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Credit Capital Diversification 4

Abstract

We present a simple adjustment to the single-faarexdtit capital model, which recognizes the
diversification from a multi-factor model. We inthace the concept ofdiversification factorat

the portfolio level, and show that it can be expegsas a function of two parameters that broadly
capture the size (sector) concentration and theageecross-sector correlation. The model further
supports an intuitive capital allocation methodgltlgrough the definition ofmarginal
diversification factorsat the sector or obligor level. We estimate thediification factor for a
family of models, and show that it can be expragsarametric form or tabulated for potential
regulatory applications and risk management. Askamanagement tool, it can be used to
understand concentration risk, capital allocatiod sensitivities, stress testing, as well as to

compute “real-time” marginal risk.
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1. Introduction

Minimum credit capital requirements under the neagé 11 Capital Accord (Basel Committee of
Banking Supervision, 2003) are based on the estmaf the 99.9% systemic credit risk for a
portfolio (the risk of an asymptotically fine-graith portfolio) under a one-factor Merton type
credit model. This model results in a closed footutson, which provides additive risk
contributions and is easy to implement. The two lkaitations of the model are that it measures

only systemic credit risk, and it might not recagmthe full impact of diversification.

The first shortcoming has been addressed in agtamalmanner, most notably with the
introduction of a granularity adjustment (Gordy 20204, Wilde 2001, Martin and Wilde 2002).
The second problem is perhaps more difficult torestslanalytically but has greater impact,
especially for institutions with broad geographiaatl sector diversification. Diversification is
one of the key tools for managing credit risk, #rigl vital that the credit portfolio framework

used to calculate and allocate credit capital &ffely models portfolio diversification effects.

Portfolio granularity and diversification withinnaulti-factor setting can be effectively addressed
within a simulation-based credit portfolio framewolHowever, there are benefits for seeking
analytical, closed-form, models both for regulatapplications as well as for credit portfolio
management. While the use of simulation-based topedifolio models is now widespread, they
are computationally intensive and may not provigiéhfer insights into sources of risk. They are
also not efficient for the calculation of senstii®$, stress testing or real-time decision support.
Furthermore, the accurate calculation of margiagital contributions in a simulation framework
has proven to be a difficult computational problevhjch is currently receiving substantial
attention from both academics and practitioners (&akbrener et al. 2004, Merino and Nyfeler,
2004, Glasserman 2005). Analytical or semi-anedytinethods generally provide tractable
solutions for capital contributions (c.f. Martinadt 2001, Kurth and Tasche 2003).

In terms of multi-factor credit portfolio modelinBykhtin (2004) recently obtains an elegant,
analytical multi-factor adjustment, which extenle granularity adjustment technique of Gordy,
Martin and Wilde. This method can also be usedtopute capital contributions numerically
(given its closed form solution to compute portiatapital). However, the closed-form

expressions for capital contributions can be gnirécate.



In this paper, we present an adjustment to thdesiiagtor credit capital model, which recognizes
the diversification from a multi-factor setting amtlich can be expressed parametrically or
tabulated for risk management decision supporipemehtial regulatory application. The
objective is to obtain a simple and intuitive apgmation, based only on a small number of

parameters, and which is perhaps less generakgnites some numerical estimation work.

To develop the model, we introduce the conceptdifarsification factoy DF, defined as

mf
pF = EC

=g+ DFsl (1)

where EC™ denotes the diversified economic capital from dtirfactor credit model and

EC® is the economic capital arising from the singletda model.

For a givern percentile level (e.gz = 0.1%), we seek an approximation to the multi-factor

economic capital of the form

EC™ (a; 0= DF(a; 0 EC™ (a) @)

with DF(a'; D) <1 a scalar function of a small number of paramet&pgaression (2) allows us

to express the diversified capital as the prodfithe“additive” bottoms-up capital from a one-
factor model (e.g. the Basel Il model), and a diifation factor (which is a function of say two
or three parameters). For potential regulatory weemay also seek@nservative

parameterization of the diversification factor.

We estimate the diversification factor for a fanofymulti-factor models, and show that it can be
expressed as a function of two parameters thathreapture theize concentratioand the

average cross-sector correlation

The diversification factor provides a practicakmeanagement tool to understand concentration
risk, capital allocation and correlations. For thispose, we introduaearginal diversification
factorsat the obligor or sector level, which further asebfor the diversification contributions to

the portfolio® The model (2) supports an intuitive capital alti@n methodology, where the

5This paper is closely related to Tasche (2006) further presents a mathematical foundation for the

diversification factor and diversification contriians. The author presents a two-dimensional exampl



diversification contribution of a given sector damfurther attributed to three components: the

overall portfolio diversification, the sector's agive size, and its cross-sector correlation.

Finally we show how the model can be used in cartjan with a Monte Carlo based multi-
factor credit portfolio model (which may alreadyihaise) by implying its parameters. The
resulting implied parameters of tB# model provide simple risk and sensitivity indicator
which allow us to understand the sources of risk@mcentration in the portfolio. The fitt&d-
model can be used further as a risk managementaocapital allocation and sensitivities, as
well as for stress testing and real-time computadibmarginal capital for new loans or other
credit instruments. Since ti¥- model, on its own, is based on the computatiorystiesnic
credit capital it only captures sector and geodi@ltoncentrations. We further show how it

may be augmented with a granularity adjustment¢tutle name concentrations.

The rest of the paper is organized as follows. W ihtroduce the underlying credit model, the
diversification factor and its general analytiastjfication, and the capital allocation
methodology. Thereafter, we explain the numeriséihgtion of the diversification factor, and
provide a parameterization in the context of thedBd formulae for wholesale exposures. Next,
we discuss the application of the model as a riskagement tool, its use in conjunction with a
Monte Carlo based model and its extension witheagjarity adjustment. We illustrate its

application with an example. Finally, the paperemnith some concluding remarks

2. A Model for the Diversification Factor

We first introduce the underlying credit model. Wen define the concepts of the diversification
factor, capital diversification index and averagess-sector correlation. Finally, we discuss

capital allocation and risk contributions withiretmodel.

