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Abstract 
 

Credit risk transition probabilities between aggregate portfolio classes constitute a 
very useful tool when individual transition data are not available. Jones (2005) 
estimates Markovian Credit Transition Matrices using an adjusted least squares 
method. Given the arguments of Judge and Takayama (1966) a least squares estimator 
under inequality constraints is consistent but has unknown distribution, thus 
parameter testing is essentially not immediately available. In this paper we view 
transition probabilities as parameters from a Bayesian perspective, which allows us to 
impose the non-negativity constraints to transition probabilities using prior densities 
and then estimate the model via Monte Carlo Integration. This approach reveals the 
empirical distribution of transition probabilities and makes statistical inference readily 
available. Our empirical results on the US portfolio of non-performing loan 
proportions, are in some cases close to the estimates of Jones (2005), but also exhibit 
some statistically significant differences regarding the estimated transition 
probabilities. Furthermore, in-sample forecast evaluation statistics indicate that our 
estimator tends to slightly over-predict (under-predict) non-performing (performing) 
loan proportions consistent with asymmetric preferences and is substantially more 
accurate in all cases. 
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Markovian Credit Risk Transition Probabilities  
under Non-Negativity Constraints for the US Portfolio 1984-2004 

 
 

 

1.  Introduction 

 

The evolution of credit risk is usually described by market participants as a migration 

from a rating category to any other. This is intuitively appealing and in a quantitative 

context one would be interested in estimating the probability of such a transition, 

which constitutes an indispensable input in a credit institution’s risk assessment. 

Robust estimation of these probabilities can be trivially performed by calculating the 

proportion of risky objects, e.g. loans, which migrate for one risk category to another. 

However, it is often the case that such individual transitions cannot be observed or are 

unavailable to the analyst. A standard example is a regulator who usually collects 

aggregate data for performing, non-performing and written-off loans for credit 

institutions, without access to detailed credit portfolio data. In this case one could 

consider the evolution of credit risk with respect to broad rating classes using Markov 

Chains for proportions of aggregate data. The estimation of the parameters of the 

Markov probability model from aggregate time-series data has been addressed in the 

literature as early as in Miller (1952) and Lee et al (1970) provide en excellent review 

of the literature to that date. A recent application to aggregate credit risk data is given 

by Jones (2005), who estimates the transition matrices for quarterly US aggregate data 

on non-performing loans as well as interest coverage data using the generalized least 

squares approach proposed by MacRae (1977). 

 

Following Lee et al (1970), when proportions data are available the Markov 

probability model can be expressed as a linear regression model under parameter 

constraints, the latter constituting the conditional transition probabilities. The least 

squares estimation of the transition probabilities -the regression coefficients- under 

linear equality constraints to ensure that probabilities sum to unity, is a typical 

quadratic programming problem with closed-form solution and known distribution for 

the estimator. However, when linear inequality constraints are imposed to ensure non-

negative transition probabilities, it is not possible to obtain a closed–form solution, 

thus Judge and Takayama (1966) proposed a modified simplex algorithm for an 



 3 

iterative solution of the inequality-constrained quadratic program. In univariate 

regression, the transition probability estimator has a truncated normal distribution if 

the regression error is normally distributed. However, when there are more than two 

independent variables, it can be very difficult to obtain the desired sampling 

distributions using standard methods. One could at most assess the superiority or 

inferiority of the solution vs. the maximum likelihood estimator using the results of 

Judge and Yancey (1986). 

