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1. Introduction

Central banks have not traditionally been diversifying their investments into fixed income products that are subject to significant credit migration and default risk. The main reason for this may be that Central Banks do not have profit maximisation as main objective. Rather, security and liquidity are overriding principles governing their investment behaviour - at least when it comes to foreign reserve intervention portfolios. Central banks also have to guard their perhaps most sacred assets: credibility in the international financial community and public trust. One can argue that these assets potentially are at jeopardy if a Central Bank invests in credit bonds, and subsequently suffers losses, in particular in relation to the default of one of the names included in the portfolio. Due to the near-natural-law of the risk return trade-off, such losses would not necessarily imply bad financial management on account of the Central Bank: once an additional risk factor is included in the portfolio, it is of course possible to suffer losses from adverse movements in this risk factor, regardless of how well it was managed. Naturally, in the event a loss is encountered, it is possible that it could have been avoided, and that the loss actually can be ascribed to poor risk management. Often, in the ever-so-clear waters after an event has taken place, it is easy to pinpoint how a loss could have been avoided. Consequently, it is often said that poor management is to blame, while in fact, without the benefit of hindsight, all would agree that the loss simply originates from a bad draw of the state of the world. This behavioural bias in interpreting past events may also be a contributory factor as to why Central Banks were traditionally very prudent with regard to credit risk.

However, practice of central bank has, to some extend, changed over the last years. This may be the result of the growth of financial assets of central banks, and the implied feeling that some diversification into other risk factors is justifiable. Currently, central banks worldwide are estimated to hold more than an equivalent of USD 4 trillion in foreign reserves (including up to USD 500 billion of gold and IMF reserve positions). It is estimated that around 2/3 of foreign reserves are held by Asian central banks, who seem to have contributed with more than 80% of the total growth of foreign reserves since the early 1990s. The increase of foreign reserves and the reduced likelihood for large parts of them to be used in the short run for interventions has to a large extend freed many central banks from direct policy constraints, and in particular liquidity constraints, when investing their assets. In addition, central banks hold assets in their own currency (so-called domestic assets), which are not directly used in day-to-day monetary policy operations. For instance, the US Fed holds a portfolio of federal debt instruments of more than USD 0.5 trillion. For these domestic assets, many similar questions on the appropriate investment choices as for foreign reserves arise (according to today’s views on monetary policy implementation, the central bank only needs to control short term interest rates, and this does not really place any constraints on the eligible investment universe). Total “financial” assets of central banks, i.e. assets for which investment decisions are not directly constrained by foreign exchange or monetary policy considerations, have thus reached worldwide volumes likely to be in the order of more than USD 5 trillion. Obviously, it matters how this amount of social wealth is invested: an extra return of 1 basis point on these assets means additional income (or maybe additional social welfare) of USD 500 million. 

The reduction of foreign exchange policy constraints has led many central banks to invest into less liquid asset classes, which often also tend to be slightly more credit risky and have somewhat higher expected return. Anecdotal evidence, such as reported for instance by Pringle and Carver (2005), suggests that also the low level of interest rates in general during the last years has pushed central banks into spread products. The following table, which is an excerpt from Pringle and Carver (2005), recalls what “new” asset classes central bank currently invest into (traditional asset classes for foreign reserves would be mainly AAA rated Government debt and bank deposits). 

Table 1: Instrument classes for foreign reserves 

(according to Pringle and Carver, 2005, p.13)

	 (of 65 respondents)

	Governments AA
	57

	Government Bonds A
	28

	Government bonds ≤ BBB
	14

	Corporate bonds ≥ BBB
	17

	Corporate bonds < BBB
	2

	Agency paper
	65

	Asset backed
	29

	Mortgage backed
	28

	Equities
	6

	Hedge funds 
	2


In the present paper we deal with credit (and market) risk from a Central Banker’s perspective. However, the applicability of the techniques derived is general, and the view of the paper could also simply be termed "a practitioners’ view". The paper is not normative and it does not derive conclusions on how a Central Bank should, if at all, invest in credit bonds. Instead, we aim at constructing a flexible framework that can be used (a) to analyse joint market and credit risk of a given portfolio, and (b) to generate expected return distributions for a wide range of credit grade bonds, which can then serve as inputs to asset allocation decisions. This framework is of particular relevance to strategic investors, i.e. investors having a medium to long investment horizon, since one of its central pillars is a regime-switching linkage between yield curve movements and the state of the macro economic environment [see Bernadell, Coche and Nyholm (2005) for more details]. As such the methodology is geared towards exploring portfolio risks under different macro economic environments within the frame of a comprehensive simulation engine.