Underlying Credit Model and Stand-Alone Capital

Consider a single-step model wiKhsectors (sectors can represent an asset classtrindector,

geography, etc.). For each obligan a given sectdk, the credit losses at the end of the horizon

which has an analytical solution, and more gength# contribution expressions require integrals of

dimensionN-1, for problems of dimensioN.



(say, one year) are driven by a single-factor Mertmdelf. Obligorj defaults when a

continuous random variab‘f’q, which describes its creditworthiness, falls belbgiven

threshold at the given horizon. If we denotel, the obligor’s (unconditional) default

probability and assume that the creditworthinessaadard normal, we can express the default

threshold byN ‘1(PDJ. ) For ease of notation, assume that for oblidas a single loan with

loss given default and exposure at default giveh®1),;, EAD,; respectively.

The creditworthiness of obliggiis driven by a single systemic factor:

Y :\/p—kzk+\/1_pk € 3)

where Z, is a standard Normal variable representing theesyis factor for sectdt, and theg;

are independent standard Normal variables repiiagaie idiosyncratic movement of an
obligor’s creditworthiness. While in the Basel lbdel all sectors are driven by the same

systemic factoZ, here each sector can be driven by a different fakttdhe general case, the

sector factorsZ, are jointly Normal, and denote the sector factwrelation matrix byQ .

To motivate the methodology, it is useful to defsnsimpler model where the systemic factors

are correlated through a single macro-facor,

Z,=JBZ+1-B8n, , k=1..K (4)

wherer), are independent standard Normals. We assumeafaisgle correlation paramet@for

all the factors, but later relax this assumptiod attow for a more general correlation structure.

As shown in Gordy (2003), for asymptotically fineaxmed sector portfolios, the stand-alane

percentile portfolio loss for a given seckorVaR (), is given by the sum of the individual

obligor losses in that sector, whenarmercentile move occurs in the systemic sectdofag, :

6 For consistency with Basel Il, we use on a onésgdvlerton model for default losses. The methodglog

is general and can be used with other credit mpdel$can also incorporate losses due to creditatiog.



VaR(a)= > LGD, [EAD, EN[ N*(PD,)- ‘/_ZJ

j OSectork \/1 - ,0k

where z° denotes ther -percentile of a standard normal variable.

Consistent with common risk practices and withBlasel Il capital rule, we define tlséand-

alone capitaffor each sectorEC, (a), to cover only theinexpected losseghus,

ECk(a):VaR(a)— EL, , whereEL, = ZLGDJ [(EAD; [PD, are the expected sector

j O Sectork

losses’. The capital for sectde can then be written as

EC(a)= > LGD, EEADJ[%N[ N*(PD,)- */_ZJ ] 5)

j O Sectork \/1 ,0k

Under the Basel Il single-factor model, or equindlieassuming perfect correlation between all
the sectors, the overall capital is simply the sirihe stand-alone capital for all individual

sectors (for simplicity, we omit the parametethereafter)

K
EC' =) EC, (6)
k=1
We refer to it as thsingle-factor(SF portfolio capital

The Diversification Factor and Capital Diversification Index

In equation (1) we define thiiversification factor, DFas the ratio of the capital computed with

the multi-factor model and the SF capital, (equaéy DF = EC™ / EC", DF <1.

As given in equation (2), for a given quantile, sez=k to approximate tHF by a scalar function
of a small number (two or three) of intuitive pagters. We can thus think of tbd- as “factor

adjustment” to the “additive” bottom-up SF capital

K

EC™ =DF(Jx Y EC,

k=1

” The following discussion also holds for VaR (byply adding baclEL at the end of the analysis).



Let us first motivate the parameters used fordbisroximation. We can think of diversification
basically being a result of two sources. The first is the correlation between the sectors. Hence,
a natural choice for a parameter in the modeldasctirrelations of the systemic sector factafg
(equation 4) or more generally an “average crosgseorrelation”. The second source relates to
the distribution of relative sizes of the varioester portfolios. Clearly, one dominating large
sector leads to high concentration risk and limd&crsification. So we seek a parameter
representing essentially an “effective number of@s”. This should account for the size of the
sector exposures as well as for their credit chiariatics. A large exposure sector with highly

rated obligors might not necessarily representgelaontribution from a capital perspective.

Define thecapital diversification index, CDhs the sum of squares of tAEcapital weightsn

each sector

YECS
CDI =(kIEC—Sf)2=Zk“wk 7)

withw, = EC,/ EC® the contribution to the SF capital of sedtoTheCDlI is the well-known

Herfindahl concentration index applied to the Spited of the sectors (rather than to the
exposures, as is more commonly used). Intuitivielyives an indication of the portfolio capital
diversification across sectors (not accountingliercorrelation between them). For example, in
the two-factor case, theDI ranges between 0.5 (maximum diversification) amel @naximum
concentration). The inverse of ta®I can be interpreted as an “effective number of ssttn

the portfolio (from a capital perspective). Thigeipretation of the invergeDI is parallel to the
“effective number of loans” interpretation of tiwérse Herfindahl (defined on loan exposures)

in the original Basel Il granularity adjustment posal (BCBS 2001, 1436).

It is easy to understand the motivation for @il. For a set of uncorrelated sectors, the standard
deviation of the overall portfolio loss distributiés given byo, =+/CDI Zkak , with o, g,

the volatilities of credit losses for the portfoliad sectok, respectively. If we further assume



that thecredit losse®f each sector are correlated through a singleelzdion parameterﬁ, the

volatility of portfolio credit losses is given By

o, =\ll-B)cDI + B ¥ 0, ®)

If credit losses were normally distributed, a samigquation to (8) would apply for the credit

capital at a given confidence leveEC™ = DFN(CDI, 8) CEC', with

DF" = \/(1— ,E)CDI + ,5 , the diversification factor for a Normal loss distition. Figure 1

shows a plot ofDF M as a function of th€DI for different levels of the loss correlatioﬁ. For

example, for &DI of 0.2 and a correlation of 25%, the diversifiegd volatility from a multi-

factor model is about 60% of the SF volatility.

