CREDIT POLICY IN TIMES OF FINANCIAL DISTRESS

Costas Azariadis

May 2013
1. THE ISSUES & THE RECORD

- Forestalling financial panics
1. THE ISSUES & THE RECORD

- Forestalling financial panics
- Averting bank runs
1. THE ISSUES & THE RECORD

- Forestalling financial panics
- Averting bank runs
- Managing credit supply
1. THE ISSUES & THE RECORD

- Forestalling financial panics
- Averting bank runs
- Managing credit supply
- Minimizing moral hazard
1. THE ISSUES & THE RECORD

- Forestalling financial panics
- Averting bank runs
- Managing credit supply
- Minimizing moral hazard
- Developed nations 1870-1933 (Bordo, 1986)
 - 16 banks crises (runs, failures)
 - 30 financial crises (runs, failures, panics, stock market crashes)
1. THE ISSUES & THE RECORD

- Forestalling financial panics
- Averting bank runs
- Managing credit supply
- Minimizing moral hazard
- Developed nations 1870-1933 (Bordo, 1986)
 - 16 banks crises (runs, failures)
 - 30 financial crises (runs, failures, panics, stock market crashes)
- Crises defused by central bank action
 - Bank of England: 1878, 1890, 1914
 - Bank of France: 1882, 1889, 1930
 - Federal Reserve: 2008-2010(?)
2. TOOLS & LITERATURE

- Manipulating capital reserves
 - Recipies from Thornton (1802), Bagehot (1873), Rochet & Vives (2004)
 - Champ, Smith & Williamson (1996)
 - Deposit insurance
 - Diamond & Dybvig (1983)
 - Ennis & Keister (2010)
 - Martin (2006)
 - Role of private information
2. TOOLS & LITERATURE

- Manipulating capital reserves
- Lending of last resort (LLR)
 - Recipes from Thornton (1802), Bagehot (1873), Rochet & Vives (2004)
 - Champ, Smith & Williamson (1996)
 - Diamond & Dybvig (1983)
 - Ennis & Keister (2010)
 - Martin (2006)
2. TOOLS & LITERATURE

- Manipulating capital reserves
- Lending of last resort (LLR)
 - Recipes from Thornton (1802), Bagehot (1873), Rochet & Vives (2004)
- Liquidity injections
 - Champ, Smith & Williamson (1996)
- Deposit insurance
 - Diamond & Dybvig (1983)
 - Ennis & Keister (2010)
 - Martin (2006)
- Role of private information
2. TOOLS & LITERATURE

- Manipulating capital reserves
- Lending of last resort (LLR)
 - Recipes from Thornton (1802), Bagehot (1873), Rochet & Vives (2004)
- Liquidity injections
 - Champ, Smith & Williamson (1996)
- Deposit insurance
 - Diamond & Dybvig (1983)
 - Ennis & Keister (2010)
 - Martin (2006)
2. TOOLS & LITERATURE

- Manipulating capital reserves
- Lending of last resort (LLR)
 - Recipes from Thornton(1802), Bagehot(1873), Rochet & Vives(2004)
- Liquidity injections
 - Champ, Smith & Williamson(1996)
- Deposit insurance
 - Diamond & Dybvig(1983)
 - Ennis & Keister(2010)
 - Martin(2006)
- Role of private information
3. GOALS OF THIS ESSAY

- Evaluate two policies: capital reserves, LLR
3. GOALS OF THIS ESSAY

- Evaluate two policies: capital reserves, LLR
- Context: consumption smoothing in endowment economies with
 \begin{itemize}
 \item complete markets
 \item limited commitment by borrowers
 \end{itemize}

3. GOALS OF THIS ESSAY

- Evaluate two policies: capital reserves, LLR
- Context: consumption smoothing in endowment economies with
 - complete markets
 - limited commitment by borrowers
- No private information or equilibrium default
3. GOALS OF THIS ESSAY

- Evaluate two policies: capital reserves, LLR
- Context: consumption smoothing in endowment economies with
 \{ complete markets
 \\{ limited commitment by borrowers
 \langle Kehoe & Levin(1993), Alvarez & Jermann(2000) \rangle
- No private information or equilibrium default
- Ignore \{ deposit insurance, bailouts
 \\{ moral hazard, liquidity, default
3. GOALS OF THIS ESSAY

- Evaluate two policies: capital reserves, LLR
- Context: consumption smoothing in endowment economies with
 - complete markets
 - limited commitment by borrowers
- No private information or equilibrium default
- Ignore
 - deposit insurance, bailouts
 - moral hazard, liquidity, default
- Default successfully averted by debt limits on borrowers
4. FINANCIAL CRISES: CAUSES AND CURES

- Reputation as “collateral” for unsecured loans
4. FINANCIAL CRISES: CAUSES AND CURES

- Reputation as “collateral” for unsecured loans
- Endogeneity of reputation values
4. FINANCIAL CRISES: CAUSES AND CURES

- Reputation as “collateral” for unsecured loans
- Endogeneity of reputation values
- Dynamic complementarity: expected future credit conditions → value of borrower’s reputation → current credit conditions
4. FINANCIAL CRISSES: CAUSES AND CURES