 

In this paper we focus on the development of an alternative estimation method for the 

stationary Markov model by adopting a Bayesian perspective to formally impose the 

non-negativity probability restrictions in the form of a prior probability density. As 

such, we do not question the structure and adequacy of the stationary Markov model 

as a data generating process. Our prior distribution is then combined with the 

sampling information as captured by the likelihood function to provide the joint 

posterior density function of the model parameters. For a normal linear model, the 

posterior density is a function of a multivariate t, thus making the analytical 

calculation of functions of the parameters difficult. We use Monte Carlo Integration 

(MCI) as proposed by Kloek and van Dijk (1978) and van Dijk and Kloek (1980) and 

further studied by Geweke (1986). This methodology is sufficiently general, allowing 

the computation of the posterior distribution of arbitrary functions of the parameters 

of interest and enables exact inference procedures that are impossible to treat in a 

sampling-theoretic approach. Applications of this method in the context of portfolio 

return attribution have been performed by Christodoulakis (2003) and Kim et al 

(2005). In this paper we apply this methodology to estimate the transition 

probabilities of a first order Markov process for quarterly US aggregate data2 on non-

performing loans from 1984 until 2004. Our empirical results on the US portfolio of 

non-performing loan proportions, are in some cases close to the estimates of Jones 

(2005), but also exhibit some statistically significant differences regarding the 

estimated transition probabilities. Furthermore, in-sample forecast evaluation statistics 

indicate that our estimator tends to slightly over-predict (under-predict) non-

performing (performing) loan proportions but is substantially more accurate in all 

cases.  

                                                 
2 The author is grateful to Matthew T. Jones who kindly provided the data set of Jones (2005). 
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The structure of the paper is as follows. In the next section we develop our Bayesian 

MCI methodological framework for the estimation of the Markov transition 

probability model under both equality and inequality constraints. Section three is 

devoted to the analysis and interpretation of our empirical results. We conclude and 

provide thoughts on future research in section four. 

 

2.  Bayesian Estimation of Markov Transition Probabilities for Aggregate Data 

 

We consider the case in which only the sample aggregate proportions relating to the 

number of objects in each state for each time period t are known. The probability of 

the joint event that an object xt falls in different states si in two sequential periods can 

be written as 

 

( ) ( ) ( )���������� ���������� ====== −−− ��� ��������                      (1) 

 

which upon recursive arguments yields 

 

( ) ( ) ( )� ===== −−
�

�������� �������� �� �������                         (2) 

In our context, si takes the form of four mutually exclusive loan classes, Performing 

Loans (PL), Non-Performing Loans for 1-89 days (NPL90), Non-Performing Loans for 

90-179 days (NPL180) and Losses (L). The latter is the absorbing state, thus we are 

interested in estimating the transition probabilities between the first three classes 

which correspond to the first three lines of the transition probability matrix P 
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The recursive relation (2) can be transformed to an empirical one by replacing the 

unconditional probabilities with observed aggregate proportions �y  and adding a 



 5 

random error term uj. Then, the conditional transition probabilities can be treated as 

unknown parameters �ij and equation (2) can be written as 

 

� +=
�

����
 �uyy 1-ti,tj,                                 (3) 

 

where yj,t is the proportion of loans in the class j at time t over total loans. Assuming 

there exist a finite time series sample of T observations and that conditional transition 

probabilities are properly constrained, equation (3) can be written as  
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��	�
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���� �

��

u�y

1'
    (4) 

 

where y is a vector of T observations of portfolio returns, X a matrix of T observations 

for K credit quality classes, β  a vector of K conditional transition probabilities, 1  is a 

vector of units  and ����� ���u . The least squares estimation of β  in the above 

model is a constrained quadratic program. The solution under equality constraints is 

available in closed-form and its distributional properties known. When inequality 

constraints are imposed in addition, the solution requires iterative optimization, see 

Judge and Takayama (1966), but the distributional properties of the estimator are not 

known. Davis (1978) provides a solution for the latter problem which requires that 

one knows which constraints are binding. One solution to that problem is to view the 

Markov process from a Bayesian perspective and impose the parameter restrictions in 

the form of information encapsulated in the prior distribution. Then, using the 

posterior distribution one can estimate moments and other functions of the probability 

parameters by means of Monte Carlo Integration.  