Although credit loss distributions are not Nornibgeems natural to use a similar two-factor

parameterization for equation (1):

EC™(CDI, )= DF (CDI, 8)EC* 9)

with the sector systemic factor correlation subgtig the loss correlation, given its availability,

priori, from the underlying model.

Clearly, we do not expect the parameterizationd®e exact, nor for thBF to follow

necessarily the same functional form@&" . However, we expect the two parameters to

8 One can explicitly obtain the relationship betwasset and loss correlations. For the simplestafase
large homogeneous portfolios of unit exposuresaudeprobabilityPD, with a single intra-sector asset

correlationo and correlation of sector systemic factgts the systemic credit loss correlation is given by

B =[N, (N(PD),N(PD), 08) - PD? /[N, (N *(PD),N(PD), p) - PD?]

with N, (a,b, p) the standard bivariate normal distribution ofd@am variables andb and correlatiom.

Note also that, more generally, the variance offpla losses is given by the well-known formula
02 =Y LGD,EADLGD,EAD,|N,(N*(PD,),N}(PD,), p, )~ N"*(PD,)N*(PD,)]
ij

where 0 = P for obligors in the same sector ayg&d: ,g\/;k\/ﬁ for obligors in different sectors.



capture broadly the key sources for diversificatlmmmogeneity of sector sizes and cross-sector
correlation. Thus, it remains an empirical questitrether these two parameters generate a

reasonable approximation of the diversificatiortdacThis is further explored in Section 3.
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Figure 1. Diversification factor for volatility of losses (Normal distributions)

General Correlation Structure and Average Factor Caorelation

So far, we have motivated the model using the fmplrelation model implied by equation (4),
with all sector systemic factors having the sanreetation to an economy-wide systemic factor
Z. Clearly, this is a very restrictive assumptiompiactical settings. A less restrictive multi-facto
model can also be defined, which assumes a sistilacture to equation (4) but where each

sector has a different correlation leygl

Z, =B Z+1-B. n. . k=1L..K (10)

More generally, we define a factor codependencé®sector factors given by a correlation

matrix, Q. 9

A natural choice for a correlation parameter ingbaeral model is some form of average cross-
sector correlation (to substityfsin equation 9). From the various possible defimisi for an

average sector correlation, we choose the followimg;.

9 The model in equation (10) results in oKlparameters (instead K{ K-1)/2 for a general correlation

matrix), and a correlation matr with entriesQ, =./5 3, , ] #i.

10



For a vector of portfolio weightg/ = (Wl...WS)T , define theaverage factor correlatioas

2.2 Qww, o?

B =3 -0’

S ww,  92-0°

i

(11)

whereg? =W'QW is the variance of the random variable given leywieighted sum of the

factors,6” =Y w’ and &° = (Ziwi)z. B is an average correlation in the sense that

WTBW=W'QW = ¢g?
with B the correlation matrix with all the non-diagonal entries equ:,{_}’to

In a similar way to th€DI, we define the average correlation to be also “capital weaitjhte
order to account for the contributions of each sector (and accounting facrbdihquality and
size). Thus, for our specific case, we chose the portfolio wetghte the stand-alone capital for

each sector, i.e.

&#=YEC* and & =(YEC)* =(EC”)’ (12)
We refer to the general model given by
EC™(cDI,3 )= DF (cDI, B) EC (13)

with ,[_?defined by equations (11) and (12) astecredit capital model

Capital Allocation and Risk Contributions

Under a single-factor credit model, capital allocation is gitébrward. The capital attributed to a

given sector is the same as its stand-alone cali@gl, since the model does not allow further

diversification. Under al multi-factor model, the total capiaiot necessarily the sum of the
stand-alone capitals in each sector. Clearly, the standasdef rach component does not
represent a valid contribution for sub-additive risk meadargeneral, since it fails to reflect the
beneficial effects of diversification. Rather, it is necegsa compute contributions on a marginal

basis. The theory behind marginal risk contributions and additipéal allocation is well

11



developed and the reader is referred elsewheiitsforore formal derivation and justification
(e.g. Gouriéroux et al 2000, Hallerbach 2003, Kard Tasche, 2003, Kalkbrener et al 2004).

After computing the diversification factor in egiaat (13), one might be tempted simply to

allocate back the diversification effect evenlyassr sectors, so that the total capital contributed
by a given sector iDF [EC, . We refer to these as theadjusted capital contributionghese

do not account, however, for the fact that eacloseontributes differently to the overall

portfolio diversification. Instead, we seek an &igdicapital allocation of the form

K
EC™ = > DF, [EC, (14)
k=1

We refer to the factor®F, in equation (14) as thearginal sector diversification factors.

If DF only depends o&DI andf3 , then the economic capit&IC™ in equation (13) is a

homogeneous functioof degree one in thHeC, ’s (indeed it is homogeneous in the exposure’

sizes as well). This is a direct consequence df t@CDI and ﬁ being homogenous of degree

zero. Applying Euler’s theorem, leads to the aslditnarginal capital decomposition (14) with

_ OEC™
9EC,

By directly taking the partial derivative on thght side of expression (15), we obtain a closed

DF,

, k=1..K (15)

form expression for thieth marginal diversification factor:

_ aDF [ EC, _ oDF 1-(EC/ECY) 1~
DF, =DF +2_—— == CD@+ZGEI& e -8l ae

where

10 Tasche (2006) formally generalizes the diversificafactor and the marginal diversification fastor
introduced here for a general risk measure (heegfihe marginal diversification factor of a given

position, with respect to a given risk measuraghagatio of its risk contribution and its standrad risk).

12



B Zk:Qki EC,
:—J;t
Q. SEC

JES
is the average correlation of factoto the rest of the systemic factors in the padfolhe terms

dDF /dCDI anddDF /9 are the slopes of tHaF surface in the direction of t{@DI and the

average correlation, respectively (they are obthdieectly from the parameterized surface as
shown later in Section 3). These slopes are noativegsince the portfolios is less diversified as
either theCDI or the average correlation increase (see for exafiglure 1). A brief outline of

the derivation of expressions (15) and (16) is givethe appendi}?!

