What causes banking crises? An empirical investigation

Vo Phuong Mai Le David Meenagh Patrick Minford

March 2012
Introduction

Much criticism of DSGE macroeconomics since the banking crisis: models could not analyse banking crisis because a) no banking element b) no mechanism (apart from stationary shock) to model crisis; yet crisis seems to produce permanent (’trend’) effects on GDP c) was unable to ‘predict’ events.
Much criticism of DSGE macroeconomics since the banking crisis: models could not analyse banking crisis because a) no banking element b) no mechanism (apart from stationary shock) to model crisis; yet crisis seems to produce permanent (‘trend’) effects on GDP c) was unable to ‘predict’ events.

Criticism ill-founded in some ways: a) banking models widely in use in which asymmetric information creates a risk premium; b) in macro models nonstationary shocks enter in principle even if ignored usually in practice; c) the models seem to be accurate in saying that ‘crisis’ cannot be predicted- noone predicted it except for ‘doomsayers’ who predicted crisis regularly years before it actually occurred. Yet basic point well taken: models being used for macro (such as Smets-Wouters) did not predict the possibility of banking crisis of sort we had.
Here we add the generic banking model of Bernanke et al to the Smets-Wouters model of the US, we test it against US data and find estimated parameters for which it fits, and add shocks derived from the unfiltered data (so some shocks nonstationary). Our claim is that it gives a coherent account of banking crises and of this crisis in particular.
The model we use

- We take Smets-Wouters model of US (2007) as modified by Le et al (2012) to have a competitive sector as well as an imperfectly competitive one: this heterogeneity allows the model to fit the data whereas imp. comp. with one homogeneous Calvo parameter does not, rather as found by Dixon and coauthors in recent work. The weight on the two sectors adjusts in different samples, mimicking the degree of price/wage rigidity which seems to vary with the environment- eg in Great Moderation rigidity is higher than before.
The model we use

- We take Smets-Wouters model of US (2007) as modified by Le et al (2012) to have a competitive sector as well as an imperfectly competitive one: this heterogeneity allows the model to fit the data whereas imp. comp. with one homogeneous Calvo parameter does not, rather as found by Dixon and coauthors in recent work. The weight on the two sectors adjusts in different samples, mimicking the degree of price/wage rigidity which seems to vary with the environment- eg in Great Moderation rigidity is higher than before.

- To this SW model we add the Bernanke, Gertler and Gilchrist (1999) ‘generic’ banking model, in which entrepreneurs borrow externally up to their net worth from the banks which charge a risk premium giving them an expected yield equal to their deposit rate. Net worth is accumulated through profits subject to a firms’ death rate with replacement by new firms entering.
We first test a calibrated version of this SWBGG (‘Synthesis’) model on stationary (HP-filtered) data; this fails on our main criterion, the joint behaviour of output, inflation and interest rates. The Wald test checks whether the model’s simulated behaviour statistically could e generating the actual behaviour as represented by a VAR- so-called Indirect Inference (or simulation-based testing method). Le et al (2012) show that the method has substantial power and is accurate in small samples.
We first test a calibrated version of this SWBGG ('Synthesis') model on stationary (HP-filtered) data; this fails on our main criterion, the joint behaviour of output, inflation and interest rates. The Wald test checks whether the model’s simulated behaviour statistically could e generating the actual behaviour as represented by a VAR- so-called Indirect Inference (or simulation-based testing method). Le et al (2012) show that the method has substantial power and is accurate in small samples.

We re-estimate the model by Indirect Inference, using Simulated Annealing algorithm; we get parameters for which the model passes the test comfortably. We then extract the shocks implied by the raw data and this newly-parameterised model and apply these to the model to give an explanation of events during the crisis.
Figure: IRFs for a Monetary Shock
Figure: IRFs for a Productivity Shock
Testing the Synthesis Model

- Model after re-estimation passes the Wald test for period 1984-2009: t-equivalent is 1.02, at the 89th percentile.
Testing the Synthesis Model

- Model after re-estimation passes the Wald test for period 1984-2009: t-equivalent is 1.02, at the 89th percentile
- Key parameters are: share of competitive sector 64% labour, 33% goods markets. High inflation response (3.3) in Taylor Rule and high persistence (0.77). Others fairly standard.
Model after re-estimation passes the Wald test for period 1984-2009: t-equivalent is 1.02, at the 89th percentile.

Key parameters are: share of competitive sector 64% labour, 33% goods markets. High inflation response (3.3) in Taylor Rule and high persistence (0.77). Others fairly standard.