 

2.1 A Bayesian Decision-Theoretic Approach  

 

To implement the Bayesian Monte Carlo Integration approach, we first impose the 

equality constraint by restating model (4) in deviation form from the k-th class 

variable 
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where the t-th elements of the new variables are ����

�

��

� 	
��	 −− −=−= ���������� ������ , 

where i = 1,…,K-1 is the i-th column of X. Now *β  is a vector of K-1 elements and 

the K-th beta can be obtained from *1 β1'− . In our standard Bayesian framework *β  

is formally treated as a random variable in population and all elements of X* are 

independent of each other and of �� 	
��		� 
� . In the following we shall drop the class 

subscript j for simplicity. By Bayes law the posterior density of *β  and 2σ  is given 

by  

 

 ( ) ( ) ( )���������� ������					��	��������������������	 �� �y�y� ×=  (6) 

 

which is the product of the likelihood function and the prior density. Following van 

Dijk and Kloek (1980) our prior is composed of an improper uninformative 

component regarding �  and an informative one regarding *β , which for our analysis 

captures our prior knowledge �	
��	� �� ≥≤ ��1' . By independence 

 

( ) ( )���� ������	 �� � −=     (7) 
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Under multivariate normality for u, it can be shown that the likelihood function is 

proportional to 
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where ������ ����� byby ��� −−= , ����� ���� yb ��� −=  is the OLS estimator and 

1+−= KTv . Combining the likelihood and the prior density yields a joint posterior 

density function  which is proportional to 
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 Standard analysis3 to integrate σ  out yields the marginal posterior probability 

density function of vector �
� , which is recognized as a multivariate t density with 

mean zero, variance **
2 '
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and ( ).Γ  is the gamma function. In the following section we shall utilize equation 

(9) in a Monte Carlo Integration framework to estimate �. 

  

2.2 Estimation by Monte Carlo Integration 

 

We shall follow the methodology proposed by Kloek and van Dijk (1978) and further 

studied by van Dijk and Kloek (1980). For any function ( ).g , the point estimator of 

( )�
��  is given by  
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3 See Judge et al (1985) 



 8 

 

The numerical implementation of the above estimator using Monte Carlo procedures  

requires the specification of a density function ( )�
��  from which random draws of �

�  

will be drawn; this is called importance function and is a proxy to the posterior 

density with convenient Monte Carlo properties. We can then have 
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where the expectation is now taken over ( )�
�� . Let ��

�

�

� ������ ����  be a set of N random 

draws from ( )�
�� , then we can prove that  
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apart from a normalizing constant which can be calculated separately. Since ( )*βI  is 

supposed to be a proxy to the posterior distribution, the standard Bayesian analysis of 

the normal linear model in section 2.1 suggests that we could choose the multivariate t 

density. In this case our MCI estimator will be reduced to  

 

( ) ( )�

�

��
�

�

�

� ��
�

���
=

                              (13) 

 

 In our Monte Carlo procedure we generate multivariate t-distributed vectors 
�

��  as follows. We first derive the Cholesky decomposition of the OLS estimator 

covariance matrix such that 

 
���� ����� −= ����  

 

and then generate a K-1 vector zi of independent standard normal random variables. 

Then the i-th replication of �

��  will be 
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iz� 	� ��� +=  

 

drawn from a (K-1)-variate normal density. This can be converted to a t-distributed 

draw, by generating a λ  vector wi of independent standard normal variables and 

writing 
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which is t-distributed with λ  degrees of freedom. Thus our parameter estimates can 

now be obtained using (12) and ( ) ��

��� �� = . Similarly we can obtain estimates of 

higher moments of *β  or any other functions of interest.  

 

The Bayesian MCI approach offers exact inference which is discussed in van Dijk and 

Kloek (1980), Geweke (1986) and Kim et al (2005). In a different context, Lobosco 

and DiBartolomeo (1997) pointed out the problem of the lack of a precision measure 

for the least squares regression coefficients and proposed an approximate method 

based on Taylor expansions. However, the latter approach is valid only in the special 

case in which none of the true probability coefficients are zero or one, thus excluding 

some empirically relevant cases. Kim et al (2005) also apply the results of Andrews 

(1999) and develop a comparable Bayesian method to obtain statistically valid 

distributions and confidence intervals regardless of the true values of investment style 

weights.  