Expression (16) shows that the marginal capitakalion resulting from thBF model leads to
an intuitive decomposition of diversification effe¢or concentration risk) into three

componentsoverall portfolio diversificationsector sizeandsector correlation

DF, = DF +ADFg, +ADF

Corr

7)

Size
The first term is simply the overall portfolidF. The second terms can be interpreted as an
adjustment due to tHeelative size” of the sector to the overall portfolio. Intuitiyel sector
with small stand-alone capitaEC, / EC* < CDI ) contributes, on the margin, less to the
overall portfolio capital; thus, it gets a highévetsification benefit,DF, . The last term is an

adjustment due to the sector’s correlation to trevall portfolio. Sectors with lower than average
correlation to the rest of the systemic sectordigcin the portfolio get a higher diversification

benefit, as one would expect.

3. Estimating the Diversification Factor Surface

We refer to the functiorDF (CDI ,,6’) as the diversification factor surfad@K surface. We

propose to estimate it numerically using Monte €armulations. In general, this exercise

1 when one defines the average correlation as tneetic averageg = > (EC,/EC¥) (B, . the

resulting formula for the marginal sector diversfion factor is simpler and given by

dDF [ EC, dDF _
DF, =DF +2— [|—% —CDlI |+ —[Jg, -
K aCDI | ECY } B Eﬁﬂ =B ]

Although simpler, this definition has some unddsggroperties which result in inconsistencies.

13



requires the use of a multi-factor credit portfaioplication (which might itself use simulation to
obtain a capital estimate). The estimated surfaoeleen be used generally in parametric or for
economic capital (EC) calculations in a multi-facdetting, without recourse to further
simulation. Note that, for regulatory use, we migbek to estimate@nservativaliversification

factor surfaceby finding reasonable upper bounds for EHe

This section presents the general estimation metbgyg and illustrates its application to a
portfolio of wholesale exposures (corporates, bamkssovereign) in the context of the Basel Il
formula. We first explore the feasibility of the thedology and illustrate it in detail for a two-
dimensional case and a fixed cross-sector avexagelation. We extend the results to multiple
sectors and correlation levels. As the number cibsg is increased and correlations are changed,
this exercise demonstrates the basic characteritithe surface, the approximation errors and
the robustness of the results. Thereafter, a pdranferm of the overall surface is provided.
Finally, we show that the estimated surface proslaceurate capital estimates for the more

general (and realistic) case where sectors hafexelift correlations to the overall portfolio.

DF Surface Estimation Methodology

The general estimation methodology can be sumnth&zdollows. Assume in each simulation, a
set of homogeneous portfolios representing eadloisétach sector is assumed to contain an
infinite number of obligors with the sarf® andEAD. Without loss of generality, we 9eGD =

100%, and the total portfolio exposure equal tg @eEAq( =1, and assume that all loans in the

portfolio have a maturity of one year The folloginumerical experiments are then performed:

* Run a large number of portfolios, varying indepembjein each run:

 The number of sectors and sizes of each sector
« PD ,EAD,p , k=1..K
« The average factor correlatigfi

e For each portfolio

o Compute the stand-alone capital for each se@qy,(k =1,...,K) the single-factor
capital for the portfolio,EC*", andCDI (equations 5, 6 and 7)

o Compute the “true’'EC™ from the multi-factor Monte-Carlo based mddel

12We use a MC-based portfolio model, although a semalytical model can be used alternatively.

14



o Plot the ratio of EC™ / EC™) vs. theCDI and average sector correlatiﬁw

« Estimate the functioDF (CDI, g) by fitting a parametric function through the psin

As a simple example, Figure 2 presents the pldkf# to 5 for a fixedﬁz 25% and random
independent draws witRD, [1[.0290,20%], p, [1[2%,20%)]. The dots represent portfolios

with different parameters. The colours of the poiepresent the different number of sectors.
Simply for reference, for eadfy we also plot the convex polygons enveloping thietgoFigure

2 shows that, in the case where all parametengaaiied independently, the approximation is not
perfect; otherwise all the points would lie onreel{not necessarily straight). However, all the
points lie within a well bounded area, suggestiragia reasonable approach. A functidican

be reliably parameterized either as a fit to thiatsmr, more conservatively, as their envelope.
The latter might be more desirable from a regulaparspective, and can also be estimated with
standard statistical methods. For example, 6D of 0.5, a diversification factor of 80% results
in a conservative estimate of the capital redudtienrred by diversification, while the mean fit
of the surface would lead toldF of 74%.

oz 03 0.4 05 08 [ 08 03 1

CDI

Figure 2.DF as a function of theCDI (K=2 to 5, and=25%)

This example illustrates the estimation methodolfmgya general setting where secRids

exposures and intra-sector correlations are vaniebendently. Even in this case, two
parametersGDlI, ,[_?) provide a reasonable explanation of the diverdificafactor. One can get a

tighter approximation, by either searching for mexplanatory variables, or by constraining the
set over which the approximation is valid. In pieetPDsand intra-sector correlations do not

vary independently and they might only vary oveaimanges. For example, under the Basel I

15



formula, the asset correlation is either constard given asset class (e.g. revolving retail
exposures, at 4%) or varies as a functioRD$ (e.g. wholesale exposurés)See also Lopez
(2004), which provides evidence that the averageta®rrelation is a decreasing functioriPaf

and an increasing function of asset size.

For the rest of this section, we focus on the e#ion of theDF surface for the case of wholesale

exposures (corporates, banks and sovereign) icothtext of Basel |I.

