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1 Introduction

The emergence of cryptocurrencies has drawn significant investment capital in the re-
cent years. The rates of increase in market capitalization, in volumes traded, as well as in
the price of certain cryptocurrencies are exponential, indicating that changes in the cryp-
tocurrency market can occur very rapidly. Bitcoin was the first cryptocurrency to appear
in 2008 and currently has the highest market capitalization. Soon after its appearance
several similar cryptocurrencies (collectively called “altcoins”) started to emerge: Lite-
coin was launched in 2011 and supports faster transaction confirmation. Additionally,
other applications of the blockchain technology that incorporate a cryptocurrency have
also emerged, the most dominant being Ethereum which was launched in 2015 and cur-
rently has the second highest market capitalization. Ethereum is an extended blockchain
application that can record contracts and includes a built-in cryptocurrency called Ether,
which is used to pay for contract execution. Another very interesting cryptocurrency is
Ripple.

A cryptocurrency is produced by cryptographic algorithms. This is then transported
across cyberspace using protocols such as peer-to peer networking. Most of the issues
surrounding the successful adoption of cryptocurrencies are connected to the question
of whether they are digital or virtual currencies, and as such, how their value is deter-
mined. Another compelling question is the issue of whether digital currencies should be
considered to be currencies or digital assets. There is a new and emerging literature re-
garding cryptocurrencies, with most emphasis surrounding Bitcoin and much of the study
has attempted to address the question of whether it is more analogous to a fiat versus
commodity money. For example, Yermack (2015) claims that Bitcoin has no intrinsic
value while lacks additional characteristics that are usually associated with currencies.
Although the role of cryptocurrencies can still be disputed, they are certainly subject of
rising awareness.

One possible explanation for investors’ interest in cryptocurrencies is their alleged di-
versification benefits. To have significant diversification benefits, the cryptocurrency re-
turns need to have low-positive or negative correlations with the traditional asset classes
like bonds and equities returns. In this paper we revisit this question while our main
contribution is that we construct optimal portfolios and assess their performance in a
non-parametric way. We manage to do so by employing a stochastic dominance (SD)
approach.

The Mean-Variance (M-V) dominance criterion is questionable for portfolio selection,
if investment returns are not normally distributed, or the utility functions are not quadratic.
It is consistent with expected utility for elliptical distributions such as the normal distri-
bution (Chamberlain, 1983; Owen and Rabinovitch, 1983; Berk, 1997) but has limited
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economic meaning when the probability distribution cannot be characterized completely
by its location and scale. SD presents a further generalization that accounts for all mo-
ments of the return distributions without assuming a particular family of distributions. SD
ranks investments based on general regularity conditions for decision making under risk
(Quirk and Saposnik, 1962; Hadar and Russell, 1969; Hanoch and Levy, 1969; Rothschild
and Stiglitz, 1970) and can be seen as a model-free alternative to M-V dominance. SD is
a central theme in a wide variety of applications in economics, finance and statistics (for
overviews and bibliographies see, Levy, 2015; Mosler and Scarsini, 2012) and the concept
is used in numerous empirical studies in finance. Due to its non-parametric attractiveness,
SD is particularly appealing for asset classes and investment strategies with asymmet-
ric risk profiles, for example small-cap stocks, junk bonds, derivatives and momentum
strategies.

SD is traditionally applied for comparing a pair of given prospects, for example, two
income distributions or two medical treatments. Davidson and Duclos (2000), Barrett and
Donald (2003) and Linton et al. (2005), among others, develop statistical tests for such
pairwise comparisons. A more general, multivariate problem is that of testing whether a
given prospect is stochastically efficient relative to all mixtures of a discrete set of alterna-
tives (Bawa et al.,1985; Shalit and Yitzhaki, 1994; Post, 2003; Kuosmanen, 2004; Roman
et al., 2006). This problem arises naturally in applications of portfolio theory and asset
pricing theory, where the mixtures are portfolios of financial securities. Post and Versijp
(2007), Scaillet and Topaloglou (2010), Linton et al. (2014) and Post and Poti (2017) ad-
dress this problem using various statistical methods. Their stochastic efficiency tests can
be seen as model-free alternatives to tests for M-V efficiency, such as the Shanken (1985,
1986) test (without a riskless asset) and the Gibbons et al. (1989) test (with a riskless
asset).

In a similar manner, the concept of stochastic spanning, introduced by Arvanitis et
al. (2017), can be perceived as a model-free alternative to M-V spanning (Huberman
and Kandel, 1987). Spanning occurs if introducing new securities or relaxing investment
constraints does not improve the investment possibility set uniformly over a given class
of investor preferences. Stochastic spanning, unlike M-V spanning, accounts for higher-
order moment risk in addition to variance. Higher-order moment risk is arguably more
relevant for analyzing spanning than for efficiency. Efficiency tests are generally applied
to a given broad market index with limited skewness and kurtosis (at the typical monthly
to annual return frequency), in which case the arguments of Levy and Markowitz (1979)
for the M-V approximation are compelling. By contrast, a spanning test evaluates all
feasible portfolios, including those concentrated in a small number of risky securities, for
which the same arguments are unlikely to hold. Given this motivation, and for the second
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order stochastic dominance relation, Arvanitis et al. (2017) propose a theoretical measure
for stochastic spanning, derive the null limit distribution for the associated empirical test
statistic and propose a relevant testing procedure based on subsampling.

In an empirical application using actual market data we test whether a portfolio set
originating from a traditional asset universe spans the same set augmented with cryp-
tocurrencies. This could be of significant importance to the empirical analysis of finan-
cial markets. If the hypothesis of stochastic spanning is not true, then this implies that
the introduction of the new securities (in our case cryptocurrencies) or the relaxation of
investment restrictions is beneficial for some investors in the given class. Our focus is on
the most common SD criterion of second-order stochastic dominance (SSD), which has
a well-established economic interpretation in terms of expected utility theory and Yaari’s
(1987) dual theory of risk. We employ the S&P 500 Total Return Index, the Barclays
U.S. Aggregate Bond Index and the one-month Libor rate to proxy the traditional asset
universe, i.e., equities, bonds and the risk-free rate. We also use daily and weekly prices
for four cryptocurrencies namely Bitcoin, Ethereum, Ripple and Litecoin. We address our
research question both in- and out-of-sample.

