
 
 
 
 

Assessing the Accuracy of Credit R.O.C. Estimates in the  
Presence of Macroeconomic Shocks 

 
 
 
 
 
 

George A Christodoulakis1         Stephen E. Satchell2 
 
 

29 May, 2006 
 

 
Abstract 

 
The Receiver Operating Characteristic (ROC) curve is often used by creditors to 
assess credit scoring accuracy and as part of their Basel II model validation. The 
purpose of this paper is to provide a mathematical procedure to assess the accuracy of 
ROC curve estimates for credit defaults in the presence of macroeconomic shocks. 
Our approach supplements the non-parametric method recommended by Engelmann 
et al (2003) based on the Mann-Whitney test which is used as a summary statistic of 
R.O.C. curves. Our method assumes initially that both sick and healthy loan credit 
rating scores are generated by normal distributions and shows how R.O.C. estimated 
depend on the location and scale parameters. We then use these results to construct 
R.O.C. confidence intervals in closed form and examine the influence of exogenous 
macroeconomic shocks. We further generalise our method y allowing credit rating 
scores be generated by skew-normal distributions, thus allowing skewness to affect 
the moments of the distribution. We show how the presence of skewness would 
further exacerbate the accuracy of model validation. 
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1. Introduction 

 

The validation of credit risk models lies at the heart of credit risk management 

processes developed in financial institutions in the context of Basel II 

recommendations. The quality of models is often judged on the basis of statistical 

metrics of discriminatory power as well as default forecasting ability. The Receiver 

Operating Characteristic (ROC) and the Cumulative Accuracy Profile (CAP) curves 

as well as their summary statistics of Accuracy Ratio (AR) and Area Under R.O.C. 

(AUROC) are often used by creditors to assess credit scoring accuracy and as part of 

their Basel II model validation. Related tests but with relative limited applications are 

the Kolmogorov-Smirnov test, the Mahalanobis distance as well as the Gini 

coefficient. Recent review papers have been published by Tasche (2005) and 

Christodoulakis (2006). The purpose of this paper is to provide a mathematical 

procedure to assess the accuracy of ROC curve estimates for credit defaults in the 

presence of macroeconomic shocks. Our approach supplements the non-parametric 

method recommended by Engelmann et al (2003) based on the Mann and Whitney 

(1947) test. Our method assumes initially that both sick and healthy loan credit rating 

scores are generated by normal distributions and shows how R.O.C. estimated depend 

on the location and scale parameters. We then use these results to construct R.O.C. 

confidence intervals in closed form and examine the influence of exogenous 

macroeconomic shocks. We further generalise our method by allowing credit rating 

scores be generated by skew-normal distributions, thus allowing skewness to affect 

the moments of the distribution. We show how the presence of skewness would 

further exacerbate the accuracy of model validation. 
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2. A Model for ROC Confidence Intervals 

 

Consider two absolutely continuous random variables, y and x, that refer to sick and 

healthy credit scores respectively. Their distribution functions are defined as 

( ) ( )��� ���� � ≤= and ( ) ( )����� ≤= ��  respectively and ( )��−
��  denotes the inverse 

distribution function which is uniquely defined. A perfect rating model should 

completely separate the two distributions whilst for an imperfect (and real) model 

perfect discrimination is not possible and the distributions should exhibit some 

overlap. The latter situation is presented in Graph 1 using normal density functions. 

 

 

  

A natural way for a decision maker to discriminate the debtors belonging to the two 

classes is to introduce a cut-off point as depicted in Graph 1, which would classify all 

the debtors below that point as potential defaulters and those above as potential 

survivors. This practice introduces four possible decision results as clearly described 

by Sobehart and Keenan (2001): (1) debtors classified bellow cut-off which 

eventually defaulted (Correct Alarms), (2) debtors classified bellow cut-off which 
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eventually survived (False Alarms), (3) debtors classified above cut-off which 

eventually survived (Correct Survivors) and (4) debtors classified above cut-off which 

eventually defaulted (Missed Alarms).  

 

The Receiver Operating Characteristic (R.O.C.) is constructed by calculating for 

every possible cut-off point in the range of rating scores, the ratio of Correct Alarms 

to total number of defaults (Correct Alarm Rate (CAR)) and False Alarms to total 

number of non-defaults (False Alarm Rate (FAR)). Then, R.O.C. is defined as the plot 

of pairs of CAR versus FAR. Clearly, both quantities take values between zero and 

one and in Graph 1 CAR can be represented by the integral of the sick loan density up 

to the cut-off point whilst FAR can be represented by the integral of the healthy loan 

density up to the cut-off point. This probabilistic interpretation leads us to state the 

following proposition. 