DF for Wholesale Exposures — Two-Factors and Consta@orrelation Level

Consider a portfolio of wholesale exposures in hwmogeneous sectors, each driven by a single
factor model. Assume a cross-sector correlajibn 60%. We perform a simulation of three

thousand portfolios. TheDsare sampled randomly and independently from aoumif
distribution in the range [0,10%)]. Asset correlatidor each sector are given as a functioRD$
from the Basel Il formula for wholesale exposurdthaut the firm-size adjustment. For each of
the 3,000 portfolios, the multi-factor EC is caktgld using a MC simulation with one million
scenarios on the sector factors, and assuming lgrgmartfolios. EC is estimated at the 99.9%

percentile of credit losses (net of the expectedds).

Figure 3 plots th®F as a function of th€DI for the simulated portfolios. With two factorseth
CDI ranges between 0.5 (maximum diversification) arfjchdximum concentration). There is a
clear relationship between the diversification daetnd theCDI, and a linear model fits the data

very well, with anR? of 0.97. We can express the diversification faast

DF(CDI, B = 06) = 0.6798+ 0.3228CDI

The figure further presents in tabular form theuttasof the regression. Accounting for maximum

diversification, the capital savings are 16% .

13n this case, the asset correlation is given by

1— g50PD 1—g50PD
p= 0.12[ I—a® j+ 0.24[1— I—a® j

14 Similarly, one can obtain the parametric envelbfhe data, to get a more conservative adjustment.

16
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§ 50% 4 y =0,3228x + 0,6798 70% 91%
g R?= 0,9625 75% 92%
§ a0 80% 94%
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10% - 100% 100%
0% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Intercept 0.6798
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Capital Diversification Index (CDI) RA2 0.97

Figure 3. Two-factor diversification factor as a function of CDI ( ﬁ = 60%)

Figure 4 displays, for all simulated portfoliosethctual EC against that estimated fromDQlke
model (using the regression in Figure 3). Theddarly a close fit between the two models, with

the standard error of the estimaf2d model of only 10 basis points.

18%

16% +

14% +

12% 4

10% +

8% 1

6% -

Estimated Capital (DF Model)

4% -
Ow

2% A &

0%

T T T T T T T T
0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Actual Capital (Two-factor model)

Figure 4. Capital from DF model vs. actual two-factor capital (B=60%)

Estimation of DF for Varying Number of Sectors and Average Factor @rrelation levels

Next, we investigate the behaviour of DE as a function of the number of factors and average
cross-sector correlation levels. First, considetfplios of wholesale exposures consisting of
homogeneous secto#ss2, 3,...,10, and average cross-sector correlatiordfateﬁz 60% We

follow the same estimation procedure using a sitinria of three thousand portfolios, for edch
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Figure 5 plots the nine regression lines. At tloig@ation level, a linear model fit the data well
all cases withR? ranging between 96-98%, and standard approximatians of 10-11 bps. Table

1 tabulates the estimat&d for eachK, and gives the coefficients of the regressionsyelkthe
average over the range of factors.

Diversification factor (beta=60%) Factors
100.0% -2
95.0% - —3
90.0% 4
85.0% 1 5
L 80.0% A ) 73
75.0% - s
70.0% - — 9
65.0% - 10
60.0% ‘ ‘ ‘ ‘
0% 20% 40% 60% 80% 100%
cDI

Figure 5.DF model regression lines foK=2, ..., 10(,5:60%).

CDI \ Factors 2 | 3 |1 4 1 5 | 6 | 7 1 8 | 9 10 Average
10% 70.7% 70.7%
15% 72.3% 71.9% 72.2%|  72.4% 72.2%
20% 74.0% | 74.0%| 74.0% 73.6% 73.9%  74.0% 73.99
25% 75.0% | 75.7%| 75.79 75.7% 75.3% 75.600  75.7p6 75.546
30% 76.8% | 77.4%| 77.49 77.4% 77.0% 773 77.4p% 77.2%6
35% 79.1%| 785%| 79.194 79.1%  79.09 78.7%) 79.4%  79.% 78.9p%
40% 80.7%| 80.2%| 80.8%4 80.8%  80.79 80.4%) 80.1% 80.4% 80.6p6
45% 82.4%| 81.9%| 8254 825%  82.49 82.1%) 82.4%  824% 82.3p6
50% 84.1%| 84.1%| 83.74 842% 842§ 84.1% 83.89 841% 84L% 0YB4.
5506 85.7%| 85.8%| 8549 859% 858f% 85.8% 85.59 855%  85B%  7Y®5.
60% 87.3%| 87.4%| 87194 87.6% 875 87.5% 87.29 87p%  87b% 49B7.
65% 89.0%| 89.1%] 8884 89.3% 892§ 89.2% 88.99 89P%  89L% 19®9.
70% 90.6%| 90.8%] 90644 91.00h6 909} 90.8% 90.69 90p%  90B% 8%R0.
75% 92.2%| 925%| 9234 92.7% 926f% 92.5% 92.49 92b%  92p% 5%02.
80% 03.8%| 94.1%| 9404 94.4% 943} 94.2% 94.19 94B%  94p% 1904,
85% 95.4%| 95.8%] 95794 96.1% 959f% 95.9% 95.89 96p%  95p%  8Y@5.
90% 97.0%| 975%] 9754 97.8% o976} 97.6% 97.59 97f%  97p% 5%7.
950% 98.6%| 99.1% 99204 995% 993} 99.3% 99.29 99h%  99p% 29@9.
100% 100.0944 100.09% 100.04p 100.0p6 100.%  100.9% 100.006  %0$.0100.0% 100.0%

Intercept 0.6798] 0.673] 0.664] 0.672] 0673] 0.672€ 0.667] 0670 0.673] 0671
slope 0.3228] 0.3349 0.344p 03397 0.33p9  0.3368 0.3413 0.3406 0359 370.3
RA2 96.3% | 96.99 97.2% 97.66  98.0pb 97.9% 97.p% _ 98|0% od.1%

Table 1. Tabulated results for theDF model, K=2,...10(B=60%).

While a linear function works well at this corrédat level, further experiments show that e

is non-linear at lower correlation, and its curvatincreases with decreasing correlation. Figure 6
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illustrates this point by plotting tHeF for three levels of correlation. One can get sarhgtion
on the curvature of theF surface by revisiting the functional form for pait loss volatility,

Equation (8) (note also the similarity between Fégul and 6).