- Reputation as “collateral” for unsecured loans
- Endogeneity of reputation values
- Dynamic complementarity: expected future credit conditions → value of borrower’s reputation → current credit conditions
- Bank panics triggered by adverse shocks to expectations of future credit supply
4. FINANCIAL CRISES: CAUSES AND CURES

- Reputation as “collateral” for unsecured loans
- Endogeneity of reputation values
- Dynamic complementarity: expected future credit conditions → value of borrower’s reputation → current credit conditions
- Bank panics triggered by adverse shocks to expectations of future credit supply
- Central Bank goal: offset adverse shocks to expected future debt limits
5. BASELINE MODEL

(a) Benchmark Economy

- Discrete time $t = 0, 1, ...$
5. BASELINE MODEL

(a) Benchmark Economy

- Discrete time $t = 0, 1, ...$
- Two groups of households $i = 1, 2$
 - equal mass
5. BASELINE MODEL

(a) Benchmark Economy

- Discrete time \(t = 0, 1, \ldots \)
- Two groups of households \(i = 1, 2 \)
 - equal mass
 - common preferences: \(v_t^i = \sum_{s=0}^{\infty} \beta^s u \left(c_{t+s}^i \right) \)
5. BASELINE MODEL

(a) Benchmark Economy

- Discrete time $t = 0, 1, \ldots$
- Two groups of households $i = 1, 2$
 - equal mass
 - common preferences: $v^i_t = \sum_{s=0}^{\infty} \beta^s u(c^i_{t+s})$
 - alternating endowments with constant aggregate income
 $$(\omega^1_t, \omega^2_t) = \begin{cases}
 (1+\alpha, 1-\alpha) & \text{if } t = 0, 2, \ldots \\
 (1-\alpha, 1+\alpha) & \text{if } t = 1, 3, \ldots
 \end{cases}$$
 - with $0 < \alpha < 1$
5. BASELINE MODEL

- Budget and debt constraints

\[c_t^i + b_{t+1}^i = \omega_t^i + R_t b_t^i \quad (1) \]

\[b_t^i + L_t^i \geq 0 \quad (2) \]

\[
\left\{
\begin{array}{l}
 b_t^i = \text{claims of household } i \text{ on other households payable at time } t \\
 R_t = 1 + r_t = \text{yield on debt payable at time } t \\
 L_t^i = \text{debt limit for households } i \text{ at } t
\end{array}
\right.
\]
5. BASELINE MODEL

- Budget and debt constraints

\[c^i_t + b^i_{t+1} = \omega^i_t + R_t b^i_t \] (1)

\[b^i_t + L^i_t \geq 0 \] (2)

\[\begin{cases}
 b^i_t = \text{claims of household } i \text{ on other households payable at time } t \\
 R_t = 1 + r_t = \text{yield on debt payable at time } t \\
 L^i_t = \text{debt limit for households } i \text{ at } t
\end{cases} \]

- Default
5. BASELINE MODEL

▶ Budget and debt constraints

\[c_t^i + b_{t+1}^i = \omega_t^i + R_t b_t^i \] \hspace{1cm} (1)

\[b_t^i + L_t^i \geq 0 \] \hspace{1cm} (2)

\[
\begin{cases}
 b_t^i = \text{claims of household } i \text{ on other households payable at time } t \\
 R_t = 1 + r_t = \text{yield on debt payable at time } t \\
 L_t^i = \text{debt limit for households } i \text{ at } t
\end{cases}
\]

▶ Default

▶ implies perpetual financial autarky, i.e. exclusion from all future asset trades
5. BASELINE MODEL

- **Budget and debt constraints**

 \[c_t^i + b_{t+1}^i = \omega_t^i + R_t b_t^i \]

 \[b_t^i + L_t^i \geq 0 \]

 - \(b_t^i \) = claims of household \(i \) on other households payable at time \(t \)

 - \(R_t = 1 + r_t \) = yield on debt payable at time \(t \)

 - \(L_t^i \) = debt limit for households \(i \) at \(t \)

- **Default**

 - implies perpetual financial autarky, i.e. exclusion from all future asset trades

 - value of default at \(t \)

 \[v_{t,A}^{i,t} = \sum_{s=0}^{\infty} \beta^s u (\omega_{t+s}^i) \]
5. BASELINE MODEL

- Equilibrium defined
5. BASELINE MODEL

- Equilibrium defined
 - consumers maximize v_0 s.t. (1) and (2)
5. BASELINE MODEL

- Equilibrium defined
 - consumers maximize v_i^t s.t. (1) and (2)
 - market clears: $\sum_i b_t^i = 0, \forall t$
5. BASELINE MODEL

- Equilibrium defined
 - consumers maximize v_i^t s.t. (1) and (2)
 - market clears: $\sum_i b_t^i = 0, \forall t$
 - debt limits (L_t^i) are the largest values consistent with participation constraints

$$v_t^i \geq v_t^{i,A} \forall t, i$$

(3)
5. BASELINE MODEL

(b) Laissez-Faire Equilibrium w/o Financial Frictions

- Ignore participation constraint

\[(c_i, R_t) = (1, 1/\beta) \quad \forall t, \quad i_t = \pm \alpha \beta^{1+\beta} \]