The contribution of the paper falls mainly into the area of integrating credit and market risk in portfolio management models, as it has also been done in some studied since the mid 1990s. Although the insight that macro-economic variables drive both credit risk and yield curves is very old (see e.g. Altman, 1990
), credit risk portfolio models such as CreditMetrics or KMV seem to assume that the interrelation between the two risks can be ignored. For instance Jarrow and Turnbull (2000) note that: “Practitioners and regulators often calculate VAR measures for credit and market risk separately and then add the two numbers together. This is justified by arguing that it is difficult to estimate the correlation between market and credit risk. Therefore, to be conservative assume perfect correlation, compute the separate VARs and then add. This argument is simple and unsatisfactory.”
The main modelling contributions of our paper are the following:

· it presents a comprehensive, yet flexible, method for analysing market and credit risk separately and jointly within a portfolio context;

· it allows for dynamic evolution of yield curves for several credit grades simultaneously conditional upon the future macro economic state, i.e. it extends the modelling framework of Bernadell et al (2005);

· it allows for time-varying credit transition matrices.
  
The methodology can be used to generate a plethora of interesting results in the area of portfolio credit risk. In the current paper, however, we emphasise the model development and explain in detail its inner workings. To illustrate the usefulness of the derived framework we analyse marginal and joint loss distributions under three different macro economic scenarios, of a toy-portfolio.   
The rest of the paper is organised in the following way. Section 2 presents the building blocks that together form the simulation engine. Section 3 recapitulates some commonly used risk measures. Section 4 presents the results of a toy-example and Section 5 concludes the paper.   
2. Modelling the stochastic factors

This section describes the basic building blocks that together constitute the market and credit risk simulation engine. Section 2.1 outlines the developed yield curve model for a single currency area, Section 2.2 describes how to perform calculations relevant for bonds affected by credit risk, and Section 2.3 shows how the information from the previous sections can be used to calculate expected returns. 
2.1 Yield curves
The approach used for modelling the evolution of yields is based on the model developed in Bernadell et al. (2005). This model relies on a Nelson-Siegel (1987) parametric description of the shape and location of nominal yields and integrates a three-state regime switching model [akin to Hamilton (1994, ch.22)], extended with time varying transition probabilities that depend on exogenous macro economic variables. The model set-up is based on a Kalman-filter representation with the Nelson-Siegel functional from as the observation equation and the time-series evolution of the Nelson-Siegel factors as the state equation. Regime-switches are incorporated following Kim and Nelson (1999).
The formulation proposed by Nelson and Siegel (1987) expresses the vector of yields at each point in time as a function of yield curve factors and factor sensitivities. Let
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denote the stacked vector of yield curve observations for different market segments (e.g. corresponding to different credit ratings) q = {1,…,Q} at time 
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The vector of yields can be expressed using the Nelson-Siegel factors as
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where 
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 collects the Nelson-Siegel factors i.e. the level, slope and curvature, for all the considered market segments. H is a block diagonal matrix of the form:
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where the diagonal elements are defined by the factor sensitivities
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and 
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 is a vector of error-terms.

The three yield curve factors can be interpreted as the level, i.e. the yield at infinite maturity, the negative of the yield curve slope, i.e. the difference between the short and the long end of the yield curve, and the curvature. The parameter 
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determines the specific time-decay in the maturity spectrum of factor sensitivities 2 and 3 as can be seen from the definition of 
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 above. The evolution of the Nelson-Siegel factors (
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) are assumed to follow an AR(1) process with regime-switching means. The model specification in equation (3) assumes three regimes (S, N, I) which imply distinct means for each Nelson-Siegel factor. The regime switching probabilities at time 
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and a diagonal matrix F collects the autoregressive parameters:
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where
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The regime-switching probabilities evolve according to equation (4), where 
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 is the transition probability matrix, which indicates the probability of switching from one state to another, given the current state.
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Equation (5) shows how Zt links the transition probabilities to the projected GDP growth rate 
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 and the inflation rate 
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 as well as threshold values for these variables (g* and i*) which are used to identify distinct macroeconomic environments. In effect we hypothesise the existence of three transition probability matrices: 
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 refers to the transition matrix applicable in a recession environment (GDP growth and inflation rate below threshold values), 
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 refers to an inflationary environment (GDP growth and inflation rate above threshold values), and 
[image: image24.wmf]1

p

 refers to a residual environment, which can be categorized either as a normal (GDP growth above and inflation rate below threshold values) or a stagflation-type of environment (GDP growth below and inflation rate above threshold values). More precisely, define:
	