100.0% /
90.0% /

80.0%

/ —— beta=60%

— beta=40%
beta=0%

70.0%

DF

60.0%

50.0%

40.0%

CDI

Figure 6. DF model for various correlation levels.

Parametric Estimation of DF Surface

Based on the insights gained in the previous esesciwe now estimate a paramebresurface

as a function of both theDI and average cross-sector correlation. We searchgotynomial
function inCDI and S of the form
DF =P,(CDI,p)
with
P(CDI,)=1 and P,(1,B) =1 (18)

The first restriction states that when the intestsecorrelations are one, the model reduces to the
single-factor model anBF = 1. The second restriction refers to the case wihere is
essentially one sector and hence no diversificafibie restrictions (18) suggest the following

functional form1>

P,(CDI,B)=1+ Y a (- pB) L-CDI)! (19)

i21, )21

More specifically, we investigate the second orfggroximation (in each variable):

15Note that a Taylor series expansion of equatidrs@gests a similar functional form.
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P,(CDI, B) =1+a,,(1- B)(1-CDI) +a,,(1- B)*(1-CDI)" +a,,(1- §)'(L-CDI)* +
+a,,(-p)*(L-CDI)’

(20)

We proceed to estimate tbéd- surface defined by equation (20) as follows. Wedlcanly

simulate 22,000 portfolios with up to 10 sect@®( in [0.1, —1]). For each portfolio, the weights
andPDs in each sector are sampled randomly, as welleaaverage inter-sector correlatign
(sampled uniformly between 0 and 1). Figure 7 gihes3-D plot of théF for all simulated

portfolios as a function of theDl andg .

Empirical (simulated) data

Diversification Factor

i
¥

Beta Capital Diversification Index

Figure 7.DF for simulated portfolios.

Table 2 presents the specification of equation 88)lting from fitting the simulated data. The
approximation is excellent, witR? coefficients of 99.4% and above and a volatilitgmors of
11 bps. Note that all the coefficients have tightitds and also are significant, except for the

third one, where we cannot reject the null hypdghit it is zero.

Regression Statistics
CoefficientsStandard Error t Stat Lower 95%Upper 95% Multiple R 0.997
All -0.845 0.0046 -185 -0.854 -0836 R Square 0.994
A21 0.417 0.0059 71 0.406 0.429 Adjusted R Square 0.9p4
Al12 -0.0118 0.0072 -16 -0.0260 0.0023 Standard Error 0.0107
A22 -0.467 0.0093 -50 -0.485 -0.444 Observations 22,000

Table 2. Estimated parametricDF model (equation 20).
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Table 3 presents the final specification of the elprkstricting the third coefficient to zero.

Coefficients Standard Error t Stat
A1l -0.852 0.0009 -911
A21 0.426 0.0019 225
A12 0
A22 -0.481 0.0023 -205

Table 3. Final Estimated (simplified) parametricDF model (equation 20).

Figure 8 presents the surface in equation (20) thiéhcoefficients in Table 3. Figure 9 compares
the estimated surface with the simulated portfdlief side), and shows the model estimation

errors for the simulated portfolio%.

Fitted surface

Beta

Capital Diversification Index

Figure 8. EstimatedDF Surface.

16 Additional estimation exercises were performed. &@mple, a specification where the
constant polynomial term is estimated (insteadxirig) it at one) yields an estimated constant of
1.0021 However, the explanatory power increases onlgimaly. Another model with the

additional constrainDF =P, (00) =0 implies a restriction of the form:1=a,, +a,, +a,, +a,,-

At the expense of fitting the surface to an ardar@levant in practice (infinite number of

independent sectors), this model results in redegpthnatory power.
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Empirical vs. Fitted Factor Adjustment

16%
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10%
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Figure 9. Simulated portfolios and the estimatedF Surface.

Estimated DF Surface for Non-Homogeneous Factor Correlations

The model developed in this paper suggests paramesteheDF surface in terms of a single
average correlation (and tldl). As a practical exercise, the surface estimaed@assumes a
simplistic correlation structure with a single (eage) correlation for all sectors. Since, in
practice, different sectors likely present diffdrivels of correlation to the overall portfolio j$

important to assess the impact of this assumpticih® estimated model.

In order to test this impact we perform the follogi(out of sample) exercise. We simulate
22,000 new portfolios with up to 10 sectors (a®befwith random weights amiDs). For each

portfolio we assume a multi-factor model definedeloyiation (10)

Z =B Z+\1-B.n. ., k=1..K

where each sector has a different correlation I8veélhus, in addition, we randomly simulate the

[s for each sector and calculate the average gdeter correlation (equation 11).

Figure 10 shows the actual diversification factordll simulated portfolios (as the ratio of their
true EC to their single-factor capital) as welllas estimate®F surface above. It also plots the
true EC vs. the estimated EC from the model (equ&D and Table3). Contrasting Figures 9 and
10, the out-of-sample model performance (with nomibgeneous sector correlations) is very
good and generally of the same quality as the inpd&a performance. The volatility of the errors

is only 14bps (with a mean error of 4bps), onlgtslly higher than the in-sample errors.
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Empirical Diversification Factor vs. Model Diversification Factor

16%

14%

12%

10%

Diversification Factor
Estimated Capital (DF Model)
o
2

0 LA 0% 2% 4% 6% 8% 10% 12% 14% 16%
Average Beta Capital Diversification Index Actual Capital

Figure 10. Out-of-sample simulated portfolios (norhomogeneous correlations).