In the in-sample analysis, using the Arvanitis et al. (2017) stochastic spanning test,
we find that the portfolios based on the traditional investment opportunity set do not span
the corresponding portfolio strategies that include cryptocurrencies. In the out-of-sample
analysis, at any point in time we construct optimal portfolios based separately on an asset
universe comprising traditional asset classes and on an asset universe augmented with
cryptocurrencies, in a rolling window fashion. We compare the real performance of these
portfolios using the Davidson and Duclos (2013) non-parametric stochastic dominance
test, as well as parametric performance measures. We find that the expanded investment
universe with cryptocurrencies empirically dominates the traditional investment universe
with stocks, bonds and cash, making the investor better off, w.r.t. to all the aforementioned
performance criteria.

Hence, given the above, the main contribution of this paper is the statistical finding that,
both in-sample and out-of-sample, the augmented portfolio with cryptocurrencies could
be a good option for some riks averse investors to help diversify their portfolio risks.

The results are not surprising. For most of the second half of 2016, Bitcoin had been on
a steady march higher, driven by a number of factors such as the devaluation of the yuan,
geopolitical uncertainty and an increase interest of the professional investors. In January
3, 2017, Bitcoin broke the $1000 mark for the first time in three years. The majority of
Bitcoin trading is done in China and so the devaluation of the yuan and fears over capital
controls had a significant impact on the price of the digital currency. But several other
factors have also had a notable impact, for example the U.S. election results in November
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2016. In the first three quarters of 2017 there were numerous broad market developments
with material impacts on the digital asset space. For example, the denial of the U.S. Se-
curities and Exchange Commission (SEC) of an exchange-traded fund (ETF), the Bitcoin
fork, Initial Coin Offerings (ICOs) legality and China’s stance on digital assets all con-
tributed to a whirlwind move for the markets. Bitcoin and Ether are used to purchase
tokens for ICOs so a big part of Bitcoin’s and Ether’s surge was the ICO craze.

It is true that Bitcoin’s rally attracts interest in alternative cryptocurrencies like Ethereum.
It is also bringing a broader investment base. But while Bitcoin’s rise increases investors’
interest for Ethereum and other altcoins, Ethereum’s popularity depends at the same time
on a number of other factors, especially in the business and financial communities. Cor-
porates have focused on the Ethereum wishing to use the technology for smart contract
applications, i.e., contracts that automatically execute according to a computer algorithm
when contract terms are met. Several financial institutions and large companies have in-
vested in Ethereum technology and as a result in March 2017, the Enterprise Ethereum
Alliance (EEA) was formed with the involvement of some of the most valuable compa-
nies in the world, including Microsoft, JP Morgan and IBM. On the other hand, Ripple is
at times overwhelmingly independent and at others somewhat dependent to Bitcoin and
Ethereum. Its relative independence from Chinese markets and the lack of involvements
in ICOs shielded Ripple and the events in the digital asset space over the last year largely
did not involve Ripple directly. Litecoin, however, reacted quite dramatic to all news
from China since it is really popular among Chinese investors. Generally, in the last year
Litecoin’s bullish run coincides with other altcoins’ soaring gains including Ripple and
Ethereum.

Finally, we explain the documented diversification benefits of cryptocurrencies by us-
ing the approach of Cambell and Hamao (1992) to establish that cryptocurrency markets
are segmented from equity and bond markets. More specifically, under diversification
benefits and hence market segmentation, assets of the different markets are not priced
by the same discount factor (see, for example, Ferson et al., 1993; Bekaert and Urias,
1996; De Roon et al., 2003). To our knowledge, there is no relevant literature providing
evidence about the integration/segmentation of cryptocurrency markets with equity and
bond markets. We find that cryptocurrency markets are segmented from equity and bond
markets and exhibit characteristics of a unique asset class. We obtain data on a set of
variables documented to forecast returns in equity and bond markets: the dividend yield,
the default spread (Bessembinder and Chan, 1992), the term spread (Fama and French,
1989), the money supply growth (Chen, 2007) and the growth in the Baltic Dry Index
(Bakshi et al., 2011).

The paper is organized as follows. In Section 2 we describe the stochastic spanning
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methodology. In Section 3 we provide the empirical application. We present the results
from the in-sample and out-of-sample analysis. Section 4 presents the evidence on mar-
kets’ segmentation. The final Section concludes the paper. We discuss the computational
strategy in the Appendix.

2 Stochastic spanning

2.1 Preliminaries and null hypothesis

Let the investment opportunity set Λ :=
{

λ ∈ RN
+ : 1T

Nλ = 1
}

, i.e. the N-simplex,
which represents the set of convex combinations of N base assets. Those are not nec-
essarily restricted to be individual securities but are generally defined as the vertices of Λ,
which could in turn emerge as feasible combinations of some individual securities. The
analysis considers the random investment returns of the base assets represented by the ran-
dom vector X :=(x1, . . . ,xN), with support bounded by X N := [x,x]N ,−∞< x< x<+∞.
X can be chosen arbitrarily as a closed superset of the maximal support of the base assets.
As in Arvanitis et al. (2017), to be realistic we do not allow for unbounded investment
opportunities, because of the risk of financial ruin and the associated negative spill-overs
to counterparties. For any realistic investment problem, private contracts, law and regula-
tion may limit the investment possibilities. These restrictions will, for example, prohibit
any risk neutral investor from borrowing an infinite amount of money and assuming an
infinite and concentrated position in a single high-risk security.

Let F denote the continuous joint c.d.f. of X and F(y,λ ) :=
´

1(XTλ ≤ y)dF(X) the
marginal c.d.f. for portfolio λ ∈ Λ. In order to define stochastic spanning, we use the
following integrated c.d.f.:

F(2)(x,λ ) :=
ˆ x

−∞

F(y,λ )dy =
ˆ x

−∞

(x− y)dF(y,λ ). (1)

This measure corresponds to Bawa’s (1975) first-order lower-partial moment, or ex-
pected shortfall, for return threshold x ∈X .