[image: image25.wmf]ï

î

ï

í

ì

>

>

<

<

=

*

*

*

*

i

i

g

g

if

i

i

g

g

if

otherwise

Z

t

t

t

t

t

  

and

  

3

  

and

  

2

1


	(5)


The development of the GDP growth and the inflation rate is modeled with a vector auto-regressive process with as set out in equation (6).
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where
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and dt is a vector of user specified drifts representing the expected GDP growth and inflation rates during the forecast horizon.
2.2 A model for credit migrations

The yield curve evolution outlined above leaves room for the integration of portfolio credit risk comprising default and migration risks. By evolving forward several yield curve segments at the same time it is possible, once the credit state of a bond or bond index, to price this instrument on the appropriate yield curve segment. In a Monte Carlo setting, this allows for the calculation of price changes following bond up- and down grades as well as losses following defaults. For example, if a bond portfolio comprises X number of AAA bonds, Y number of AA bonds, Z number of A bonds and so forth, then it is possible to simulate the credit state of these bonds over the investment horizon, and once a down grade is observed, e.g. the down grade of a AAA bond to the AA category at time t, then this particular bond will be priced on the AA-yield curve segment from time t and onwards and at the AAA-yield curve segment from time 0 to t-1. Due to the yield spread between the AAA and AA yield curve segments, the bond in question experiences a negative return from time t-1 to t due to the credit migration. Once the Monte Carlo experiment is finalised, these losses (and gains) due to migrations and defaults are recorded, which allows for the calculation of the return distribution containing both credit and market gains and losses.    

Below we describe in more detail how the credit states of bonds are simulated. The following inputs are required:

· A portfolio of Nissuers  number of bond issuers:

· Credit ratings at the initial time for each issuer

· Exposures i.e. the position taken in each issuer

· The maturity of the holdings in each issuer

· The coupon rate for each issuer

· Migration matrix M that holds the probabilities of migration and default for each credit rating

· An asset correlation describing how the credit state of bonds move together over time

· Investment horizon and its descritisation of Nyears and Nperiods  

It is noted that the portfolio is expressed in terms of “issuer” rather than “bond” holdings. This is because the default and migration events are linked uniformly to the issuer rather than to the actual bond issues. It is naturally possible to build a model for bonds by appropriately adapting the correlation matrix. However, this would increase computational time unnecessarily and not bring about more precise results. Instead generic indexes are constructed on the basis of the bonds issued by the same issuer; these issuer-indexes then reflect the characteristics of the underlying bonds, e.g. as a result of a market value weighting scheme. 

Based upon the input variables defined above the actual credit simulation follows the steps below:

A) Simulation of correlated random variables:

A matrix u of dimension (NperiodsxNissuers) is drawn from the uniform distribution, i.e.
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Each column of u represents random numbers for each issuer in the portfolio at each discrete observation point covering the investment horizon. To allow for migration and default correlation among issuers a certain amount of correlation is induced in R in the issuer dimension. To this end the Cholesky factorization is used. The correlation matrix Q has unity on the diagonal and the default/migration correlation on off-diagonals; it is of dimension (NissuersxNissuers). In order to get a random value that is comparable to the credit-rating thresholds implied by the used credit migration matrix, the inverse normal of the random variables are taken:
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z then represents the random variables that, when compared to the migration thresholds determined whether a given issuer defaults, migrates, or has an unchanged credit rating at the observation points covering the investment horizon. N(-1) represents the normal inverse function and Chol the cholesky factorization.   

B) Convert random numbers into credit ratings at each observation point:

By combining the information from step (A) with the migration matrix M is it possible to derive the credit state of the issuers comprised by the investment universe. M represents the probability over a given horizon (usually annually) that an issuer with a given credit rating up grades, down grades, remains unchanged or defaults. After the entries of the migration matrix have been adjusted for the time-period under investigation the normal inverse function is applied to M_adj to make the entries comparable to z from step (A). 