4. The Diversification Factor as a Management Tool

TheDF model provides a simple alternative to Monte Cavl€) simulation for the computation
of portfolio EC. Due its analytical tractability a®ll as its intuitive parameters and capital

allocation, the model can be used as a risk manageiool for

» Understanding concentration risk and capital atioca

Identifying capital sensitivities
e Stress testing
» “Real-time” marginal risk contributions for new dear portfolios

In this section, we explore these applicationstFiwe summarize the parameters of the model
and analytical sensitivities. Next, we review ipgphlcation for stress testing. Thereafter, we show
how the model can be used for risk managementrijunotion with an existing MC-based multi-
factor credit portfolio model, by computing its itigal parameters. While tHeF model, as
presented, covers only systemic risk and henceuressector and geographical concentrations,
we outline how the framework might be extended;dnjunction with the granularity adjustment,
to cover also name concentrations. Finally, weqarea stylized example to illustrate the
calculation of implied parameters, and show the elisgpplication for sensitivities, stress

testing and real-time marginal capital calculatidmew deals.
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Summary of Model Parameters and Sensitivities

TheDF model's parameters can be seen as intuitive ridicancentration indicators. We divide

these parameters inteector-specific indicators, portfolio capital inditors, capital

contributions and correlation indicatorg.or completeness, we summarize them in Table 4.

Sector specific
(sectors kzl,...,K}7

Portfolio capital

Marginal capital contributions

(sectors k=1,...,K)

r

Inputs
O Intra-sector (asset) | gcsf | Capital one-factor B Sector factor correlation
correlation (undiversified) weights
PD. | average default CDI | Capital C_Q Average correlation of a secto
probability diversification index k factor to the other sectors
EAD. | Average exposure, [; Average cross sector|
loss given default correlation
LGD«
Outputs
EC, | Stand-alone capital DF | Diversification factor | DF, [EC,| Marginal capital contribution
gcm | Economic capital DF, Sector diversification factor
(diversified) DF, = DF +ADF S + ADF,®"
ADF. siz¢| Sector size diversification
| component
ADF " | Sector’s correlation

diversification component

Table 4. Parameters and risk indicators oDF model

Due to its analytical tractability, closed formfmulae are obtained for the sensitivities of Efe

or the EC to every input parameter of the modeé 3énsitivities of th®F to the average cross-

sector correlation and ti@&DI

oDF dDF
of  oCDI

are given directly as the slopes from the estimBtedurface. It is straightforward (through the

chain rule) to get the sensitivities of th& or EC to the parameters such as sector singleffact

(SF) capital EC), exposuresPDs LGDs or sector correlation parametepsk(c_gk , B)- Thus,

for example, the change in EC per unit of sectoiofacorrelation fok-th sector is given by

17 Commonly, the (exposure-weighted) aver&gd andLGD for each sector are computed, and the

averagePD isimplied from the actual calculation of expectessles.
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wheredf® = dDF/dg is the slope in thBF surface in the direction of the average correlation

In addition to portfolio EC, sensitivities can alse explicitly written for the marginal

diversification factors and marginal EC for anyagivsector or exposure in a sector.

Stress Testing and Real-Time Marginal Capital

Stress testing of EC and real-time marginal capa#dulations for new deals are difficult when
using a portfolio model which requires MC simulati@cach stress test or marginal capital
calculation for a new deal or portfolio requiresessence, an additional MC simulation. For
example, measuring the impact of an increa$tDiior a given sector requires to re-run the MC
simulation for the entire portfolio and comparihg ttapital with the base case. Adding a new
loan or new portfolio also requires simulating teole portfolio in order to aggregate the losses

over each scenario and account for correlatihs.

TheDF model offers analytical formulae that can be usethiculate the capital for new
portfolios or changes in parameters. It also prewithtuitive parameters, sensitivities and a
capital allocation breakdown which can be usedfiain the results further and manage the
portfolio. As an example, consider correlationesgrtesting. Given that the correlation structure
generally involves a large number of parametersdfwhre also closely related to each other), it
is not straightforward to define reasonable, arefulscorrelation stress tests. TBE model

provides clear guidance for correlation stressrgsFirst, in addition to intra-sector correlaton
parameters g, ), it defines measures of average portfolio crestes correlation [?) and of
average cross sector correlation of each sectbeteest of the portfolio@, , 8, ). Thus, we can

explicit calculate sensitivities or stress testthefportfolio EC, or the capital contribution afya

given sector (or the diversification factors), tmages in:

« A sector’s intra-sector correlationof,)

18t is possible to implement a MC method with eéfitt short cuts for these new simulations. This is

difficult to implement and still orders of magnieidlower than analytical solutions.
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» Average cross-sector correlation across the pint((ﬁ )
» Average correlation of a sector to the rest oftbefolio (C_Qk)

 Sector factor loading for a sectof() (in the simplified model, equation 10)

The impact of correlations on sector capital ctnittions can also be explained through the
decomposition of the marginal diversification fadfequations 16 and 17). Finally, stress tests
with discrete changes in correlations are compimstantaneously using the closed-from EC

formula. An example at the end of this sectiorsiitates correlation stress testing.

Implied Parameters from a Monte Carlo based Multi-Factor Portfolio Model

Many institutions today have implemented advanaa@ially built or vendor) multi-factor
credit portfolio models based on MC simulatidTheDF model provides a simple alternative
approximation to a full MC simulation. In this siect, we show how thBF model can also be
usedin conjunctionwith an existing, and perhaps more detailed, nfattter credit portfolio
model by calculating itenplied parameters? Furthermore, th®F model as presented so far
only covers systemic risk and, hence, captures sedyor and geographical concentrations. In
this context, the framework can be extended ugiagytanularity adjustment concept to include
name concentrations for non-granular portfolioss Titied DF model, with its implied

parameters, can be used then as a simpler andfasteh model to
» Understand the problem better, provide concentratieasures and communicate risks
» Obtain analytical sensitivities and perform systaenaortfolio stress testing

» Perform real-time marginal capital calculations

Assume that the institution already has a (caléztatredit portfolio model which it runs

periodically to obtain EC via a MC simulation. Aldor ease of exposition, assume that the

19 A large portion of the implementation effort isespon estimating all the relevant parametersef th
portfolio model PDs,LGDs, EADs, correlations — intra-sector and inter-sectar,) eThe estimation of

these parameters is beyond the scope of this paper.