Example below of an Impulse Response Function and its 95% bounds; the IRFs lie within the bounds because these come from the VAR coefficients which lie within the 95% bounds of their joint distribution according to the Wald test.
Figure: VAR IRFs for a Monetary Shock
Shocks during the crisis period

- Extract shocks from (unfiltered) data and model over 1984-2009. Of these productivity clearly non-stationary; external premium trend-stationary but has close to unit root. Other all stationary or trend-stationary.
Key shocks are: productivity, labour supply/competitive real wage ‘push’, external premium, Taylor Rule
Shocks during the crisis period

- Key shocks are: productivity, labour supply/competitive real wage ‘push’, external premium, Taylor Rule
- Interpretation: Taylor Rule=zero bound; productivity continued to grow apart from the heart of crisis

Wage ‘push’ possible reasons: oil/commodity price rises reduce wages abnormally and produce intertemporal substitution; Obama programme boosting union power and health care reform causing uncertain higher costs for employees.

External premium: subprime loans unravelling. Role of government pressure in building up subprime loans exploiting rising house prices. Lehman collapse causes premium to peak as government is sucked into a ...al bail-out. Hence this shock includes government action both in building the subprime problem and in ultimately defusing it.
Shocks during the crisis period

- Key shocks are: productivity, labour supply/competitive real wage ‘push’, external premium, Taylor Rule
- Interpretation: Taylor Rule—zero bound; productivity continued to grow apart from the heart of crisis
- Wage ‘push’ possible reasons: oil/commodity price rises reduce wages abnormally and produce intertemporal substitution; Obama programme boosting union power and health care reform causing uncertainly higher costs for employees.
Key shocks are: productivity, labour supply/competitive real wage ‘push’, external premium, Taylor Rule

Interpretation: Taylor Rule=zero bound; productivity continued to grow apart from the heart of crisis

Wage ‘push’ possible reasons: oil/commodity price rises reduce wages abnormally and produce intertemporal substitution; Obama programme boosting union power and health care reform causing uncertainly higher costs for employees.

External premium: subprime loans unravelling. Role of government pressure in building up subprime loans exploiting rising house prices. Lehman collapse causes premium to peak as government is sucked into a fiscal bail-out. Hence this shock includes government action both in building the subprime problem and in ultimately defusing it.
Figure: US Real House Price Index (2000=100): 1975-2009 (Federal Housing Finance Agency)
Government intervention building up the subprime shock

Political and Legislative Targets

1) 1996 HUD target for F and F: 42% of mortgages to go to borrowers with income below area median (50% 2000; 52% 2005).
2) 1996 HUD target for ‘special affordable’ (borrowers with less than 60% of area median) was 12% (20% 2000; 22% 2005).
4) Taxpayer Relief Act increased CGT exclusion band on houses

Table: Evidence of Political Effect
Government intervention building up the subprime shock

Effects on Home Ownership

1) 1994-2006, US home ownership rate up 9.4% (to 70% of population). Hispanics up by 20.2%; Asians 17.2%; African Americans 14%; non-Hispanic Whites 8.2%.

2) Hispanic population 44% Pacific; 30% South; Asian population 49% Pacific. African; American 45% South.

3) Prices in these two regions both take off from 1992 but differentially due to extra supply response in South (less zoning tightness).

<table>
<thead>
<tr>
<th>Table: Evidence of Political Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Variance decomposition of typical crisis episode

<table>
<thead>
<tr>
<th>SHOCK</th>
<th>Int. rate</th>
<th>Inflation</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>17.1</td>
<td>0.7</td>
<td>9.7</td>
</tr>
<tr>
<td>Taylor Rule</td>
<td>9.4</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Productivity</td>
<td>4.5</td>
<td>3.1</td>
<td>24.0</td>
</tr>
<tr>
<td>Price Mark-up</td>
<td>15.9</td>
<td>85.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Labour Supply</td>
<td>21.8</td>
<td>8.7</td>
<td>36.3</td>
</tr>
<tr>
<td>Premium</td>
<td>17.1</td>
<td>0.5</td>
<td>15.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Int. rate</th>
<th>Inflation</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banking Shocks</td>
<td>20.9</td>
<td>0.6</td>
<td>17.9</td>
</tr>
<tr>
<td>Non-Banking Shocks</td>
<td>79.1</td>
<td>99.4</td>
<td>82.1</td>
</tr>
</tbody>
</table>

Table: Variance Decomposition for Crisis Period
What causes a typical crisis?

- Main cause is non-banking shocks: to output productivity/labour supply/investment; to inflation commodity prices/labour supply; to interest rates all of these and the Taylor Rule.
Main cause is non-banking shocks: to output productivity/labour supply/investment; to inflation commodity prices/labour supply; to interest rates all of these and the Taylor Rule.

The Banking shocks add to this; around a fifth to interest rates and output. But note that the shocks include a) the building effect of government promotion of sub-prime b) the dampening effect of government bail-out at the end.
What causes a typical crisis?