When M gives the annual migration probabilities the time-period correction is performed in the following way. Remember, that the planning horizon may well be one year, however, it may be interesting to model credit migration at a higher frequency, e.g. at monthly intervals:
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Since the rows in M_adj express the migration probability from a given credit rating grade to all other credit rating grades, the entries in each row have to total unity; the diagonal elements are hence calculated as one minus the sum of the off-diagonal elements, row-by-row, i.e. we choose to move any probability mass unaccounted for to the diagonal element.

Conditional on the current credit state of the issuer, credit migrations are then determined by comparing the appropriate entry in z to the normal inverse of the corresponding row in M_adj. Denote by Cr_state the matrix of simulated credit state for the issuers comprised by the portfolio, and let t denote time period, and let j denote the issuers, then the entries in Cr_state is found by:
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where k is the credit state at t-1 and h is a numerical equivalent for the rating classes and I is an indicator function. An example illustrates this procedure for one issuer: Assume that the initial issuer rating is A. We use the following schedule to translate the rating grade into a numerical value.

Table 1: Rating grades numerical equivalents

	Rating 
	AAA
	AA
	A
	BBB
	BB
	B
	CCC
	Default

	Value
	1
	2
	3
	4
	5
	6
	7
	8


The other input is the inverse of the relevant row of the credit migration matrix, which is our case amounts to the third row given the A initial rating. An example is given below.

Table 2: Example of annual migration probabilities from A to other rating classes 

	Migrate

From\to
	AAA
	AA
	A
	BBB
	BBB
	B
	CCC
	Default

	A
	0.001
	0.024
	0.913
	0.052
	0.007
	0.002
	0.000
	0.001


   Note: Annual figures

The drawn random number for period t for the issuer in question is then compared to the normal inverse of the numbers in Table 2 in order to determine the simulated credit state. This process is further illustrated in Figure 1: the drawn z is compared to the thresholds indicated in the figure and the simulated credit rating follows from this. The process of comparing all the numbers in z to the relevant thresholds are then completed following (8).

Figure 1: Credit migration example
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C) Evolve yield curves forward:

To facilitate the pricing of the generic issuer-indices relevant yield curve segments have to be evolved forward for the chosen planning horizon. This process is based on the yield curve model outlined in section 2.1 and a yield curve for each credit rating is projected forward conditional on the chosen macro economic scenario. 

D) Price the bonds according to their credit rating at each observation point:

Based on the characteristics of the generic issuer indexes i.e. coupon rate, coupon frequency, maturity/duration the issuer indexes are priced according to conventional bond formulas as given below in section 2.3. 

E) Calculate portfolio returns :

Once returns are calculated for the issuer indexes the analysis can be completed. Either the calculated returns can be transferred to a portfolio optimiser as described in detail in Section 2.3; this will be the likely continuation if no portfolio is yet constructed, or the calculated returns can be multiplied by the portfolio holdings if such already exist and the return distribution for that portfolio is identified as a source for further scrutiny.   

2.3 Instrument pricing and calculation of returns

This section outlines well-known fixed income mathematics relevant for calculating bond prices and returns. The process described above is quite general in that it allows for the projection of yield curves as well as the credit state of given issuer/bond indexes. This facilitates the calculation of bond returns comprising market as well as credit risk factors. It is naturally also possible to lock either of these risk factors and calculate returns that arise from either of these unique risk sources, if that should be of interest i.e. a traditional market risk analysis can be conducted by freezing the credit risk part of the frame work and vice versa. The calculation formulas presented below are general and can be used in either of these situations. 

Projected yield curves are translated into prices 
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where DC denotes the number of days from settlement to next coupon date, DE the number of days in the coupon period in which the settlement date falls, DA the number of days from beginning of the coupon period to the settlement date and N refers to the number of coupon payments between settlement date and redemption date. Also, it is important to remember, in the case of credit risk that 
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 refers to the relevant credit yield curve segment at time t. Finally, total returns for the instrument classes can be calculated as 
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where Ct-1,j ∆t is the deterministic time return for the holding period (t-1, t). In (10) it is assumed that at time t the portfolio is always rebalanced by replacing the existing bonds with instruments issued at par at time t, thus the coupon payments correspond to the prevailing yields at t-1, 
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Figure 2 presents the building blocks in their right context.
Figure 2: Overview of the simulation framework
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Results


3. Summary of risk measures
For the sake of clarity and convenience, this section reiterates some commonly used risk measures and how they are calculated on the basis of the simulated loss distributions. Figure 3 illustrates these risk measures graphically.
1. Expected loss (Exp. Loss): is the mean of the loss distribution. It is referred to as the “expected loss” because it represents what one expects to lose i.e. what one would loose on average.