This study focuses on the effects of changing the set of base assets or investment con-
straints. For this purpose, we introduce a non-empty polyhedral subset K⊂ Λ. A polyhe-
dral structure is analytically convenient and can for example emerge if we remove some
of the extreme points of Λ and/or further restrict Λ with appropriate linear constraints. We
denote generic elements of Λ by λ ,κ etc. We assume that λ ∈ Λ and κ ∈ K. Given the
above we will give the definition of stochastic spanning of Arvanitis et. al. (2017) and we
will descibe their measure for stochastic spanning.
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Definition 1. (Stochastic Spanning): Portfolio set Λ is second-order stochastically spanned

by subset K⊂Λ if all portfolios λ ∈Λ are weakly second-order stochastically dominated

by some portfolios κ ∈ K:

∀λ ∈ Λ,∃κ ∈ K :∀x ∈X : G(x,κ,λ ;F)≤ 0

G(x,λ ,τ;F) := F(2)(x,λ )−F(2)(x,τ). (2)

From Arvanitis et al. (2017) the following scalar-valued functional of the population
c.d.f. serves as a measure for deviations from stochastic spanning:

η(F) := sup
λ∈Λ

inf
κ∈K

sup
x∈X

G(x,κ,λ ;F)≥ 0. (3)

If η(F) = 0, then there is no feasible portfolio λ ∈ Λ that is not weakly dominated by
a portfolio κ ∈Κ. If η(F)> 0, then stochastic spanning does not occur.

According to the above definition K stochastically spans Λ iff any arbitrary element of
the latter set is weakly dominated by some element of the former set. Using the utility
class interpretation, this is equivalent to that for an arbitrary element of Λ there exists an
element of K, weakly prefered to the former, by every risk averse utility. Hence, by Propo-

sition 2 of Arvanitis et al. (2017) the stochasic spanning measure can be reformulated in

terms of expected utility as:

η(F) = sup
λ∈Λ;u∈U2

inf
κ∈K

EF
[
u
(
XT

λ
)
−u
(
XT

κ
)]

; (4)

U2 :=
{

u ∈ C 0 : u(y) =
ˆ x

x
w(x)r(y;x)dx w ∈W

}
; (5)

r(y;x) := (y− x)1(y≤ x), (x,y) ∈X 2. (6)

In this formulation, U2 is a set of normalized, increasing and concave utility functions
that are constructed as convex mixtures of elementary Russell and Seo (1989) ramp func-
tions r(y;x), x ∈X . Stochastic spanning (η(F) = 0) occurs if no risk averter (u ∈ U2)

benefits from the enlargement (Λ−K). The representation of spanning in 4 is quite useful
for the numerical implementation of the associated testing procedure derived in Arvanitis
et al. (2017) (see Appendix for a detailed description of the implementation).
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2.2 Statistical test and critical values

In empirical applications, the c.d.f. F is latent and the analyst has access to a discrete
time series of realized returns (Xt)

T
t=1 , Xt ∈X , t = 1, ...,T. Let FT (x) :=T−1

∑
T
t=1 1(Xt ≤ x)

denote the associated empirical c.d.f.. Given the above, Arvanitis et al. (2017) use the fol-
lowing scaled empirical analogue as a test statistic for stochastic spanning:

ηT :=
√

T sup
λ∈Λ

inf
κ∈K

sup
x∈X

G(x,κ,λ ;FT ).

We will use the test statistic ηT to test the null hypothesis of stochastic spanning. Ar-
vanitis et al. (2017) establish the asymptotic distribution of the test statistic under the
null hypothesis. The basic decision rule to reject H0 against H1 if and only if ηT >

q(η∞,1−α) where q(η∞,1−α) denotes the (1−α) quantile of the distribution of η∞

for any significance level α ∈ ]0,1[ and η∞ is the relevant weak limit. However this is
infeasible due to the dependence of q(η∞,1−α) on the latent c.d.f. F as well as on
the temporal dependence of the returns process. However, feasible decision rules can be
obtained by using a subsampling procedure to estimate q(η∞,1−α) from the data.

The subsampling procedure, begins by generating (T −bT +1) maximally overlapping
subsamples of (Xs)

t+bT−1
s=t , t = 1, · · · ,T − bT + 1, and then evaluates the test statistic on

each subsample value thereby obtaining ηbT ;T,t for t = 1, · · · ,T − bT + 1. The empirical
distribution of subsample test scores can be described by the following c.d.f. and quantile
function:

sT,bT (y) :=
1

T −bT +1

T−bT+1

∑
t=1

1(ηbT ;T,t ≤ y); (7)

qT,bT (1−α) := inf
y

{
sT,bT (y)≥ 1−α

}
. (8)

We reject H0 if and only if ηT > qT,bT (1−α). This subsampling routine is asymp-
totically exact and consistent under reasonable assumptions on the subsample length and
significance level (see Online Appendix B in Arvanitis et al., 2017).

Although the test has asymptotically correct size the quantile estimates qT,bT (1−α)

may be biased and very sensitive to the choice of subsample size bT in finite samples of
realistic dimensions (N and T ). Arvatitis et al. (2017) propose a correction procedure via
a regression-based method. For a given significance level α , the quantiles qT,bT (1−α)

are evaluated for a range of the subsample size bT . Next, the intercept and slope of the
following regression line using OLS regression analysis are estimated:
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qT,bT (1−α) = γ0;T,1−α + γ1;T,1−α(bT )
−1 +νT ;1−α,bT . (9)

Finally, the bias-corrected (1−α)-quantile is evaluated as the OLS predicted value for
bT = T :

qBC
T (1−α) := γ̂0;T,1−α + γ̂1;T,1−α(T )−1. (10)

Arvanitis et al. (2017) argue that the asymptotic properties are not affected, while com-
putational experiments show that the bias-corrected method is more efficient and more
powerful in small samples.

3 Empirical application

In the empirical application we test whether the inclusion of cryptocurrencies in the
asset universe could make some risk averse investors better off compared to the case where
the asset universe consists of only traditional asset classes (stocks, bonds and cash). We
address our research question both in- and out-of-sample.

We use data on daily closing prices of a number of indices obtained from Bloomberg.
We employ the S&P 500 Total Return Index, the Barclays U.S. Aggregate Bond Index and
the one-month Libor rate to proxy the traditional asset universe, i.e., the equity market,
the bond market and the risk-free rate, respectively. To access the cryptocurrencies asset
class, we use daily data on Bitcoin, Ethereum, Ripple and Litecoin US dollar closing
prices extracted from the Bitfinex exchange market through the CoinMarketCap. Ether
was first publiclly traded in July 2015 and data availability for cryptocurrencies before
that date was an issue. So, the dataset spans the period from August 7, 2015 to December
29, 2017, a total of 604 daily return observations.