This equilibrium satisfies the constraint

\[i_t \geq \alpha \beta / (1 + \beta) \quad \forall t, \quad i_t \]

equivalently the payoff from solvency exceeds that of default

\[u(1) - \beta \geq u(1 + \alpha) + \beta u(1 - \alpha) \]
5. BASELINE MODEL

(b) Laissez-Faire Equilibrium w/o Financial Frictions

- Ignore participation constraint
- Perfect consumption smoothing at symmetric (and optimal) equilibrium [cf. point E, Figure 1]

\[(c_t^i, R_t) = (1, 1/\beta) \ \forall t, i\]

\[b_t^i = \pm \frac{\alpha \beta}{1 + \beta}\]
5. BASELINE MODEL

(b) Laissez-Faire Equilibrium w/o Financial Frictions

- Ignore participation constraint
- Perfect consumption smoothing at symmetric (and optimal) equilibrium [cf. point E, Figure 1]

\[(c_t^i, R_t) = (1, 1/\beta) \quad \forall t, i\]

\[b_t^i = \pm \frac{\alpha \beta}{1 + \beta}\]

- This equilibrium satisfies the constraint (3) iff

\[L_t^i \geq \alpha \beta / (1 + \beta) \quad \forall t, i\]
5. BASELINE MODEL

(b) Laissez-Faire Equilibrium w/o Financial Frictions

- Ignore participation constraint
- Perfect consumption smoothing at symmetric (and optimal) equilibrium [cf. point E, Figure 1]

\[(c^i_t, R_t) = (1, 1/\beta) \ \forall t, i\]

\[b^i_t = \pm \frac{\alpha \beta}{1 + \beta}\]

- This equilibrium satisfies the constraint (3) iff

\[L^i_t \geq \alpha \beta / (1 + \beta) \ \forall t, i\]

- equivalently iff the payoff from solvency exceeds that of default

\[\frac{u(1)}{1 - \beta} \geq \frac{u(1 + \alpha) + \beta u(1 - \alpha)}{1 - \beta^2} \quad (4)\]
5. BASELINE MODEL

Steady states: $c_t^H = \begin{cases} 1 + \alpha & \text{suboptimal & robust} \\ \hat{x} & \text{optimal & fragile} \end{cases}$

FIGURE 1: FINANCIAL FRAGILITY UNDER LAISSEZ-FAIRE
5. BASELINE MODEL

(c) Equilibrium with Financial Frictions

Assume \(\{ \text{Arrow – Debreu allocation violates (4)} \} \)

\[(1 + \beta) u(1) > u_A := u(1 + \alpha) + \beta u(1 - \alpha) \] \hspace{1cm} (5)

\[\bar{R} := \frac{u'(1 + \alpha)}{\beta u'(1 - \alpha)} < 1 \] \hspace{1cm} (6)
5. BASELINE MODEL

(c) Equilibrium with Financial Frictions

▶ Assume \(\{ \text{Arrow – Debreu allocation violates (4)} \} \) \(\Rightarrow \)

\[
(1 + \beta) u(1) > u_A := u(1 + \alpha) + \beta u(1 - \alpha)
\] (5)

\[
\overline{R} := \frac{u'(1 + \alpha)}{\beta u'(1 - \alpha)} < 1
\] (6)

▶ Figure 1 illustrates; also shows golden rule allocation (GR)
5. BASELINE MODEL

(c) Equilibrium with Financial Frictions

- Assume \(\{ \text{Arrow – Debreu allocation violates (4)} \} \) \Rightarrow \((1 + \beta) u(1) > u_A := u(1 + \alpha) + \beta u(1 - \alpha) \) (5)

- \(\bar{R} := \frac{u'(1 + \alpha)}{\beta u'(1 - \alpha)} < 1 \) (6)

- Figure 1 illustrates; also shows golden rule allocation (GR)
- The allocation \((\hat{x}, 2 - \hat{x})\) at C is the constrained optimum
5. BASELINE MODEL

(c) Equilibrium with Financial Frictions

Assume \(\{ \text{Arrow – Debreu allocation violates (4)}, \text{Autarky is a suboptimal allocation} \} \implies \)

\[
(1 + \beta) u(1) > u_A := u(1 + \alpha) + \beta u(1 - \alpha)
\] (5)

\[
\overline{R} := \frac{u'(1 + \alpha)}{\beta u'(1 - \alpha)} < 1
\] (6)

- Figure 1 illustrates; also shows golden rule allocation (GR)
- The allocation \((\hat{x}, 2 - \hat{x})\) at C is the constrained optimum
- CO maximizes SWF, the equal-treatment social welfare function \(u(x) + u(2 - x)\), s.t. resource & participation constraints
5. BASELINE MODEL