 

3. Risk Transition Probabilities for the Aggregate US Credit Portfolio 

 

Our data set is identical to that of Jones (2005) 4 collected from the FDIC Statistics on 

Banking and covers all United States commercial banks that are insured by the FDIC. 

It consists of aggregate quarterly time series for the US credit portfolio over 1984-

2004, for four broad loan classes as proportions of total loans: performing loans and 

                                                 
4 The author is grateful to Matthew T. Jones who kindly provided the data set. 
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leases (PL), loans and leases past due 30-89 days (NPL90), loans and leases past due 

beyond 90 days or in non-accrual status (NPL180), and cumulative charge-offs on 

loans and leases (L). Aggregate loan classification data is usually the only available 

form of data for the supervisors of credit institutions, since individual loan risk 

transitions are not reported. We fully agree with the remarks of Jones (2005) that such 

data may be biased since they are subject to a number of shortcomings. In particular, 

book-value accounting instead of market-value accounting presents a delayed 

evolution of credit risk with respect to true economic conditions. Furthermore, there 

may exist incentives for window-dressing in the loan portfolio of credit institutions or 

presence of regulatory forbearance. Also, survivorship bias may be present in case 

that failed institutions or written-off loans are not included in the sample.  

 

We have set the number of Monte Carlo replications equal to 105 and have used the 

GAUSS language as our computational platform. In performing MCI we need to 

specify the importance function ( )�

�
� . A first candidate is the multivariate t 

distribution as dictated by standard Bayesian analysis of the normal regression model 

with an uninformative volatility prior. We specify its parameters by adopting the OLS 

estimators ���� ����	
��	 −���  and setting �+−= ��� . We also found it was not 

necessary to multiply ���� ���� −��  by any constant as van Dijk and Kloek (1980) 

mention in page 315. Our normalization constant in equation (12) is obtained by 

setting g = 1 in (12) and taking the inverse. 

 

Our empirical results are presented in Tables I, II and III which, for comparison 

reasons, are reported for the full sample period as well as for two sub-periods. The 

first five columns contain the sample statistics of the empirical posterior distributions 

of the transition probabilities and the sixth column reports the least squares point 

estimates of Jones (2005).  The first section in Table I presents results for PL; 

comparing the mean (column 1) with the least squares point estimates (column 6) we 

observe that the non-transition probability is reduced and downgrade transition 

probabilities have increased to statistically significant levels of 1.3% and 2.9% 

respectively.  
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Table I. Transition Probabilities for 1984:Q1-2004:Q1 

Estimation by Bayesian Monte Carlo Integration 

Transition Pr. mean median Std Error Skew Kurtosis Jones (05) GLS 

����	 �  0.955 0.956 0.007 -0.212 3.181 0.997 

��������	  0.013 0.013 .0006 0.353 3.043 0.002 

���������	  0.029 0.030 0.004 -0.064 3.366 0.000 

���	 �  0.0018 0.0015 0.0015 1.203 4.857 0.001 

�����	 ���
 0.749 0.771 0.139 -0.827 3.347 0.000 

���� �������	  0.155 0.129 0.123 1.155 4.205 0.852 

����� �������	  0.043 0.030 0.040 1.363 4.864 0.067 

����	 ���
 0.051 0.039 0.041 1.119 3.943 0.080 

�����	 ����
 0.611 0.618 0.129 -0.373 3.130 0.000 

����� �������	  0.136 0.133 0.070 0.409 3.037 0.032 

������ �������	  0.216 0.206 0.122 0.533 3.094 0.995 

����	 ����
 0.035 0.028 0.028 1.289 5.255 0.013 

 

The second section of Table 1 concerns the NPL90 class and contrary to the least 

squares estimates suggests that there exists a statistically significant upgrade 

probability, a substantially reduced non-transition probability, whilst the downgrade 

transition probabilities are comparable to the least squares ones. A similar upgrade 

picture is also present in the third section of the table which refers to the NPL180 class 

of loans.  

