634 0.460 17.091 12.621 3.595 94.613 

Μ9 1.662 0.426 16.577 12.721 3.559 94.567 

Μ10 1.644 0.451 16.372 11.533 3.787 94.280 

Μ11 1.716 0.498 18.225 13.947 3.809 93.844 

Μ12 1.790 0.499 18.085 13.962 3.968 93.033 

Μ13 1.841 0.499 18.506 15.021 3.995 94.106 

Μ14 1.821 0.488 18.082 14.756 4.033 94.632 

Μ15 1.810 0.469 18.016 14.042 4.181 94.137 

Μ16 1.868 0.489 18.679 15.207 4.145 93.853 

Μ17 1.868 0.509 18.845 14.808 4.160 92.770 

Μ18 1.844 0.508 18.237 14.343 4.185 93.610 

Μ19 1.907 0.509 19.372 15.515 4.050 93.534 

Μ20 1.915 0.492 19.751 15.946 4.143 93.045 

Μ21 1.921 0.508 18.486 14.288 4.386 94.524 

Μ22 1.977 0.493 19.591 15.935 4.378 92.873 
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