Table 1 reports summary statistics regarding the performance of the employed assets
over this period. We can see that the daily average return of cryptocurrencies is higher
than that of stocks and bonds. The Sharpe ratio of cryptocurrencies is also considerably
higher. Moreover, cryptocurrencies exhibit considerable standard deviation, compared to
the mean. Skewness and kurtosis are extremely high, indicating large deviations from
normality. Although the one-month Libor rate is not constant, its daily return is calcu-
lated and is considered constant, therefore the standard deviation is zero, and we do not
calculate skewness and kurtosis.
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3.1 In-sample analysis

In this section we test in-sample the null hypothesis that the traditional asset class spans
the augmented with cryptocurrencies asset universe. We get the subsampling distribution
of the test statistic for subsample size
bT ∈ [120,240,360,480]. Using OLS regression on the empirical quantiles qT,bT (1−α)

and for significance level α = 0.05, we get the estimate qBC
T for the critical value.

We find that the regression estimate qBC
T = 0.3408 is lower than the value of the test

statistic 0.34834. Thus, we reject the hypothesis that the traditional asset class spans the
augmented asset class with cryptocurrencies.

In order to validate our results, we carry out an additional test. Particularly, we test
whether the results on the outperformance of cryptocurrencies are robust to the choice of
traditional asset universe. To this end, we include both the S&P 500 and dynamic trading
strategy (i.e. SMB or HML) into the traditional asset universe. Moreover, we include the
Russell 2000 equity index, the Vanguard value and the Vanguard small-cap index funds.

We find that the regression estimate qBC
T = 0.33870 is again lower than the value of the

test statistic 0.34834.
We can see that in any case the optimal portfolios based on the investment opportunity

set that includes cryptocurrencies are not spanned by the corresponding optimal portfolio
strategies based on the traditional investment opportunity set.

The results of this in-sample-analysis indicate that the performance of traditional port-
folios, consisting of stocks, bonds and cash, can be improved by including cryptocurren-
cies. Thus, some risk averse investors could benefit from the augmentation.

3.2 Out-of-sample analysis

In this section, we examine whether cryptocurrencies could provide diversification
benefits out-of-sample. Although in the in-sample tests we reject the null hypothesis
of stochastic spanning, it is not known a priori whether the augmented with cryptocur-
rencies portfolios will outperform the traditional ones in an out-of-sample setting. This
is because by construction these portfolios are formed at time t based on the information
prevailing at time t, while the portfolio returns are reaped over [t, t + 1] (next day). The
out-of-sample test is a real-time exercise mimicking the way that a real-time investor acts.

We form optimal portfolios separately for two asset universes: one that includes tra-
ditional asset classes, i.e., equities, bonds and risk-free asset and an augmented one
with cryptocurrencies. We resort to backtesting experiments on a rolling horizon basis.
The rolling horizon simulations cover the 604 working day period from 08/07/2015 to
12/29/2017. At each day, we use the data from the previous year (269 daily observations)
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to calibrate the procedure. We solve the resulting optimization problem for the stochastic
spanning test and record the optimal portfolio of the traditional assets as well as the op-
timal portfolio of the traditional assets and the cryptocurrencies. The clock is advanced
and the realized returns of the optimal portfolios are determined from the actual returns
of the various assets. The same procedure is then repeated for the next time period and
the ex post realized returns over the period from 09/01/2016 to 29/12/2017 (334 working
days) are computed for both portfolios.

Figure 1 illustrates the cumulative performance of the traditional optimal portfolio as
well as the augmented with cryptocurrencies optimal portfolio for the sample period from
09/01/2016 to 12/29/2017. We observe that the augmented optimal portfolio has more
than 307 times higher value at the end of the holding period compared to the beginning,
while the traditional portfolio has only 1.265 times higher value. Not surprisingly, the
relevant performance of portfolios with cryptocurrencies is 242 times higher compared
to the equity market, the bond index and the Libor 1-month. The optimal augmented
portfolio includes Ethereum and Ripple, and small amount in Litecoin, but none of the
traditional assets.

We repeat the backtesting experiment extending the traditional asset class with the
SMB and HML indices, as well as the Russell 2000 equity index, the Vanguard value and
the Vanguard small-cap index funds, in the same way as we did in the in-sample analysis.
Figure 2 exhibits the cumulative performance of both the traditional optimal portfolio and
the optimal augmented portfolio for the sample period from 09/01/2016 to 29/12/2017.
The same observations hold here, i.e., the value of the augmented optimal portfolio is
more than 307 times higher at the end of the holding period while the traditional portfolio
has only 1.348 times higher value. Again, the relevant performance of the portfolio with
cryptocurrencies is 228 times higher than the performance of the equity indices, the bond
index and the Libor 1-month. The optimal augmented portfolio is the same as before.

3.3 Out-of-sample performance assessment

In this section, we compare the out-of-sample performance of the two optimal port-
folios formed by the respective two asset universes by using both non-parametric and
parametric tests.

3.3.1 Non-parametric tests

There is a number of pairwise stochastic dominance tests presented in the literature;
see, for example Barret and Donald (2003), Davidson and Duclos (2000), Linton et al.
(2005) and Davidson and Duclos (2013). Here we prefer to use the Davidson and Duclos
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(2013) stochastic dominance test, mainly for two reasons. First, the test allows for corre-
lated samples. Second, the Davidson and Duclos (2013) test has as null hypothesis that
one portfolio does not stochastically dominate another, i.e., the nondominance. The ma-
jority of stochastic dominance tests posit the null of dominance. But rejecting dominance
of one portfolio does not necessarily imply that the other one is stochastically dominant.
However, under the Davidson and Duclos (2013) test, rejecting the nondominance of one
portfolio, leaves us with the only remaining alternative, i.e., dominance. Adding up to this
idea, we test the null of nondominance of the optimal portfolio based on stocks, bonds,
cash and cryptocurrencies over the traditional asset universe. The alternative hypothesis
is that the augmented asset universe based optimal portfolio stochastically dominates the
traditional asset based optimal portfolio. We test the null hypothesis using second order
stochastic dominance criteria1.

We define the empirical versions of the dominance functions D2
Tr and D2

Aug (see David-
son and Duclos (2000) for the definition of dominance functions) as,

D̂2
Tr =

1
T

T

∑
t=1

(max(z− yt ,0)), (11)

where T is the number of observations in the distribution sample of traditional portfolio
returns, yt is the t -th observation, and z is the threshold of interest. Analogously, we
define the dominance function for the augmented portfolio (Aug).