- $\hat{x} \in [1, 1 + \alpha]$ is the smallest solution to

$$u(x) + \beta u(2 - x) = u_A \quad (7)$$
5. BASELINE MODEL

- $\hat{x} \in [1, 1 + \alpha]$ is the smallest solution to

\[u(x) + \beta u(2 - x) = u_A \] (7)

- If $\hat{R} := \frac{u'(\hat{x})}{\beta u'(2 - \hat{x})}$, then the CO is also a stationary equilibrium at a loan yield \hat{R}, with

\[
(c_t^i, b_t^i) = \begin{cases}
(\hat{x}, -\frac{1 + \alpha - \hat{x}}{1 + \hat{R}}) & \text{if } \omega_t^i = 1 + \alpha \\
(2 - \hat{x}, \frac{1 + \alpha - \hat{x}}{1 + \hat{R}}) & \text{if } \omega_t^i = 1 - \alpha
\end{cases}
\]
5. BASELINE MODEL

- $\hat{x} \in [1, 1 + \alpha]$ is the smallest solution to

$$u(x) + \beta u(2 - x) = u_A$$

- If $\hat{R} := u'(\hat{x}) / \beta u'(2 - \hat{x})$, then the CO is also a stationary equilibrium at a loan yield \hat{R}, with

$$(c_t^i, b_t^i) = \begin{cases}
\left(\hat{x}, -\frac{1 + \alpha - \hat{x}}{1 + \hat{R}}\right) & \text{if } \omega_t^i = 1 + \alpha \\
\left(2 - \hat{x}, \frac{1 + \alpha - \hat{x}}{1 + \hat{R}}\right) & \text{if } \omega_t^i = 1 - \alpha
\end{cases}$$

- Autarky is also an equilibrium corresponding to

$$(R_t, c_t^i, b_t^i) = (\bar{R}, \omega_t^i, 0) \quad \forall t, i$$
5. BASELINE MODEL

- Autarky is asymptotically stable: robust
5. BASELINE MODEL

- Autarky is asymptotically stable: robust
- CO equilibrium is fragile: requires that debt limits never fall below \(\frac{1 + \alpha - \hat{x}}{1 + \hat{R}} \)
5. BASELINE MODEL

- Autarky is asymptotically stable: robust
- CO equilibrium is fragile: requires that debt limits never fall below $\frac{1 + \alpha - \hat{x}}{1 + \hat{R}}$
- Laissez-Faire dynamics in Figure 2 and eq.

$$u_A = u(x_t) + \beta u(2 - x_{t+1})$$ \hspace{1cm} (8)

$$x_t \in [1, 1 + \alpha]$$ \hspace{1cm} (9)
5. BASELINE MODEL

Steady states:

\[
\begin{align*}
\mathbf{c}^H_t &= \hat{x} \quad \longleftrightarrow \text{optimal & locally robust} \\
\mathbf{c}^H_t &= \bar{x} > \hat{x} \quad \longleftrightarrow \text{suboptimal & locally robust}
\end{align*}
\]
5. BASELINE MODEL

- Solving eq. (8) [cf. Fig. 2]

\[x_{t+1} = f (x_t) \] \hspace{2cm} (10)
5. BASELINE MODEL

- Solving eq. (8) [cf. Fig. 2]

\[x_{t+1} = f(x_t) \quad (10) \]

- with \(f \): increasing concave;
 \[f(\hat{x}) = \hat{x}, \quad f(1 + \alpha) = 1 + \alpha \]
 \[f'(\hat{x}) = \hat{R} \in (1, 1/\beta) \]
 \[f'(1 + \alpha) = \overline{R} \in (0, 1) \]
6. ACTIVIST CREDIT POLICIES

(a) Central Bank as Intermediary

- Similarities with private FI’s
 - excludes defaulters from future asset trades

- Advantages over private FI’s
 - commitment to repay loans (cares about SWF)
 - power to extract and collateralize (small) reserves from lenders

- Disadvantages
 - reserves invested in inferior storage technology with low yield
 \[R < 1 \]
 - LLR wastes exogenous fraction \(\delta \in (0, 1) \) of all CB deposits; converts \(1 - \delta \) into CB loans
 - CB informational disadvantage:
 - higher cost of state verification
 - cannot exclude defaulters from future lending
6. ACTIVIST CREDIT POLICIES

(a) Central Bank as Intermediary

- Similarities with private FI’s
 - excludes defaulters from future asset trades

- Advantages over private FI’s
 - commitment to repay loans (cares about SWF)
 - power to extract and collateralize (small) reserves from lenders
6. ACTIVIST CREDIT POLICIES

(a) Central Bank as Intermediary

- Similarities with private FI’s
 - excludes defaulters from future asset trades
- Advantages over private FI’s
 - commitment to repay loans (cares about SWF)
 - power to extract and collateralize (small) reserves from lenders
- Disadvantages
 - reserves invested in inferior “storage” technology with low yield \(\bar{R} < 1 \)
 - LLR “wastes” exogenous fraction \(\delta \in (0, 1) \) of all CB deposits; converts \(1 - \delta \) into CB loans
 - CB informational disadvantage:
 \[
 \begin{align*}
 \{ & \text{higher cost of state verification;} \\
 & \text{cannot exclude defaulters from future lending} \\
 \}
 \end{align*}
 \]
6. ACTIVIST CREDIT POLICIES