- Main cause is non-banking shocks: to output productivity/labour supply/investment; to inflation commodity prices/labour supply; to interest rates all of these and the Taylor Rule.
- The Banking shocks add to this; around a fifth to interest rates and output. But note that the shocks include a) the building effect of government promotion of sub-prime b) the dampening effect of government bail-out at the end.
- Inflation was not much affected by the banking shock.
Figure: Shock Decomposition for Output During the Banking Crisis Episode
Crisis period real time-line

Figure: Shock Decomposition for Interest Rate During the Banking Crisis Episode
Figure: Shock Decomposition for Inflation During the Banking Crisis Episode
Output: labour supply/investment/premium dominant negative shocks, offset by productivity. Taylor Rule minor.
Crisis period real time-line

- Output: labour supply/investment/premium dominant negative shocks, offset by productivity. Taylor Rule minor.
- Interest rate: labour supply and Taylor Rule push up rates while premium/productivity/investment pull them down. Without zero bound rates would have been 0.5% lower (ie 2% per annum).
Crisis period real time-line

- **Output:** labour supply/investment/premium dominant negative shocks, offset by productivity. Taylor Rule minor.

- **Interest rate:** labour supply and Taylor Rule push up rates while premium/productivity/investment pull them down. Without zero bound rates would have been 0.5% lower (ie 2% per annum).

- **Inflation:** fluctuates + and - 0.5% (2% per annum) around target. By end is at bottom of this range as commodity price shock goes into reverse; productivity offsets labour supply; premium and Taylor Rule add to downward pressure.
Crisis happens regularly in capitalist economy: see charts for output of selected bootstraps, done for ’normal’ shocks (1984-2007).
Crisis happens regularly in capitalist economy: see charts for output of selected bootstraps, done for 'normal' shocks (1984-2007).

Financial crisis (sharp rise in premium) accompanies a crisis roughly half the time- see corresponding charts for the premium.
Crisis and financial crisis

- Crisis happens regularly in capitalist economy: see charts for output of selected bootstraps, done for 'normal' shocks (1984-2007).
- Financial crisis (sharp rise in premium) accompanies a crisis roughly half the time- see corresponding charts for the premium.
- Extreme financial shocks not required to generate financial crisis- see last set of charts which came from normal financial shocks.
Crisis and financial crisis

- Crisis happens regularly in capitalist economy: see charts for output of selected bootstraps, done for 'normal' shocks (1984-2007).
- Financial crisis (sharp rise in premium) accompanies a crisis roughly half the time- see corresponding charts for the premium.
- Extreme financial shocks not required to generate financial crisis- see last set of charts which came from normal financial shocks.
- Extreme financial shocks do not on their own generate financial crises- see charts of bootstraps generated by financial shocks only 1984-2009 (including extreme values in crisis). Only get bad recessions (and premium rises); no crises.
Crisis Not Accompanied by Financial Crisis

Figure: Crises Not Accompanied by Financial Crisis
Figure: Crises Accompanied by Financial Crisis
No Crises with only Financial Shocks

Figure: Simulation with only Financial Shocks
Typical crisis, from evidence of this US episode, is caused mainly by non-banking shocks of ‘traditional’ sort; the banking transmission does not much exacerbate them. But the banking shock adds another layer.
Typical crisis, from evidence of this US episode, is caused mainly by non-banking shocks of ‘traditional’ sort; the banking transmission does not much exacerbate them. But the banking shock adds another layer.

The banking shock in this crisis had heavy government intervention in it, both in causing and in defusing it.
Policy and other Conclusions

- Typical crisis, from evidence of this US episode, is caused mainly by non-banking shocks of ‘traditional’ sort; the banking transmission does not much exacerbate them. But the banking shock adds another layer.

- The banking shock in this crisis had heavy government intervention in it, both in causing and in defusing it.

- Regulation of banking unlikely therefore to prevent crises or banking crises that result; regulation of government would have been more effective! But- quis custodiet ipsos custodes? Cf South Sea Bubble and role of UK government.
Policy and other Conclusions

- Typical crisis, from evidence of this US episode, is caused mainly by non-banking shocks of ‘traditional’ sort; the banking transmission does not much exacerbate them. But the banking shock adds another layer.

- The banking shock in this crisis had heavy government intervention in it, both in causing and in defusing it.

- Regulation of banking unlikely therefore to prevent crises or banking crises that result; regulation of government would have been more effective! But- quis custodiet ipsos custodes? Cf South Sea Bubble and role of UK government.

- Experience of other countries (eg Australia, Spain) that prevented banking ‘special purpose vehicles’ suggests that limited prudential limits on banks helpful- prevented them buying toxic sub-prime package.
Hence Dodd-Franks and other heavy intervention in banking elsewhere unlikely to prevent future crises but may be damaging banking function badly.
Hence Dodd-Franks and other heavy intervention in banking elsewhere unlikely to prevent future crises but may be damaging banking function badly.

Zero Bound not a big element- price level targeting could help, to extent it was.
Hence Dodd-Franks and other heavy intervention in banking elsewhere unlikely to prevent future crises but may be damaging banking function badly.

Zero Bound not a big element- price level targeting could help, to extent it was.

Fiscal policy shows up in moderating the premium shock via bail-out (taxpayer credit provision) but not otherwise. QE effect may also be found from end-2008 in the moderating of the premium.