Then the augmented portfolio dominates at second order the traditional portfolio iff
D̂2

Tr > D̂2
Aug for all y in the joint support. The null hypothesis of nondominance is not

rejected unless there is dominance in the sample.
For each threshold level z, let the standardized difference of the two dominance func-

tions,

t(z) =
D̂2

Tr− D̂2
Aug

(Var(D̂2
Tr)+Var(D̂2

Aug)−2Cov(D̂2
Tr, D̂

2
Aug))

1/2
, (12)

and the resulting test statistic,

t∗ = min
z

t(z). (13)

In order to simulate the p-values we use the bootstrap methodology described in David-
son and Duclos (2013). Notice that the relevant limiting results of Davidson and Duclos
(2013) could be justified in the framework of rebalanced optimal portfolios via results
such as Theorem 4.4.2 of Politis et al. (1999). The results entail T − 1, i.e., 233 over-
lapping periods for the in-sample fitting of the two portfolios with corresponding out-

1Hodder et al. (2015) use the same stochastic dominance test to test the out-of-sample performance of
alternative portfolios compared to a benchmark portfolio.
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of-sample comparisons. The 233 p-values are considered from September 1, 2016 to
December 29, 2017, using overlapping periods of 100 daily returns. Since it is impossible
to aggregate the T − 1 values of the Davidson and Duclos (2013) test statistic to get a
unique measure of comparison, we compute quartile p-values from the distribution of the
T −1 test statistics.

Table 2 reports the quartile p-values from the distribution of daily portfolio returns, un-
der the null hypothesis that the augmented portfolio does not dominate the traditional one.
Panel A considers the case when the traditional set includes the S&P 500 Equity Index,
the Barclays US Aggregate Bond Index and the 1-month Libor, while Panel B considers
the case when the traditional set includes additionally the SMB and HML indices, as well
as the Russell 2000 equity index, the Vanguard value and the Vanguard small-cap index
funds. We observe that for the 25% and 50% quartile p-values, we tend to reject the null
hypothesis that the augmented optimal portfolio does not dominate the traditional one in
all cases, with respect to the second order stochastic dominance criterion.

The results indicate that the null hypothesis of nondominance over the traditional port-
folio can be rejected even for 50% of daily tests for both cases.

3.3.2 Parametric tests

We compute a number of commonly used parametric performance measures: the Sharpe
ratio, the downside Sharpe ratio of Ziemba (2005), the upside potential and downside risk
(UP) ratio of Sortino and van den Meer (1991), the opportunity cost, the portfolio turnover
and a measure of the portfolio risk-adjusted returns net of transaction costs. The downside
Sharpe and UP ratios are considerd to be more appropriate measures of performance than
the typical Sharpe ratio given the asymmetric return distribution of cryptocurrencies.

For the downside Sharpe ratio, first we need to calculate the downside variance (or
more precisely the downside risk),

σ
2
P− =

∑
T
t=1(xt− x̄)2

−
T −1

, (14)

where the benchmark x̄ is zero, and the xt taken are those returns of portfolio P at day t

below x̄, i.e. those t of the T days with losses. To get the total variance, we use twice the
downside variance namely 2σ2

P− so that the dowside Sharpe ratio is,

SP =
R̄p− R̄ f√

2σP−
, (15)

where R̄p is the average period return of portfolio P and R̄ f is the average risk free rate.
The UP ratio compares the upside potential to the shortfall risk over a specific target
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(benchmark) and is computed as follows. Let Rt be the realized daily return of portfolio
P for t = 1, ...,T of the backtesting period, where T = 252 is the number of experiments
performed and let ρt be respecitvely the return of the benchmark (T-bills riskless asset)
for the same period. Then, we have,

UP ratio =
1
K ∑

K
t=1 max[0,Rt−ρt ]√

1
K ∑

K
t=1(max[0,ρt−Rt ])2

. (16)

It is obvious that the numerator of the above ratio is the average excess return over the
benchmark and so reflects upside potential. In the same way, the denominator measures
downside risk, i.e. shortfall risk over the benchmark.

Next, we use the concept of opportunity cost presented in Simaan (2013) to analyse the
economic significance of the performance difference of the two optimal portfolios. Let
RAug and RTr be the realized returns of the optimal portfolio for the augmented and the
traditional asset class respectively. Then, the opportunity cost θ is defined as the return
that needs to be added to (or subtracted from) the traditional portfolio return RTr, so that
the investor is indifferent (in utility terms) between the strategies imposed by the two
different investment opportunity sets, i.e.,

E[U(1+RTr +θ)] = E[U(1+RAug)]. (17)

A positive (negative) opportunity cost implies that the investor is better (worse) off
if the investment opportunity set allows for cryptocurrency investing. Notice that the
opportunity cost takes into account the entire probability density function of asset returns
and hence it is suitable to evaluate strategies even when the assets’ return distribution is
not normal. For the calculation of the opportunity cost, we use exponential and power
utility functions alternatively, consistent with second degree stochastic dominance. We
also employ alternative values for the risk aversion parameter.

Next, we compute the portfolio turnover (PT) to get a feeling of the degree of rebal-
ancing required to implement each one of the two strategies. For any portfolio strategy P,
the portfolio turnover is defined as the average of the absolute change of weights over the
T rebalancing points in time and across the N available assets, i.e.,

PT =
1
T

T

∑
t=1

N

∑
i=1

(|wP,i,t+1−wP,i,t |), (18)

where wP,i,t+1 and wP,i,t are the optimal weights of asset i under strategy P (traditional or
augmented) at time t and t +1, respectively.

Finally, we evaluate the performance of the two portfolios under the risk-adjusted (net
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of transaction costs) returns measure, proposed by DeMiguel et al. (2009) which indicates
the way that the proportional transaction cost, generated by the portfolio turnover, affects
the portfolio returns. Let trc be the proportional transaction cost, and RP,t+1 the realized
return of portfolio P at time t +1. The change in the net of transaction cost wealth NWP

of portfolio P through time is,

NWP,t+1 = NWP,t(1+RP,t+1)[1− trc×
N

∑
i=1

(|wP,i,t+1−wP,i,t |). (19)

The portfolio return, net of transaction costs is defined as

RTCP,t+1 =
NWP,t+1

NWP,t
−1. (20)

Let µTr and µAug be the out-of-sample mean of monthly RTC with the restricted and the
expanded opportunity set, respectively, and σTr and σAug be the corresponding standard
deviations. Then, the return-loss measure is,

RLoss =
µAug

σAug
×σTr−µTr, (21)

i.e., the additional return needed so that the traditional portfolio performs equally well
with the augmented portfolio. We follow the literature and use 35 bps for the transaction
cost of stocks and bonds.