 

Proposition 1. If the credit rating scores for defaulters y and non-defaulters x are 

represented by mutually independent normally distributed random variables 

( )��� �

�� ����  and ( )��� �� ����  respectively, then the Receiver Operating 

Characteristic satisfies the following relationship. 

( )( ) ( ) ( )
�
�
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�
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where �( ) denotes the cumulative standard normal density.  

Proof: See Appendix. 

 

Given two samples ( ) ( )
21

,..., and ,..., 11 NN yyxx  we can estimate the unknown 

parameters �x, �y, �x, �y, as the usual sample moments. There may be an alternative 
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minimum variance unbiased estimator for equation (1) given the completeness and 

efficiency of estimates �� ��� �� ����  and the results of the Rao-Blackwell theorem; we 

shall return to this point at a later date. The relevance of estimated parameters in our 

analysis can be illustrated by considering a numerical example. Consider a “true” data 

generating process in which the means of sick and healthy loan credit rating scores are 

-7 and 2 respectively and their standard deviation is 5. Let us assume that sick 

(healthy) loan mean has been underestimated (overestimated) taking value -8 (3). This 

would result in a false belief that the rating model exhibits superior performance over 

the entire range of false alarm rates. The reverse results would become obvious in the 

case that sick (healthy) loan mean had been overestimated (underestimated) taking 

value -6 (1). We plot all three cases in Graph 2. 

 

 

 

Then, let us assume that sick (healthy) loan standard deviation has been 

underestimated (overestimated) taking value 4 (7). This would result in a false belief 

that the rating model exhibits superior (inferior) performance for low (high) false 
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alarm rates. The reverse results would become obvious in the case that sick (healthy) 

loan standard deviation had been overestimated (underestimated) taking value 7 (4). 

We plot all three cases in Graph 3. 

 

 

 

Turning now our attention to the construction of R.O.C. confidence intervals, for the 

moment, we denote our estimated y by ( )FARCAR ,θ̂  versus the true ( )FARCAR ,θ , 

where ( )���� ����� ���= . Taking Taylor series expansion we can write 

 

                               ( ) ( ) ( )θθ
θ

θθ
θ

−
∂

∂=− ˆ,,ˆ
'

ˆ

CAR
FARCARFARCAR                            (2) 

 

and compute the asymptotic distribution of ( )xCAR ,θ̂  to arrive at a confidence 

interval for it. Noting that  

 

( ) ( )θθθθ Ω→− ,ˆ 0NM d  
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where ( )�� �
�� ��
 = , we see that  

 

                ( ) ( )( )
�
�

�

�

�
�

�

�

∂
∂Ω

∂
∂→−

θ
θθ

θ θθ
θθ CARCAR

NxCARxCARM d
'

,0,,ˆ                    (3) 

 

In what follows, we describe θθθ
Ω

∂
∂

  , 
CAR

 under our assumption of joint normality. 

Let  

                             
( ) ( ) ( )
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Also, ��� is diagonal with elements 
�
�

�

�

�
�

�

�

2
,

2
,,

22
22 yx
yx

σσσσ  where the last two have been 

calculated by the delta method. We could, however, use the exact formula for them if 

needed. Completing the matrix calculations in (3), we see that any variance of 

( ) ( )( )FARCARFARCARM ,,ˆ θθ −  is given by 
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where 

( )
( )

�

���

�

����
�

��

+−
=

= −�	

 

 

It is now possible to state a simple proposition for the confidence interval of CAR. 

 

Proposition 2. If the credit rating scores for defaulters y and non-defaulters x are 

represented by mutually independent normally distributed random variables 

( )��� �

�� ����  and ( )��� �� ����  respectively and Proposition 1 holds, then the 

confidence interval for CAR is given by 

  ( ) ( ) ( ) d
alpha

FARCARFARCARd
alpha

FARCAR �
�

�
�
�

� +Φ+<<�
�

�
�
�

� +Φ− −−

2
1

,ˆ,
2

1
,ˆ 11 θθθ                

                                  (6) 

where �
�

�
�
�

� +−

�

�
	

� �����
 is the upper alpha per cent point of the standard normal.  