(b) Reserve Policies

- In equilibrium:
 aggregate consumption = endowment - investment in storage + returns from past storage
(b) Reserve Policies

- In equilibrium:
 aggregate consumption = endowment - investment in storage + returns from past storage

- Equivalently,

\[c_t^H + c_t^L = 2 - k_{t+1} + \bar{R}k_t \]
6. ACTIVIST CREDIT POLICIES

(b) Reserve Policies

- In equilibrium:
 aggregate consumption = endowment - investment in storage + returns from past storage

- Equivalently,

\[c_t^H + c_t^L = 2 - k_{t+1} + \bar{R}k_t \]

- Capital reserves are small: \(0 \leq k_t \leq \bar{k}, \quad \bar{k} \ll 1 \)
6. ACTIVIST CREDIT POLICIES

(b) Reserve Policies

- In equilibrium:

 aggregate consumption = endowment - investment in storage
 + returns from past storage

- Equivalently,

 \[c_t^H + c_t^L = 2 - k_{t+1} + \overline{R} k_t \]

- Capital reserves are small: \(0 \leq k_t \leq \overline{k}, \quad \overline{k} \ll 1 \)

- Countercyclical credit policy: \(k_{t+1} = \phi(x_{t+1}, k_t) \), mapping the
 current state \((x_{t+1}, k_t) \in [1, 1+\alpha] \times [0, \overline{k}] \)
 of the economy into today’s reserve requirement.
(b) Reserve Policies

- In equilibrium:
 aggregate consumption = endowment - investment in storage + returns from past storage
- Equivalently,
 \[c_t^H + c_t^L = 2 - k_{t+1} + \bar{R}k_t \]
- Capital reserves are small: \(0 \leq k_t \leq \bar{k}, \quad \bar{k} \ll 1 \)
- Countercyclical credit policy: \(k_{t+1} = \phi(x_{t+1}, k_t) \), mapping the current state \((x_{t+1}, k_t) \in [1, 1 + \alpha] \times [0, \bar{k}] \) of the economy into today’s reserve requirement.
 - If autarky and the constrained optimum outcome are both steady states, then

\[\phi(\hat{x}, 0) = \phi(1 + \alpha, 0) = 0 \quad (11) \]
6. ACTIVIST CREDIT POLICIES

- Desirable policy rules

\[u(x_t) + \beta u(2 - x_t + 1 - k_t + 1 + R k_t) = u_A(12) \]

Solution to \((12)\) shown in Fig. 2 for \(k_t = k_t + 1 = k\)
6. ACTIVIST CREDIT POLICIES

- Desirable policy rules
 - remove fragility of optimal state

\[u(x_t) + \beta u(2 - x_t + 1 - k_t + 1 + R k_t) = u_A(12) \]

- Solution to (12) shown in Fig. 2 for \(k_t = k_t + 1 = k \)
6. ACTIVIST CREDIT POLICIES

- Desirable policy rules
 - remove fragility of optimal state
 - reverse stability of no-lending state

\[u(x_t) + \beta u(2 - x_t + 1 - k + R_k) = u_A(12) \]

\[x_t + 1 = f(x_t) - k + 1 + R_k(13) \]

shown in Fig. 2 for \[k_t = k_t + 1 = k \]
6. ACTIVIST CREDIT POLICIES

- Desirable policy rules
 - remove fragility of optimal state
 - reverse stability of no-lending state
 - guide economy to optimal state as quickly as possible
6. ACTIVIST CREDIT POLICIES

- Desirable policy rules
 - remove fragility of optimal state
 - reverse stability of no-lending state
 - guide economy to optimal state as quickly as possible

- Rationing equilibria
 satisfy policy rule and analog of eq. (8), i.e.

\[u(x_t) + \beta u(2 - x_{t+1} - k_{t+1} + Rk_t) = u_A \] (12)
6. ACTIVIST CREDIT POLICIES

- Desirable policy rules
 - remove fragility of optimal state
 - reverse stability of no-lending state
 - guide economy to optimal state as quickly as possible
- Rationing equilibria
 satisfy policy rule and analog of eq. (8), i.e.

\[
u(x_t) + \beta u(2 - x_{t+1} - k_{t+1} + \bar{R}k_t) = u_A \quad (12)\]

- Sol’n to (12)

\[
x_{t+1} = f(x_t) - k_{t+1} + \bar{R}k_t \quad (13)\]

shown in Fig.2 for \(k_t = k_{t+1} = \bar{k}\)
7. CAPITAL RESERVES

(a) When loans have dried up
- CB rewards “good” behavior by lowering capital requirements; punishes “bad” behavior by raising them

(b) Policy near constrained optimum
7. CAPITAL RESERVES

(a) When loans have dried up
 ▶ CB rewards “good” behavior by lowering capital requirements; punishes “bad” behavior by raising them
 ▶ Economy guided away from autarky if capital requirements are maximal when $x \to 1 + \alpha$