In the cryptocurrency market, transaction costs usually occur in two ways, namely trad-
ing fees and the bid-ask spread. Bid-ask spread is a type of risk premium to compensate
market dealer for providing liquidity. To execute a transaction, investor should pay addi-
tional premium to the exchange. And usually, exchange will ask for a high premium to
reduce loss by providing liquidity to the informed traders. But overall, the bid-ask spread
is minor issue compared to the normal price deviation. In contrast, other fees create more
frictions for investors to make arbitrage. For example, BTC-E charges a 0.2 to 0.5 percent
fee per transaction along with fees to deposit or withdraw traditional currency. Accord-
ing to CryptoCoins News, there is currently a $20 fee for a wire deposit. Bitstamp and
Bitfinex also charge trading fees and deposit/withdrawal/fees. In order to confirm the out-
of-sample superiority of the augmented portfolio, we decided to use higher transaction
costs for cryptocurrencies than for stocks and bonds, i.e., 50 bps.

Table 3 reports the parametric performance measures for the traditional and the aug-
mented portfolios (Panels A and B respectively). These performance measures, although
parametric, will supplement the evidence obtained from the previously discussed non-
parametric stochastic dominace measure. The higher the value of each one of these mea-
sures, the greater the investment opportunities for cryptocurrencies. From the results, we
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can see that the inclusion of cryprocurrencies into the opportunity set increases both the
Sharpe ratios and the downside Sharpe ratios. This reflects an increase in risk-adjusted
performance (i.e., an increase in expected return per unit of risk) and hence expands the
investment opportunities of some risk-averse investors. The same is true for the UP ratio.
Furthermore, we observe that portfolios with only traditional assets induce more portfolio
turnover than the ones with cryptocurrencies, regardless of the choice of the traditional
assets. Additionally, we can see that the return-loss measure, that takes into account trans-
action costs, is positive in both cases. We find a positive opportunity cost θ . One needs
to give a positive return equal to θ to an investor who does not include cryptocurrencies
in her portfolio so that she becomes as happy as an investor who includes cryptocurren-
cies. The computation of the opportunity cost requires the computation of the expected
utility and hence the use of the probability density function of portfolio returns. Thus, the
calculated opportunity cost has taken into account the higher order moments in contrast
to the Sharpe ratios. Therefore, the opportunity cost estimates provide further convincing
evidence for possible diversification benefits from the inclusion of cryptocurrencies given
the large deviation from normality.

To sum up, the non-parametric stochastic dominance test, as well as the employed para-
metric performance measures, indicate that when the investment universe is augmented
with cryptocurrencies it empirically dominates the traditional one, yielding potential di-
versification benefits and providing some investment opportunities.

4 Market segmentation

In this section we further investigate the reason of the empirical outperformance of the
cryptocurrency assets over the traditional ones presented in the previous Section. To this
end, we test whether the cryptocurrency market is integrated/ segmented with the equity
and bond market.

Typical definitions of capital market integration imply that financial assets that trade
in different markets will have identical expected returns as long as they have identical
risk characteristics (Campbell and Hamao, 1992). An equivalent way of defining market
integration is that the financial assets have at least one stochastic discount factor (SDF)
in common, i.e., the same SDF prices all assets (see also, Bessembinder and Chan, 1992;
Chen and Knez, 1995). Hence, in the case of market integration, there is a common
stochastic discount factor which prices the various asset classes.

The existence of diversification benefits is tightly connected with spanning. A set of
test assets are said to provide diversification benefits relative to a set of benchmark assets
if adding these assets to the benchmark leads to a significant leftward shift in the efficient
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frontier (Bekaert and Urias, 1996). This is equivalent to test whether a set of benchmark
assets spans the set of both benchmark and test assets. Thus, in the case of spanning,
including the test assets in the benchmark asset universe does not increase the portfolio
expected return per unit of risk (i.e., the Sharpe ratio) and thus diversification benefits do
not exist.

In the case where markets are segmented, assets in different markets are not priced by
the same stochastic discount factor. This in turn implies that assets in one market are not
spanned by assets in the other markets and hence diversification benefits exist (for the
case of Mean-Variance spanning, see for example Ferson et al., 1993; Bekaert and Urias,
1996; DeSantis, 1995; and for the non Mean-Variance case see, De Roon et al., 2003).

We follow the Campbell and Hamao (1992) model to test for market integration. Let a
K− factor asset pricing model,

Ri,t+1 = Et(Ri,t+1)+
K

∑
k=1

βik fk,t+1 + ei,t+1, (22)

where Ri,t+1 denotes the excess return on asset i held from time t to time t + 1, fk,t+1

the kth factor realization, βik the factor loading with respect to the kth factor and ei,t+1 the
error term. The above equation maps to an expected return-beta representation (Cochrane,
2005),

Et(Ri,t+1) =
K

∑
i=1

βikλkt , (23)

where λkt is the market price of risk for the kth factor at time t. The time variation in the
kth factor market price of risk is modeled as

λkt =
N

∑
n=1

θknXnt , (24)

where there is a set of N predictors Xnt , n = 1,2, ...,N. Assuming that markets are inte-
grated, i.e., they have the same prices of risk and the time variation in expected returns
stems from time variation in the prices of risk, equations (23) and (24) imply that predictor
variables that drive prices of risk should be the same across assets. Therefore, evidence
that the predictors of the price of risk differ across asset classes would imply that the
market price of risk is not the same across assets and hence markets are segmented.

We use predictors which have been documented to predict equity and bond markets
returns: the dividend yield, the default spread (Bessembinder and Chan, 1992), the term
spread (Fama and French, 1989), the money supply growth (Chen, 2007) and the growth
in the Baltic Dry Index (Bakshi et al., 2011). We obtain weekly data on the dividend yield
on MSCI World, the junk bond premium (or default spread, defined as the excess of the
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yield on long-term BAA corporate bonds rated by Moody’s over the yield on AAA-rated
bonds), the term spread (defined as the difference between the Aaa yield and the one-
month bill rate) and the Baltic Dry Index from Bloomberg. We also obtain weekly data
on money supply from the Board of Governors of the Federal Reserve System (US).