2. Standard deviation of losses (Unexpected Loss): According to Basel II, banks are required to allocate capital to account for the unexpected loss. In a statistical sense unexpected loss is related to the standard deviation of losses and is sometimes calculated as a multiple of this standard deviation.

3. VaR (CrVaR): like market VaR, the Credit VaR is defined at a given quantile of the credit loss distribution. This metric summarises the loss that is not exceeded at a given probability, over a given time-period. An example of how to calculate this metric from the loss distribution is given below:

1. Sort the vector of simulated losses from the lowest loss to the highest and store results in a vector called L. 

2. For a confidence interval of for example 99% calculate 
[image: image44.wmf](0.99)
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, where the function 
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 gives the closest integer to the argument supplied to the function and T is the number of entries in L.

3. The Credit VaR, in this example, is then the m’th value in the vector L of the lowest-to-highest sorted losses.

4. Expected shortfall (ES): The credit VaR statistic (presented above) measures the loss that is not exceeded at a given probability over a given time-horizon. However, it does not provide information about the losses in excess of the CrVaR. Since credit loss distributions are usually fat tailed (i.e. extreme losses happen with a higher probability than what is suggested by the normal distribution), information about the losses exceeding the CrVaR is often relevant. To this end, the expected shortfall is defined as the average loss in the tail of the loss distribution. Using the loss vector L from the example above, the expected shortfall is defined as:
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where, T is the total number of elements in L and m is the observation that corresponds to the VaR/CrVaR tail measure i.e. observations beyond m is defined as falling in the tail of the credit loss distribution.    

Figure 3: Summary of risk measures
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4. Results

In this section we present some tentative results that emerge when applying the above outlined simulation framework to a toy-portfolio. It is necessary to emphasise that this example portfolio has no relation what so ever to the portfolios held by the European Central Bank. Below we also iterate the most central input parameters required. Again, these inputs are deliberately chosen without much connection to the current economic environment and serve only an illustrative purpose.

4.1 Input values

This section briefly outlines some of the central assumptions underlying the results generated in the paper. These assumptions fall into three general areas: yield curves; portfolio characteristics; and credit migrations. Each area is treated below. 
Yield curves
To shape the yield curve projections over the chosen investment horizon it is necessary to know the current yield curve for each of the modelled credit grades. This curve marks the starting point for the yield curve paths. Each path is derived on the basis of the expected macro economic environment and is thus a function of the generic yield curves. These generic yield curves are akin to averages over periods where yield curves look approximately alike e.g. over periods where the yield curve tends to be upward sloping but steeper then usual, over periods where the yield curve is flat or inverted, and finally over periods where the yield curve is normally upward sloping. They are labelled generic because they express an average yield curve shape i.e. steep, flat and normally upwardly sloping. Naturally, these generic shapes of the yield curve are not chosen randomly, but follow as a by-product when estimating the state-space regime-switching yield curve model described above in section 2.1.  Figure 4 shows an example of a yield curve projection for one yield curve segment that is generated on the basis of a macro scenario and the generic yield curves showed in Figure 5 shows and example of these yield curves. For the actual simulations, yield curve paths similar to Figure 4 are thus generated for the remaining credit grades. 
Figure 4: Yield curve sample path for AAA credit segment.
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Note: this particular example assumed that the investment horizon is 60 months and that the economy goes into recession for the first 24 months where after it recovers from the recession. The yield curve path mirrors this macro evolution by an initial steeping of the curve at a lower yield curve level, where after the yield curve slopes reverts to a normal size and the yield curve level increases a bit.

To ensure realistic yield curve evolutions and credit spread levels, the levels of the individual yield-curve credit-segments are correlated at decreasing magnitudes as the credit quality worsens; in addition, noise is added to the evolution by assuming normally distributed innovations.  