(b) Policy near constrained optimum
7. CAPITAL RESERVES

(a) When loans have dried up
 - CB rewards “good” behavior by lowering capital requirements; punishes “bad” behavior by raising them
 - Economy guided away from autarky if capital requirements are maximal when \(x \to 1 + \alpha \)
 - Then \(\phi(x_{t+1}, k_t) = \bar{k} \) if \(1 + \alpha - x_{t+1} \) small

(b) Policy near constrained optimum
7. CAPITAL RESERVES

(a) When loans have dried up
- CB rewards “good” behavior by lowering capital requirements; punishes “bad” behavior by raising them
- Economy guided away from autarky if capital requirements are maximal when \(x \to 1 + \alpha \)
- Then \(\phi(x_{t+1}, k_t) = \bar{k} \) if \(1 + \alpha - x_{t+1} \) small

(b) Policy near constrained optimum
- Achieving \(x_{t+1} = \hat{x} \) for any \(x_t \) near \(\hat{x} \)
7. CAPITAL RESERVES

(a) When loans have dried up

- CB rewards “good” behavior by lowering capital requirements; punishes “bad” behavior by raising them
- Economy guided away from autarky if capital requirements are maximal when $x \to 1 + \alpha$
- Then $\phi(x_{t+1}, k_t) = \bar{k}$ if $1 + \alpha - x_{t+1}$ small

(b) Policy near constrained optimum

- Achieving $x_{t+1} = \hat{x}$ for any x_t near \hat{x}
- Eqs. (12) and (13) suggest

$$x_{t+1} = \hat{x} + \bar{R} k_t - k_{t+1} \quad (\Rightarrow)$$

$$k_{t+1} = \phi(x_{t+1}, k_t) = \bar{R} k_t + f(x_{t+1}) - \hat{x} \quad (14)$$
7. CAPITAL RESERVES

(a) When loans have dried up

- CB rewards “good” behavior by lowering capital requirements;
 punishes “bad” behavior by raising them
- Economy guided away from autarky if capital requirements are maximal when \(x \to 1 + \alpha \)
- Then \(\phi(x_{t+1}, k_t) = k \) if \(1 + \alpha - x_{t+1} \) small

(b) Policy near constrained optimum

- Achieving \(x_{t+1} = \hat{x} \) for any \(x_t \) near \(\hat{x} \)
- Eqs. (12) and (13) suggest

\[
x_{t+1} = \hat{x} + \bar{R}k_t - k_{t+1} \quad (\Rightarrow)
\]

\[
k_{t+1} = \phi(x_{t+1}, k_t) = \bar{R}k_t + f(x_{t+1}) - \hat{x} \quad (14)
\]
- \(\therefore \) Capital requirements overreact to deviations of equilibrium from the optimal state

\[
\left(\frac{\partial k_{t+1}}{\partial x_{t+1}} \right)_{x_{t+1} = \hat{x}} = \hat{R} \in \left(1, \frac{1}{\beta} \right)
\]
7. CAPITAL RESERVES

(c) Policy far from Laissez-Faire states

▶ What if state of economy is far from the extremes of optimality and autarky?
7. CAPITAL RESERVES

(c) Policy far from Laissez-Faire states

- What if state of economy is far from the extremes of optimality and autarky?
- Rules admitting extremes \((\hat{x}, 1 + \alpha)\) as a steady state likely to generate additional states
(c) Policy far from Laissez-Faire states

- What if state of economy is far from the extremes of optimality and autarky?
- Rules admitting extremes \((\hat{x}, 1 + \alpha)\) as a steady state likely to generate additional states
- Fig. 2 shows one of them: points near autarky may be stable
(c) Policy far from Laissez-Faire states

- What if state of economy is far from the extremes of optimality and autarky?
- Rules admitting extremes \((\hat{x}, 1 + \alpha)\) as a steady state likely to generate additional states
- Fig. 2 shows one of them: points near autarky may be stable
- CB response to large credit shocks fraught with peril if conducted through capital reserves
8. LENDING OF LAST RESORT

(a) CB as inefficient FI
 ▶ Wastes fraction δ of all household deposits

(b) Rationing equilibria
8. LENDING OF LAST RESORT

(a) CB as inefficient FI
 ▶ Wastes fraction δ of all household deposits
 ▶ Zero profit condition
 \[
 \begin{aligned}
 \text{yield on deposits} &= R \\
 \text{yield on loans} &= R / (1 - \delta)
 \end{aligned}
 \]

(b) Rationing equilibria
8. LENDING OF LAST RESORT

(a) CB as inefficient FI
- Wastes fraction δ of all household deposits
- Zero profit condition
 \[
 \begin{align*}
 \text{yield on deposits} &= R \\
 \text{yield on loans} &= \frac{R}{1 - \delta}
 \end{align*}
 \]
- Total wastage by CB
 \[
 \delta \cdot (\text{Central Bank deposits}) = \frac{\delta}{1 - \delta} \cdot (\text{Central Bank loans})
 \]