 

In Tables II and III we present estimation results for two sub-samples corresponding 

to pre- and post-structural break periods, as documented in detail by Jones (2005) 

using a variety of test statistics. We observe that in the low growth period of Table III, 

downgrade probabilities have increased and upgrade probabilities have decreased. 

Our estimates of non-transition and upgrade probabilities differ substantially from the 

least squares estimates. 
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Table II. Transition Probabilities for 1984:Q1-1993:Q1 

Estimation by Bayesian Monte Carlo Integration 

Transition Pr. mean median Std Error Skew Kurtosis Jones (05) GLS 

����	 �  0.934 0.935 0.009 -0.205 4.054 0.994 

��������	  0.016 0.016 0.006 0.247 3.600 0.006 

���������	  0.045 0.045 0.008 0.012 3.962 0.000 

���	 �  0.003 0.002 0.002 1.408 6.054 0.000 

�����	 ���
 0.503 0.537 0.239 -0.347 2.179 0.000 

���� �������	  0.332 0.280 0.229 0.531 2.281 0.560 

����� �������	  0.079 0.049 0.081 1.669 6.222 0.436 

����	 ���
 0.084 0.069 0.064 0.982 3.696 0.004 

�����	 ����
 0.670 0.695 0.157 -0.934 4.067 0.062 

����� �������	  0.137 0.126 0.088 0.870 4.103 0.083 

������ �������	  0.148 0.116 0.126 1.363 5.177 0.755 

����	 ����
 0.044 0.034 0.038 1.632 7.341 0.101 

 

Table III. Transition Probabilities for 1993:Q2-2004:Q1 

Estimation by Bayesian Monte Carlo Integration 

Transition Pr. mean median Std Error Skew Kurtosis Jones (05) GLS 

����	 �  0.8903 0.889 0.012 0.261 3.640 0.997 

��������	  0.0085 0.0079 0.005 0.798 4.031 0.002 

���������	  0.0122 0.010 0.009 1.138 4.571 0.000 

���	 �  0.0891 0.091 0.019 -0.725 3.904 0.001 

�����	 ���
 0.457 0.467 0.227 -0.095 2.114 0.035 

���� �������	  0.135 0.108 0.111 1.265 4.860 0.815 

����� �������	  0.153 0.125 0.123 1.169 4.365 0.107 

����	 ���
 0.253 0.211 0.196 0.835 3.027 0.043 

�����	 ����
 0.198 0.181 0.131 0.678 3.136 0.000 

����� �������	  0.116 0.097 0.090 1.165 4.692 0.000 
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������ �������	  0.541 0.548 0.139 -0.339 3.183 0.886 

����	 ����
 0.142 0.116 0.115 1.112 4.173 0.114 

 

Our exact inference procedure provides easily constructed confidence intervals for the 

point parameter estimates. The latter can take the form of a Bayesian Highest 

Posterior Density (HPD) interval ( )UL,  which, for a given confidence level 1-a, is 

given by the shortest interval over which the cumulative posterior probability equals 

1-a. Following Kim et al (2005) the interval ( )UL,  is given by ( )*
1,,0 ai −β  if 

( ) ( )���

��

�� ��� ��
�� �� −> posteriorposterior  where *
1, ai −β  is the value of factor weight 

at which the cumulative posterior probability equals a−1 . Further, if 

( ) ( )���

��

�� ��� ��
�� �� −= posteriorposterior  then the shortest interval ( )UL,  can be 

found numerically. As an illustration, we graph the empirical posterior distribution for 

the PL class transition probabilities during the full sample period. An inspection 

uncovers clearly the effects of the non-negativity constraints which appear to be 

binding in the case of transition from the Performing to the Loss class of loans, thus 

truncating the posterior density of the transition probability.  
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Our estimates comply with all the constraints of equation (4) but it would be of 

interest to assess the performance of the two sets of estimates to explain the data. In 

Table IV perform in-sample forecast evaluation using our estimates from the previous 

section and those of Jones (2005). We follow the standard practice and calculate the 

usual forecast error statistics such as Mean Error (ME), Mean Squared Error (MSE), 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), for the 

estimated regression disturbances ���� � �yu �� −=  for all classes j except of the 

absorbing state of loss. 