Figure 5: Yield curves used in the simulations
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Portfolio characteristics

Another essential input is the portfolio under investigation. It is worth mentioning that this can either be an actual portfolio of issuers or a set of issuer indices. In the former case, the tool can be used to simulate the marginal and joint market and credit risk distributions, which can form the basis of a thorough risk analysis; in the latter case the tool can be used to generate return distributions for asset allocation purposes. In our toy-example we use the tool to perform a risk analysis i.e. we calculate marginal and joint loss distribution and the battery of credit measures outlined in Section 3. The following portfolio is used:

Table 3: Example portfolio

	Ratings
	Positions
	Maturities
	Cpn
	Maturity years
	MD(i)
	Weight
	Sum positions
	MD

	3
	300.0
	65.0
	2.000
	5.42
	2.84
	0.06
	5000.0
	2.50

	3
	100.0
	33.0
	2.125
	2.75
	1.75
	0.02
	
	

	3
	250.0
	72.0
	2.000
	6.00
	3.09
	0.05
	
	

	3
	150.0
	55.0
	2.000
	4.58
	2.49
	0.03
	
	

	3
	200.0
	34.0
	3.000
	2.83
	2.10
	0.04
	
	

	4
	200.0
	44.0
	2.750
	3.67
	2.48
	0.04
	
	

	4
	200.0
	34.0
	2.500
	2.83
	1.92
	0.04
	
	

	4
	150.0
	54.0
	3.000
	4.50
	3.10
	0.03
	
	

	4
	200.0
	88.0
	2.250
	7.33
	3.95
	0.04
	
	

	4
	250.0
	25.0
	2.250
	2.08
	1.47
	0.05
	
	

	5
	250.0
	43.0
	2.000
	3.58
	2.06
	0.05
	
	

	5
	250.0
	35.0
	3.000
	2.92
	2.15
	0.05
	
	

	5
	250.0
	45.0
	3.000
	3.75
	2.65
	0.05
	
	

	5
	100.0
	33.0
	3.125
	2.75
	2.09
	0.02
	
	

	5
	150.0
	43.0
	2.000
	3.58
	2.06
	0.03
	
	

	5
	100.0
	43.0
	2.000
	3.58
	2.06
	0.02
	
	

	5
	350.0
	32.0
	3.500
	2.67
	2.15
	0.07
	
	

	5
	300.0
	40.0
	2.750
	3.33
	2.29
	0.06
	
	

	5
	100.0
	45.0
	3.125
	3.75
	2.72
	0.02
	
	

	5
	150.0
	40.0
	2.000
	3.33
	1.95
	0.03
	
	

	5
	250.0
	43.0
	2.000
	3.58
	2.06
	0.05
	
	

	5
	250.0
	55.0
	3.500
	4.58
	3.46
	0.05
	
	

	5
	150.0
	58.0
	3.000
	4.83
	3.30
	0.03
	
	

	5
	300.0
	65.0
	2.250
	5.42
	3.05
	0.06
	
	

	5
	50.0
	62.0
	2.500
	5.17
	3.13
	0.01
	
	


Note: The portfolio shown above is only an example and is in no way related to the portfolios held by the ECB.
The portfolio contains 25 different issuer names with credit ratings starting at A (3 in terms of the numerical equivalent) and ending at BB (5 in terms of the numerical equivalent). The positions indicate how much of the investors’ funds are allocated to each issuer; the total funds amount to 5,000 and the column labelled “weight” reports the individual positions relative to the total portfolio value. "Cpn" states the coupon rate for each bond, "Maturity" the remaining maturity of the bond in months, "MD(i)" gives the modified duration of each bond, and finally, "MD" is the modified duration of the portfolio. 

It can be seen that the portfolio is well diversified across issuers, i.e. there are no major differences between the exposures to the individual issuers, although some variation is seen.   
Credit migrations
As illustrated in Section 2.2 there are several inputs necessary to simulate credit migrations. To facilitate the generation of correlated random numbers as in [7] we assume a correlation between issuer migrations and defaults of 24%.
 In addition we apply two different credit migration matrices, which are inspired by the S&P migration matrix but changed to reflect slightly higher default probabilities. In fact, the "Recession" migration matrix is determined purely on an ad-hoc basis, with the sole purpose of illustrating the simulation engine’s ability to cope with time varying migration matrices.