Proof: The proof is outlined in the analysis preceding the proposition � 
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The width of the confidence interval is given by �
�����

�
�

�
�
�

� +−

�

�
	�

�  and changes in 

FAR change h and a through d via equation (5). Recall that we have assumed 

that ( ) ∞→= �� �
�� ��
 . A more precise formulation which reflects the much 

smaller number of sick loans versus healthy ones is that �� ��� =  and keep �
 << �  

fixed whilst ∞→�� . The impact of this is to replace �

��  from equation (3) onwards 

by 
�

� �

�

. In this section we have relied on the assumption of normality as a data 

generating mechanism for the credit rating scores of defaulters and non-defaulters. 

Although empirically relevant, this is a rather simplifying assumption which serves 

the goals of analytical and intuitive tractability and in Section 4 we shall extend our 

analysis to the case of non-normality. 

 

3. Incorporating Macroeconomic Shocks 

 

Suppose that our random variables are conditioned on a random variable ( )2,~ zzz σµ , 

possibly macroeconomic, so that 

( ) ( )( )
( ) ( )( )22''

22''

1,~

1,~

yzyzyy

xzxzxx

zNzy

zNzx

ρσµβµ

ρσµβµ

−−+

−−+
 

 

Interpreting our earlier calculation and now regarding our original parameters as 

 

( )
( )

( )
( )22'2

22'2

'

'
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z
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−=
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We have assumed that ( ) 0,cov =zyzx , however 

 

( ) ( )( ) ( ) ( )( )
2

,cov,cov,cov

zyx

z zyEzxEzyzxEyx

σββ=

+=
 

Note that  

( )( )zyxyxyx z µββµµµµ −−+−=− ''  

 

This point to the obvious intuition that the ROC curve will be invariant to changes in z 

if the impact of healthy loans �x is the same as the impact of sick loans �y. If z 

represents the level of interest rate, we might expect that 
<< �� ��  so that an 

increase in interest rates should increase �� �� −  and sharpen the test’s discriminative 

power at least at some levels of x. This result is relevant to the issue, often discussed 

by practitioners, that the current macroeconomic environment is too benign to allow 

discrimination between sick and healthy mortgages, especially in a world with near-

zero defaults. In what follows we trace through the effect of an increase in �� �� −  

and the width of the asymptotic confidence interval described in equations (5) and (6). 

It is clear that changes in �� �� −  only influence a. Furthermore, the latter only 

appears as a2 so it is absolute a that matters. Note also that if x < 0.5, h < 0 so that an 

increase in �� �� −  will reduce a2 over a certain range and thus reduce d2, making our 

model discrimination more precise. For a change � in yx µµ − , a2 will be reduced if 

2
∆−−<− hyx µµ  where h < 0, � > 0. Now ( ) zyx ∆−=∆ ββ , for 
� >�  meaning 

the change in the conditioning variable. 
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4. Generalising to Non-Normal Families of Densities 

 

In Section 2 we have assumed normality as a data generating mechanism for the credit 

rating scores of defaulters and non-defaulters. We shall study the effects of non-

normality by assuming that our data are generated by independent Skew-Normal 

distributions, originally introduced by O’Hagan and Leonard (1978) as priors in 

Bayesian estimation and developed by Azzalini (1985, 1986) and further generalised 

by Azzalini and Dalla Valle (1996) and Arnold and Lin (2004) among others. Let 

yyy vy σµ +=  where ( )yy SNv λ~  and �y is a real constant then the density function 

of the Skew Normal distribution for vy is given by 

 
( ) ( ) ( )yyyy vvvpdf λϕ Φ= 2  

where 

( )
�
�

�

�

�
�

�

�
−=

2
exp

2

1
2
y

y

v
v

π
ϕ  

 
is the standard normal density and �(  ) is the cumulative standard normal. The Skew 

Normal accommodates a variety of skewness patterns as � varies, whilst it converges 

to the Normal as 
→� . Similarly, for non-default data we assume xxx vx σµ +=  

where ( )xx SNv λ~ . However, in this case �, �, and � refer to location, scale and 

skewness parameters respectively and do not correspond to moments. Instead, we can 

show that ( ) ( ) ( )���
�

��
�

�

+
−=

+
+=

�

�
�

� �

�
��

�

�

��

�
�����

�

�
�����  whilst both skewness and 

kurtosis also depend on �. Thus, in the presence of Skew-Normal data generating 

processes, the decision problem of discriminating between default and non-default 

scoring distributions, as depicted in Graph 1, would have a large number of analogues 
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depending on the relative values of skewness parameters �x and �y on top of location 

and scale parameters. As an example, for �y = 3 and �x = -3 the likelihood of making 

discrimination errors is shown to decrease in Graph 4, but when �y = -3 and �x = 3 we 

observe clearly that the distributions develop extensive overlap which in turn 

enhances the likelihood of making both types of discrimination errors, see Graph 5. 
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Our results under Skew-Normal are now summarised in Proposition 3. 