Table 4 presents the evidence on the forecastability of the weekly asset returns during
the period from August 7, 2015 to December 29, 2017. The Newey-West standard errors
are used to correct for autocorrelation and heteroskedasticity. We can see that the S&P 500
equity index can be predicted by the default spread and the dividend yield. The Barclays
Bond index can be predicted by the term spread. On the other hand, these predictors do
not forecast cryptocurrency weekly returns. This evidence is also supported by the F-
statistic and the respective p-values: the hypothesis that all coefficient estimates equal to
zero can be rejected only for the traditional asset classes, i.e., the S&P 500 equity index
and the Barclays Bond Index.

Our results show that cryptocurrency returns cannot be forecasted by variables that
predict stock and bond market returns. This suggests that the price of risk is driven by
different predictors across the various asset classes which in turn implies that the prices
of risk differ. As a result, cryptocurrency markets are segmented from equity and bond
markets and hence the inclusion of cryptocurrencies in investors’ portfolios is expected to
yield some diversification benefits. Note that the market integration test offers a statistical
setting on top of the economic significance setting applied in the previous sections to
assess whether cryptocurrencies may offer diversification benefits. In addition, the test is
applied to the full sample and hence the obtained results are meant to be discussed in light
of the in-sample evidence.

5 Conclusions

Cryptocurrencies are one of the most important financial innovations in recent times.
They have drawn an increasing number of critics and supporters in equal measures. To
expand the analysis of cryptocurrencies as assets, we have adopted a stochasic dominance
approach.

In a related empirical application using actual market data, we test whether a portfolio
set originated from a traditional asset universe does not span the same set augmented by
including cryptocurrencies. If spanning is rejected, then some risk averters could benefit
from the augmentation of investment opportunities. We employ the S&P 500 Total Return
Index, Barclays U.S. Aggregate Bond Index and the one month Libor rate to proxy the
traditional asset universe, i.e. the equity market, the bond market and the risk-free rate.
We also use daily and weekly prices for four cryptocurrencies namely Bitcoin, Ethereum,
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Ripple and Litecoin for the period August 2015 to December 2017. We conduct our
analysis both in- and out-of-sample by constructing and comparing optimal portfolios
derived from two respective asset universes: one that includes only the traditional asset
classes (equities, bonds and cash) and one that is augmented with cryptocurrencies, too.

In the in-sample tests, we find that the optimal portfolios formed based on the invest-
ment opportunity set that also includes cryptocurrencies are not spanned by the corre-
sponding portfolio strategies based on the traditional investment opportunity set. Thus,
there may be some risk averse investors that would benefit from the augmentation, while
some others would not.

In the out-of-sample analysis, using a non-parametric stochastic dominance test as well
as parametric performance measures, we find that the expanded investment universe with
cryptocurrencies empirically dominates traditional one with stocks, bonds and cash, yield-
ing some diversification benefits and providing better investment opportunities.

We explain the reported diversification benefits by documenting that cryptocurrency
markets are segmented from equity and bond markets.

While our results are interesting, and the cryptocurrency markets seem to be growing in
popularity, investments in such markets should be considered with extreme caution due to
excessive volatility. Hence, we acknowledge that there are some issues to be considered
before cryptocurrencies will form an asset class of significant interest.
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Appendix: Computational strategy

For convenience we present here the computational strategy for the spanning testing
procedure developed in Online Appendix of Arvanitis et al. (2017).

The test statistic can be written:

ηT =
√

T sup
u∈U2

(
sup
λ∈Λ

EFT

[
u
(
XT

λ
)]
− sup

κ∈K
EFT

[
u
(
XT

κ
)])

. (25)

The term in parentheses is the difference between the solutions to two standard convex
optimization problems of maximizing a quasi-concave objective function over a polyhe-
dral feasible set. The analytic complexity of computing ηT stems from the search over
all admissible utility functions (U2). However, the utility functions are univariate, nor-
malized, and have a bounded domain (X ). As a result, we can approximate U2 with
arbitrary accuracy using a finite set of increasing and concave piecewise-linear functions
in the following way.

We partition X into N1 equally spaced values as x = z1 < · · · < zN1 = x, where zn :=
x+ n−1

N1−1(x− x), n = 1, · · · ,N1; N1 ≥ 2. Instead of an equal spacing, the partition could
also be based on percentiles of the return distribution. Similarly, we partition the interval
[0,1], as 0 < 1

N2−1 < · · ·< N2−2
N2−1 < 1, N2 ≥ 2. Using this partition, let

ηT :=
√

T sup
u∈U2

(
sup
λ∈Λ

EFT

[
u
(
XT

λ
)]
− sup

κ∈K
EFT

[
u
(
XT

κ
)])

; (26)

U2 :=

{
u ∈ C 0 : u(y) =

N1

∑
n=1

wnr(y;zn)w∈W

}
; (27)

W :=

{
w ∈

{
0,

1
N2−1

, · · · , N2−2
N2−1

,1
}N1

:
N1

∑
n=1

wn = 1

}
. (28)

Every element u ∈ U2 consists of at most N2 linear line segments with knots at N1

possible outcome levels. Clearly, U2 ⊂ U2 and ηT approximates ηT from below as we
refine the partition (N1,N2→ ∞). The appealing feature of ηT is that we can enumerate
all N3 := 1

(N1−1)! ∏
N1−1
i=1 (N2 + i− 1) elements of U2 for a given partition, and, for every

u ∈U2 , solve the two embedded maximization problems in (26) using LP:

Proposition 1. Let
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c0,n :=
N1

∑
m=n

(c1,m+1− c1,m)zm; (29)

c1,n :=
N1

∑
m=n

wm; (30)

N := {n = 1, · · · ,N1 : wn > 0}
⋃
{N1} . (31)

For any given u ∈U2, supλ∈ΛEFT

[
u
(
XTλ

)]
is the optimal value of the objective func-

tion of the following LP problem in canonical form:

maxT−1
T

∑
t=1

yt (32)

s.t. yt− c1,nXT
t λ ≤ c0,n, t = 1, · · · ,T ;n ∈N ;

M

∑
i=1

λi = 1;

λi ≥ 0, i = 1, · · · ,M;

yt free, t = 1, · · · ,T.