The matrices used are shown below:

Table 4: Credit Migration Matrix, Normal Economic Environment

	
	AAA
	AA
	A
	BBB
	BB
	B
	CCC
	D

	AAA
	0.9079
	0.0830
	0.0070
	0.0010
	0.0010
	0.0000
	0.0000
	0.0001

	AA
	0.0070
	0.9076
	0.0770
	0.0060
	0.0010
	0.0010
	0.0000
	0.0004

	A
	0.0010
	0.0240
	0.9130
	0.0520
	0.0070
	0.0020
	0.0000
	0.0010

	BBB
	0.0000
	0.0030
	0.0590
	0.8740
	0.0500
	0.0110
	0.0010
	0.0020

	BB
	0.0000
	0.0010
	0.0060
	0.0770
	0.8120
	0.0840
	0.0100
	0.0100

	B
	0.0000
	0.0010
	0.0020
	0.0050
	0.0690
	0.8350
	0.0390
	0.0490

	CCC
	0.0020
	0.0000
	0.0040
	0.0120
	0.0270
	0.1170
	0.6450
	0.1930

	D
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	1.0000


Table 5: Credit Migration Matrix, Recession Economic Environment

	
	AAA
	AA
	A
	BBB
	BB
	B
	CCC
	D

	AAA
	0.9000
	0.0930
	0.0070
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000

	AA
	0.0020
	0.9000
	0.0920
	0.0060
	0.0000
	0.0000
	0.0000
	0.0000

	A
	0.0000
	0.0100
	0.9000
	0.0800
	0.0070
	0.0000
	0.0000
	0.0030

	BBB
	0.0000
	0.0010
	0.0030
	0.8700
	0.0800
	0.0300
	0.0000
	0.0160

	BB
	0.0000
	0.0000
	0.0010
	0.0030
	0.8500
	0.0800
	0.0300
	0.0360

	B
	0.0000
	0.0010
	0.0000
	0.0010
	0.0030
	0.8300
	0.1000
	0.0650

	CCC
	0.0020
	0.0000
	0.0000
	0.0000
	0.0050
	0.0100
	0.6500
	0.3330

	D
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	1.0000


4.2 Empirical results
Based on the methodology outlined in Section 2 and the central assumptions mentioned above we generate marginal and joint market and credit risk distributions for the toy-portfolio. Three main scenarios are investigated:

1) Normal economic environment;

2) Inflationary economic environment; [***Missing in this version]
3) Recessionary economic environment with time-varying credit migration matrices. [***Missing in this version]
As a common feature of scenarios 2 and 3, the yield curve evolution is initiated at the current yield curves, as shown in Figure 5, and is assumed to evolve towards a normal economic environment for 3 months where after either an inflationary scenario (scenario 2) or a recessionary scenario (scenario 3) kicks in. All analyses are conducted on a 12 month forecasting horizon i.e. it is assumed that the risk management analyst is concerned with annual risk figures. A monthly observation frequency is assumed, i.e. each simulation contains 12 discrete observation points; each scenario is analysed on the basis of 50,000 simulation paths.

Below we present the marginal and joint distributions that result from the simulation exercise.

Normal economic environment

In this scenario the macro economy is expected to stay in a normal economic environment throughout the 12 month simulation horizon. Figure 6 shows the marginal credit risk distribution accompanied by a normal distribution that is approximated to the credit risk histogram. It is evident that, as expected, the normal distribution provides a poor fit to the clearly left skewed credit distribution. Figure 7 shows the marginal distribution for the market risk assumed by the toy-portfolio. This distribution shows closer resemblance to the fitted normal distribution, however some departures are clearly noticeable in the tails. It is also noted that the amount of market risk exceeds the amount of credit risk. While the mean loss of the credit risk distribution is around -14 the mean market loss is -100. Also, the unexpected market loss is far greater than the unexpected credit loss, the former is in the range of 150 while the latter is approximately 50. 