 

Table IV: In-Sample Forecast Error Statistics 

 1984:Q1-2004:Q1 19841:Q1-1993:Q1 1993:Q2-2004:Q1 

Rate ME MSE MAE MAPE ME MSE MAE MAPE ME MSE MAE MAPE 

AGLS -0.002 0.168 0.301 2.896 0.014 0.275 0.391 1.851 0.002 0.063 0.20 3.719 

AMCI 0.038 0.104 0.235 1.772 -0.006 0.129 0.255 1.110 0.014 0.042 0.15 1.676 

BGLS -0.494 154.6 9.999 9.556 -0.174 227.6 12.49 11.40 -0.235 78.63 7.55 6.133 

BMCI -0.931 83.87 7.147 2.253 -1.263 149.0 9.877 5.783 -0.739 50.33 5.99 2.142 

CGLS -0.209 68.01 5.530 4.378 -1.476 98.31 6.732 6.035 -0.258 27.56 4.28 2.127 

CMCI -1.173 43.07 4.745 1.584 -0.896 59.32 5.253 1.638 -0.827 24.42 3.98 1.612 

A, B and C stand for “Performing”, “Non-Performing 30-89” and “Non-Performing 90+” loan classes 

respectively.  Also ����
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We observe that Mean Error statistics are usually closer to zero for least squares-

based estimates, thus a forecaster with quadratic preferences would consider these 

forecasts as less biased. MCI-based estimates tend to under-predict PL and over-
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predict NPLs, a result which can be desirable from the point of view of a forecaster 

with prudent asymmetric preferences. The remaining statistics, MSE, MAE and 

MAPE refer to forecast accuracy and we observe that MCI-based forecasts are 

remarkably more precise in all cases. 

 

4. Conclusions 

 

In this paper we focused on the development of an alternative estimation method for 

the stationary Markov model by adopting a Bayesian perspective to formally impose 

the non-negativity probability restrictions in the form of a prior probability density. 

As such, we do not question the structure and adequacy of the stationary Markov 

model as a data generating process. Our prior distribution is then combined with the 

sampling information as captured by the likelihood function to provide the joint 

posterior density function of the model parameters. We use Monte Carlo Integration 

(MCI) as proposed by Kloek and van Dijk (1978) and van Dijk and Kloek (1980). 

This methodology is sufficiently general, allowing the computation of the posterior 

distribution of arbitrary functions of the parameters of interest and enables exact 

inference procedures that are impossible to treat in a sampling-theoretic approach. In 

this paper we apply this methodology to estimate the transition probabilities of a first 

order Markov process for quarterly US aggregate data5 on non-performing loans from 

1984 until 2004. Our empirical results on the US portfolio of non-performing loan 

proportions, are in some cases close to the estimates of Jones (2005), but also exhibit 

some statistically significant differences regarding the estimated transition 

probabilities. Furthermore, in-sample forecast evaluation statistics indicate that our 

estimator tends to slightly over-predict (under-predict) non-performing (performing) 

loan proportions, a desirable result for forecast users with prudent asymmetric loss 

functions. MCI-based estimates are shown to be substantially more accurate in all 

cases. Future research involves the development of a MCI methodology for models 

with richer dynamics, such as a mixture of Markov models, as well as models with 

correlated errors. 

 

 

                                                 
5 The author is grateful to Matthew T. Jones who kindly provided the data set of Jones (2005). 
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