 

Proposition 3. If the credit rating scores for defaulters y and non-defaulters x are 

represented by mutually independent Skew-Normally distributed random variables 

( ) ,,~ 2
yyySNy λσµ  and ( )xxxSNx λσµ ,,~ 2  respectively, then the Receiver 

Operating Characteristic satisfies the following relationship. 
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where CSN( ) and �( ) denote the cumulative Skew-Normal and Standard Normal 

densities respectively and T( ) denotes the Owen (1956) function.  

Proof: We follow the same steps as in Proposition 1 under Skew-Normality and the 

result (f) of Azzalini (2005) that CSN(w;k) = �(w) – 2T(w;k). � 

 
Note that given values of g and k, the Owen (1956) function T(w.k) calculates the 

quantity  

( )
( )

��
�

�
�

�
���

�

� +

��
�

�
��
�

�
+−

=



�

�
�

�

�
�

���

�

�
�  

 

The ROC curve described in Proposition 3 has a more general form as compared with 

that of Proposition 1 in that it is affected not only by location and scale parameters but 

also by skewness. This allows for further flexibility and accuracy in generating ROC 
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curves as we can show that the four moments of the skew-normal distribution are all 

affected by the presence of skewness. Consider “true” data generating process in 

which the means of sick and healthy loan credit rating scores are -7 and 2 respectively 

and their standard deviation is 5. Also the true sick and healthy loan skewness 

parameters are 1 and 0.3 respectively. Let us assume that sick loan skew parameter 

has been mis-estimated taking possible values 0, 1.5 and 2.5 respectively. We plot 

these alternative R.O.C. curves in Graph 6 and we observe clearly that sick skewness 

under-estimation (over-estimation) results in a false belief of rating model superior 

(inferior) performance over the entire range of false alarm rates. Ultimate under- 

(over) estimation of skewness parameter would lead the analyst to the false 

conclusion that the model approaches perfectly efficient (inefficient) performance. 

 

 

 

These comparative static effects would be effectively altered in the case both sick and 

healthy loan parameters mis-estimation or under different true data generating 

processes. For example, using all the parameter values as described above but for 
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healthy loan skewness 1.3 or -1.3, our R.O.C. results would be depicted as in Graph 7 

and 8 respectively. 
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Graphs 7 and 8 show that our false impression on the performance of a model is 

subject to skew parameter trade-offs between sick and healthy loan distributions, 

whilst the picture would further complicate if location and scale parameters change as 

well. The relationship between Proposition 1 and Proposition 3 can be described in 

the following corollary. 

 

Corollary. The Receiver Operating Characteristic of Proposition 1 is a special case of 

Proposition 3. 

Proof. Letting 
→��  and 
→�� , the skew-normal densities reduce to standard 

normal and thus the R.O.C. curve of Proposition 3 reduces to Proposition 1.� 

 

5. Concluding Remarks 

The Receiver Operating Characteristic (ROC) curve is often used by creditors to 

assess credit scoring accuracy and as part of their Basel II model validation. The 

purpose of this paper is to provide a mathematical procedure to assess the accuracy of 

ROC curve estimates for credit defaults in the presence of macroeconomic shocks. 

Our approach supplements the non-parametric method recommended by Engelmann 

et al (2003) based on the Mann and Whitney (1947) test which is used as a summary 

statistic of R.O.C. curves. Our method assumes initially that both sick and healthy 

loan credit rating scores are generated by normal distributions and shows how R.O.C. 

estimated depend on the location and scale parameters. We then use these results to 

construct R.O.C. confidence intervals in closed form and examine the influence of 

exogenous macroeconomic shocks. We further generalise our method y allowing 

credit rating scores be generated by skew-normal distributions, thus allowing 

skewness to affect the moments of the distribution. We show how the presence of 
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skewness would further exacerbate the accuracy of model validation. Future work 

would consider the implications of our approach to the construction of confidence 

intervals under non-normality as well as the power of bootstrap methods. 

 

Appendix 

 

Proof of Proposition 1 

Let vj denote standard normal innovations so that we can write 
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����
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Then by definition we have 
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Solving both equations with respect to c and equating we obtain 

( ) ( ) ���� ����	��
�	 +=+ −− �� 		  

leading to 
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