(b) Rationing equilibria
8. LENDING OF LAST RESORT

(a) CB as inefficient FI

- Wastes fraction \(\delta \) of all household deposits
- Zero profit condition
 \[
 \begin{align*}
 &\text{yield on deposits} = R \\
 &\text{yield on loans} = \frac{R}{1 - \delta}
 \end{align*}
 \]
- Total wastage by CB
 \[
 \delta \cdot (\text{Central Bank deposits}) = \frac{\delta}{1 - \delta} \cdot (\text{Central Bank loans})
 \]

(b) Rationing equilibria

- Market clearing condition
 \[
 c_t^H + c_t^L = 2 - \frac{\delta}{1 - \delta} L_{t+1}
 \] \hspace{1cm} (15)

 where \(L_{t+1} = \text{loans made by CB at } t \text{ and maturing at } t + 1 \)
8. LENDING OF LAST RESORT

(a) CB as inefficient FI

- Wastes fraction δ of all household deposits
- Zero profit condition
 \[
 \begin{align*}
 \text{yield on deposits} &= R \\
 \text{yield on loans} &= \frac{R}{1 - \delta}
 \end{align*}
 \]
- Total wastage by CB
 \[
 \delta \cdot (\text{Central Bank deposits}) = \frac{\delta}{1 - \delta} \cdot (\text{Central Bank loans})
 \]

(b) Rationing equilibria

- Market clearing condition
 \[
 c_t^H + c_t^L = 2 - \frac{\delta}{1 - \delta} L_{t+1}
 \] \hspace{1cm} (15)

 where L_{t+1} =loans made by CB at t and maturing at $t + 1$

- Participation constraint
 \[
 u \left(c_t^H \right) + \beta u \left(c_{t+1}^L \right) = u_A
 \] \hspace{1cm} (16)

 (assuming central bank excludes defaulters from both sides of credit market)
8. LENDING OF LAST RESORT

- Policy rule

\[L_{t+1} = L \left(c_t^H \right) \] \hspace{1cm} (17)
8. LENDING OF LAST RESORT

- **Policy rule**

\[
L_{t+1} = L \left(c_t^H \right) \tag{17}
\]

- Setting \(c_t^H = x_t \in [1, 1+\alpha] \), we reduce (15), (16) and (17) to

\[
u(x_t) + \beta u \left(2 - x_{t+1} - \frac{\delta}{1-\delta} L(x_t) \right) = u_A \tag{18}
\]

Solving for \(x_{t+1} \):

\[
x_{t+1} = f(x_t) - \delta - \delta L(x_t)
\]
8. LENDING OF LAST RESORT

- Policy rule

\[
L_{t+1} = L \left(c_t^H\right)
\] \hspace{1cm} (17)

- Setting \(c_t^H = x_t \in [1, 1 + \alpha]\), we reduce (15), (16) and (17) to

\[
u(x_t) + \beta u \left(2 - x_{t+1} - \frac{\delta}{1 - \delta}L(x_t)\right) = u_A
\] \hspace{1cm} (18)

- Solving for \(x_{t+1}\):

\[
x_{t+1} = f(x_t) - \frac{\delta}{1 - \delta}L(x_t)
\] \hspace{1cm} (19)
The optimal policy rule

\[L(x_t) = \frac{1 - \delta}{\delta} [f(x_t) - \hat{x}] \]

(20)

rules out all equilibria except the optimal one. It implies that \(x_{t+1} = \hat{x} \) for any \(x_t \in [1, 1 + \alpha] \).
The optimal policy rule

\[L(x_t) = \frac{1 - \delta}{\delta} [f(x_t) - \hat{x}] \] (20)

rules out all equilibria except the optimal one. It implies that \(x_{t+1} = \hat{x} \) for any \(x_t \in [1, 1 + \alpha] \).

Fig. 3 diagrams this rule and Fig. 4 compares laissez-faire equilibria with what occurs under an optimal policy.
8. LENDING OF LAST RESORT

▶ The optimal policy rule

\[L(x_t) = \frac{1 - \delta}{\delta} [f(x_t) - \hat{x}] \] \hspace{1cm} (20)

rules out all equilibria except the optimal one. It implies that \(x_{t+1} = \hat{x} \) for any \(x_t \in [1, 1 + \alpha] \).

▶ Fig.3 diagrams this rule and Fig.4 compares laissez-faire equilibria with what occurs under an optimal policy.