Turning now to the joint distribution of market and credit losses, Figure 8 shows the relevant graphs. The bar chart shows the joint loss distribution from the two risk sources, while, as in Figures 6 and 7, the line-plot shows the fitted normal distribution. The joint loss distribution is similar in shape to the market risk distribution - at first sight it looks fairly normally distributed however the tails, especially the left tail, is not well approximated. So using a normal distribution to approximate joint losses from market and credit risk would under estimate the risk.   
Figure 6: Normal economic environment: Credit risk marginal distribution
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Note: The bar chart in the figure shows the estimated credit risk distribution for the portfolio shown in Table 3. The line-plot in the graph illustrates the optimal fit of a normal distribution.
Figure 7: Normal economic environment: Market risk marginal distribution
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Note: The bar chart in the figure shows the estimated credit risk distribution for the portfolio shown in Table 3. The line-plot in the graph illustrates the optimal fit of a normal distribution..

Figure 8: Normal economic environment: Joint market and credit risk marginal distribution
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Note: The bar chart in the figure shows the estimated credit risk distribution for the portfolio shown in Table 3. The line-plot in the graph illustrates the optimal fit of a normal distribution.
Since the amount of credit risk in the toy-portfolio is in orders of magnitude less than the market risk
 there is a minor marginal contribution from the credit risk distribution to the joint distribution. This is illustrated in Figure 9, which shows the expected shortfall at different confidence levels for the marginal and the joint risk distributions. It is seen that taking the sum of the two separate risk sources would over estimate the actual total risk that the portfolio faces. This is in part due to the relatively low correlation between market and credit risk in the current example but also a function of the low total level of credit risk in the portfolio. In other words, the contribution from the credit risk is minor and to some extent overshadowed by the market risk, because we analyse the tail properties of the joint distribution. At the level of the mean of the distribution credit risk plays a much greater role than in the tail: the credit risk in the joint tail is to some extend drowned by the vast floods of market risk present there.    
Figure 9: Comparison of risk sources, Normal economic environment
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Note: This figure reports the expected shortfall at different confidence levels for the marginal distributions as well as for the simulated joint loss distribution. As a point of reference, the sum of the marginal distributions is shown. On the right hand scale, the marginal contribution of credit risk is shown.
5. Concluding remarks

This paper presents a flexible and comprehensive framework for simulating joint and marginal distributions for market and credit risk. It accounts for many observed phenomena in financial markets, such as the dependency between the state of the macro economy and the time-series behaviour of yield curves and credit spreads. It allows for credit migrations to depend on the economic cycle as well. In addition, the modelling framework is set in a language understood by traders and decision makers. 
The main building blocks of the framework are (A) a yield curve module, which simultaneously evolves yield curves for all credit grades in a consistent manner; (B) a credit migration module where migration probabilities are allowed to be time-varying and migrations across issuers are correlated; and finally (C) a standard bond pricing module. Results are generated via Monte Carlo experiments.

The current paper applies the simulation framework to a particular toy-portfolio and shows that the marginal credit risk distribution is skewed and has more losses than the normal distribution; the marginal for market risk is closer to a normal distribution, however, with a somewhat fatter loss tail, and the joint loss distribution resembles a normal distribution but with significantly more mass in the loss tail.
The simulation framework presented above paves the way for future research, in particular it would be interesting to analyse further:

· Diversification effects from increasing the exposure to lower credit quality issuers and the following risk return trade-off. This could help establish a rule of thumb for the optimal amount of credit to hold under different macro economic scenarios.
· Introduction of additional risk factors, such as dependencies of recovery rates and asset return correlation to the macro economic environment.

· Refine the spread risk i.e. the volatility of yield curve innovations to depend on the macro economic state. In the current application only the expected path of interest rates depend on the macro environment.

· Extend the framework to a multicurrency setting.

· Introduce macro economic risk.
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� Empirical studies of the correlation of credit risk free interest rates and credit spreads or default rates are Das and Tufano (1996) and Duffee (1998), Christiansen (2000), Collin-Dufresne et al (2001), Pedrosa and Roll (1998); •Wilson (1997a, b)


� Other papers aiming at integrating credit and market risk in a portfolio optimisation context are e.g.  Iscoe et al (1999) Kehrbaum, J., Schmid, B. and Zagst, R. (2003)


� The Credit Metrics documentation suggests asset correlations in the range of 20%-35% (p.93). 


� The relative low number of simulations reflects the fact that we use importance sampling techniques.


� Needless to say, this is only a feature of the current toy-portfolio and the assumptions underlying (i) the yield curve paths and yield curve innovations, and (ii) the credit migrations. Another example could easily be constructed where the orders or magnitude was reversed.
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