The proof is in the Online Appendix of Arvanitis et al. (2017). The LP problem always
has a feasible and finite solution and has O(T +M) variables and constraints, making
it small for typical data dimensions. Our application is based on the entire available
history of monthly investment returns to a standard set of benchmark assets (M = 11,
T = 1,062), and uses N1 = 10 and N2 = 5. This gives N3 =

1
9! ∏

9
i=1(4+ i) = 715 distinct

utility functions and 2N3 = 1,430 small LP problems, which is perfectly manageable with
modern-day computer hardware and solver software.

The total run time of all computations for our application amounts to several working
days on a standard desktop PC with a 2.93 GHz quad-core Intel i7 processor, 16GB of
RAM and using MATLAB with the external Gurobi Optimizer solver.
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Tables and Figures

Table 1: Descriptive Statistics of daily returns
Mean Standard Deviation Skewness Kurtosis Sharpe ratio

Asset
S&P 500 0.00045 0.00782 -0.40137 4.24918 0.05371
Bond Index 0.00010 0.00195 -0.31009 1.37703 0.037313
1m Libor 0.000003 0.00001 0.42899 -1.11955 -
Bitcoin 0.00760 0.04558 0.62145 5.64741 0.16604
Ethereum 0.01465 0.10171 0.86734 11.3222 0.14375
Ripple 0.01338 0.10145 4.73490 36.42765 0.13163
Litecoin 0.00940 0.07770 3.31961 24.30942 0.12064

Entries report the descriptive statistics on daily returns for the alternative asset classes used in this study. The
average return, the standard deviation, the skewness, the kurtosis, as well as the Sharpe ratio are reported.
The dataset covers the period from August 7, 2015 to December 29, 2017.

Table 2: Out-of-sample performance: Non-parametric stochastic dominance test
Panel A Panel B

Traditional vs Augmented Traditional vs Augmented
Quartile
25% p-value 0.031 0.028
50% p-value 0.050 0.056
75% p-value 0.126 0.144

Entries report quartile p-values from the distribution of p-values across 233 out-of-sample periods with the
null hypothesis that the augmented with cryptocurrencies optimal portfolio does not second order stochas-
tically dominate the optimal portfolio of only traditional assets. Panels A reports the results when the
traditional set includes the S&P 500 Equity Index, the Barclays US Aggregate Bond Index and the 1-month
Libor, while panel B reports the results when the traditional set includes additionally the SMB and HML
indices, as well as the Russell 2000 equity index, the Vanguard value and the Vanguard small-cap index
funds.
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Table 3: Out-of-sample performance: Parametric portfolio measures
Panel A Panel B

Traditional Augmented Traditional Augmented
Performance Measures
Sharpe ratio 0.11762 0.18728 0.14468 0.18728
Downside Sharpe Ratio 0.12986 0.39570 0.16437 0.39570
UP ratio 0.67490 1.04188 0.68556 1.04188
Portfolio Turnover 9.566% 4.530% 13.247% 4.530%
Return Loss 0.1856% 0.1778%
Opportunity Cost
Exponential Utility
ARA=2 1.125% 1.211%
ARA=4 1.127% 1.255%
ARA=6 1.126% 1.279%
Power Utility
RRA=2 1.134% 1.278%
RRA=4 1.140% 1.256%
RRA=6 1.139% 1.249%

Entries report the performance measures (Sharpe ratio, Downside Sharpe ratio, UP ratio, Portfolio Turnover,
Returns Loss and Opportunity Cost) for the traditional and the augmented with cryptocurrencies asset
classes. The results for the opportunity cost are reported for different degrees of absolute risk aversion
(ARA=2,4,6) and different degrees of relative risk aversion (RRA=2,4,6). The dataset spans the period
from August 7, 2015 to December 29, 2017. In Panel A the traditional set includes the S&P 500 Equity
Index, the Barclays US Aggregate Bond Index and the 1-month Libor. In Panel B the traditional set in-
cludes additionally the SMB and HML indices, the Russell 2000 equity index, the Vanguard value and the
Vanguard small-cap index funds.
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Table 4: Test for Market Integration
Predictor Dividend Junk Bond Term Money Baltic Dry adjusted F

Yield Yield Spread Growth R2

Asset
Bitcoin -0.210 0.111 -0.083 -0.009 0.081 0.01 1.004

(-1.621) (0.721) (-0.549) (0.094) (0.814) (0.418)
Ethereum -0.102 0.087 -0.059 -0.010 0.033 0.03 0.185

(-0.662) (0.622) (-0.345) (-0.134) (0.027) (0.968)
Ripple -0.290 0.097 -0.099 0.011 -0.007 0.05 1.758

(-1.914) (0.538) (-0.502) (0.185) (-0.073) (0.128)
Litecoin -0.232 0.087 -0.101 -0.029 0.051 0.02 1.542

(-1.197) (0.643) (-0.715) (-0.336) (0.601) (0.182)
S&P 500 0.448 -0.362 -0.057 -0.072 0.064 0.11 3.047

(3.359**) (-2.230**) (-0.429) (-0.815) (0.706) (0.013)
Barclays -0.130 0.088 0.181 -0.171 -0.006 0.22 14.551
Bond Index (-0.249) (0.307) (1.921*) (-0.697) (-1.453) (0.008)

Predictive regressions are run to implement Campbell and Hamao (1992) test for market integration. Dependent vari-
ables for the regressions are the weekly excess returns on cryptocurrencies, equity and bond indices. The independent
variables are the instrumental variables lagged one week: the dividend yield, the junk bond premium (or default
spread) defined as the excess of the yield on long-term BAA corporate bonds rated by Moody’s over the yield on
AAA-rated bonds, the term spread defined as the difference between the AAA yield and the one-month Bill rate, the
money supply growth, and the growth in the Baltic Dry Index. A constant term is included in all regressions. The Table
reports standardized coefficient estimates with autocorrelation and heteroskedasticity-robust t-statistics in parentheses.
The adjusted R2 is reported and the F-statistic with the respective p-values in parentheses. The dataset spans August
2015- December 2017. * and ** asterisks indicate that the coefficient estimates are statistically significant at 10% and
5% significance level .
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