▶ To achieve this outcome, the CB must react vigorously to any diminution of private credit below the optimal amount.
8. LENDING OF LAST RESORT

\[L_{t+1} \quad \text{(Current CB loans)} \]

\[\frac{1 - \delta}{\delta} [f(x_t) - f(x)] \]

Slope: \(\frac{1 - \delta}{\delta} \hat{R} \)

\((\bar{x}, \hat{x}) \)

1 + \(\alpha \)

\(x_t \)

FIGURE 3: OPTIMAL LLR POLICY
8. LENDING OF LAST RESORT

FIGURE 4: LOAN DYNAMICS UNDER OPTIMAL LLR POLICY
8. LENDING OF LAST RESORT

CB in effect guarantees that total available credit will always be at its optimal value by standing ready to lend generously to solvent borrowers at a yield somewhat about the optimal, i.e.

$$R^L = \frac{\hat{R}}{1 - \delta}$$
8. LENDING OF LAST RESORT

- CB in effect guarantees that total available credit will always be at its optimal value by standing ready to lend generously to solvent borrowers at a yield somewhat about the optimal, i.e.

\[R^L = \frac{\hat{R}}{1 - \delta} \]

- Example \(\delta = .05, \hat{R} = 1.03 \), CB offers to lend at \(R^L = 1.08 \)
8. LENDING OF LAST RESORT

- CB in effect guarantees that total available credit will always be at its optimal value by standing ready to lend generously to solvent borrowers at a yield somewhat about the optimal, \(i.e. \)

\[
R^L = \frac{\hat{R}}{1 - \delta}
\]

- Example \(\delta = .05, \hat{R} = 1.03, \) CB offers to lend at \(R^L = 1.08 \)

- As in Thornton and Bagehot
 - CB policy averts panic
 - CB does not need to actually lend in equilibrium
8. LENDING OF LAST RESORT

- CB in effect guarantees that total available credit will always be at its optimal value by standing ready to lend generously to solvent borrowers at a yield somewhat about the optimal, i.e.
 \[R^L = \frac{\hat{R}}{1 - \delta} \]

- Example \(\delta = 0.05, \hat{R} = 1.03 \), CB offers to lend at \(R^L = 1.08 \)

- As in Thornton and Bagehot
 - CB policy averts panic
 - CB does not need to actually lend in equilibrium

- Big assumption: CB can feret out defaulters as efficiently as private intermediaries
8. LENDING OF LAST RESORT

- CB in effect guarantees that total available credit will always be at its optimal value by standing ready to lend generously to solvent borrowers at a yield somewhat about the optimal, i.e.
 \[R_L = \frac{\hat{R}}{1 - \delta} \]

- Example \(\delta = .05, \hat{R} = 1.03 \), CB offers to lend at \(R_L = 1.08 \)

- As in Thornton and Bagehot
 - CB policy averts panic
 - CB does not need to actually lend in equilibrium

- Big assumption: CB can ferret out defaulters as efficiently as private intermediaries

- If not (say, CB can prevent defaulters from borrowing but not from lending), value of default goes up. The RHS of eq. (16) replaced by something bigger: the offer curve which connects autarky A with the golden rule GR.
8. LENDING OF LAST RESORT

- CB in effect guarantees that total available credit will always be at its optimal value by standing ready to lend generously to solvent borrowers at a yield somewhat about the optimal, i.e.

\[R_L = \frac{\hat{R}}{1 - \delta} \]

- Example \(\delta = .05, \hat{R} = 1.03, \) CB offers to lend at \(R_L = 1.08 \)

- As in Thornton and Bagehot
 - CB policy averts panic
 - CB does not need to actually lend in equilibrium

- Big assumption: CB can feret out defaulters as efficiently as private intermediaries

- If not (say, CB can prevent defaulters from borrowing but not from lending), value of default goes up. The RHS of eq.(16) replaced by something bigger: the offer curve which connects autarky A with the golden rule GR.

- The best a weak CB can do is guide economy to GR(cf. Fig. 4)
9. CONCLUSIONS AND EXTENSIONS

(a) Conclusions

- Manipulating capital reserves useful against small deviations from steady states; problematic for large shocks
(a) Conclusions

- Manipulating capital reserves useful against small deviations from steady states; problematic for large shocks
- Last resort lending by informed CB an effective guarantee against panics in economies with complete markets / no private information
(a) **Conclusions**

- Manipulating capital reserves useful against small deviations from steady states; problematic for large shocks
- Last resort lending by informed CB an effective guarantee against panics in economies with complete markets / no private information
- Last resort lending by relative uninformed CB averts panics at the cost of never achieving the constrained optimum reached by laissez-faire in good times
(b) Extensions

- Separating FI’s from households
 - FI’s highly levered, prone to default: regulation needed
 - FI’s informational and scale advantages: do not over-regulate
(b) Extensions

- Separating FI’s from households
 - FI’s highly levered, prone to default: regulation needed
 - FI’s informational and scale advantages: do not over-regulate

- Private information and bankruptcy
 - borrower’s private information [Rochet & Vives(2004), Martin(2006)]
 - bankruptcy and costly state verification (CSV) (Gale & Hellwig, 1985)
9. CONCLUSIONS AND EXTENSIONS

(b) Extensions

- Separating FI’s from households
 - FI’s highly levered, prone to default: regulation needed
 - FI’s informational and scale advantages: do not over-regulate

- Private information and bankruptcy
 - borrower’s private information [Rochet & Vives(2004), Martin(2006)]
 - bankruptcy and costly state verification (CSV) (Gale & Hellwig, 1985)

- CB efficiency. CSV for FI’s and CB’s: Who is better at collecting information on borrowers?