20 |n this sense, the fittddF model is akin to a Black-Scholes model with anlietpvolatility surface or a

CDO copula model with implied correlations.
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portfolio can be divided int& homogeneousectors (not necessarily granular), each with a
singlePD, EADandLGD (in practice this latter assumption is easy toxjdaThe simpler,

multi-factorDF model given by equations (3) and (10), requiiéscorrelation parameters
(o, By)- Thus, we require as many statistics on the syisteC to be calculated from the MC

model to imply @F model which produces (locally) the same restdlta. addition, we would
like to extend the model to capture idiosyncra&.rThus, we assume that the credit portfolio

MC model provides estimates of

» Expected losses, systemic EC and total EC (incguiiosyncratic risk) for the portfolio
(i.e. it computes the EC of the portfolio under #issumption of an infinitely granular

portfolio and also accounting for idiosyncraticyis
* Marginal (systemic) EC contributions for each secto
We refer in this section to these outcomes of tii@ivbdel as the “true” values.

The impliedDF model is obtained in two steps. The first stepudates the implied parameters
of theDF model in equation (13) from the true systemic dpiumbers obtained from the MC
model. The second step adds an idiosyncratic compido the model in the form of the

granularity adjustment. We now describe these tepss
First Step: Systemic Risk and Implied DF Model

The algorithm to solve the inverse problem forEtemodel’s implied parameters is as follows:

e Get for each sector portfolic=1,...,K, its “true” stand-alone systemic EC (e.g. from MC

simulation of each sector separately).

» Solve for the implied intra-sector correlatiga,, from equation (5). This provides an

indication of the average correlation (even for-tommogeneous portfolios).

21 sector homogeneity is not a requirement. Noteahastion (4) does not require singBs, EADsand

LGDsfor each sector.

22 The generaDF credit capital model allows for defining a full celation matrixQ, instead of the
simpler model in equation 10. Obtaining an impI&dmodel, in this case, may require a much larger

number of parameters, and this is more readilyiebdausing an optimization procedure.

27



» From theK stand-alone systemic EC for each secko, , compute the systemic single-

factor capital for the overall portfoliE€C*", and theCDI (equations 6 and 7).
+ Get the overall “true” systemic EC for the portfoEC™ (from MC simulation).
» Use the estimateldF surface to solve for the implied average correfgfofrom equation
(13):
EC™(cDI, 3 )=DF (cDI, B)EC
+ GettheK “true” marginal EC contributions for each secor, (EC, (from MC simulation)

e Solve for the implied inter-sector correlation pamersék and S, from the marginal

capital contributions (equations 15 and 4%)

We can see from this algorithm that tbE model basically provides a map from the correlation
parameters to various systemic capital measures:

e Single-factor systemic E€ - intra-sector correlations
e Overall systemic EC (dDF) €<-> average cross-sector correlation

* Marginal systemic capital contributiods—> individual cross-sector correlations

Second Step: Idiosyncratic Risk and Implied Graritya@djustment

To add idiosyncratic risk (and handle name conediotns), we can use the concept of the
granularity adjustmen{GA) introduced by Gordy (2003, 2004). Thus, a natgealeralization of

theDF model for non-granular portfolios is obtained lojgimg aGAto equation (2):

EC = DF (CDI, B)EC™ +GA* (21)

In the context of using the model in conjunctiothra MC-based model, tl&A can be implied

directly from the “true” total EC and the “true”stgmic EC simply as

GADF = ECTrue _ ECsyS

23 An implied correlation matrix) can be more generally obtained from B¢'s using an optimization

procedure. While multiple solutions might existearan use simple criteria to choose one. Also, the

implied correlation structure implied by tjg’s in equation (10) may only result in an approxien@aatch.
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For a homogenous portfolio, Gordy (2003) shows theaGA is proportional td./n, wheren is
the number of loans in the portfolio. For non-hoewgous portfoliod, Gordy proposes a two-
step method: first, map the actual portfolio taoabgeneous “comparable portfolio” by
matching moments of the loss distribution. Secoletermine th&A for the comparable

portfolio. The same add-on is applied to the capharge for the actual portfolio.
Using this intuition, we may simply write tl&A in equation (21) as

GAPF = 8A Eﬁlj (22)
n*

The effective number of loam& may be calculated bottom-up, as explained in G093).

The slopeé® can be then implied from the “true” total EC, thrue” systemic EC and the

effective number of loans as:

bGA - (ECTrue _ ECSys) [h* (23)

In this sense, we can complement@i2l (which is essentially a measure of sector capital
concentration) with the effective number of loariqor its inverse, Herfindahl-like index) as an

overall portfolioname concentratiomeasure.

Before concluding this section, some comments efGhare appropriate. The origin@lA
method is essentially a second order Taylor sexpansion of the quantile (around the
“infinitely granular” portfolio for the single-faor model)?> Pykhtin (2004) developed an
extension for multiple factors. In this model, golib EC is essentially represented as the

combination of three terms

EC=ECS + A" +2%*

where EC" denotes the EC for systematic loss in a “propehtysen single-factor model®,

A'F is a correction accounting for the effect of gtematic factors, anA®* is a correction

24\ilde (2001) takes an alternative, direct approach

25Gordy (2003, 2003b) presented this approachdirdtwas then refined in Wilde (2001) Martin and
Wilde (2002).

26 This is different form the single-factor EC asided in equation (5).
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accounting for idiosyncratic risk (similar to thusdardGA in Gordy 2003 and Wilde 2001). To

the degree that the Pykhtin model and@temodel are correct, we have

DF [EC*" = ECSF + AV

In order to provide a single framework to underdtaactor/geographic and name concentrations,
in this section, we have taken here a simple togrdapproach for th&A in the context of a
model with implied parameters which can be fitledhte “true” EC computed from the MC

simulation model, or in practice also using theykmodel.

Example

We present a stylized example to illustrate theabiglur of the model, the computation of
implied parameters, and its application to competssitivities, stress testing and marginal capital

of new positions.

Consider the credit portfolio with four sectorseivin Table 5. The first two sectors havelx

of 1% and exposure of 25; the other two sectore laalowerPD (0.5%). For simplicity, assume
a 100%LGD. The third and fourth columns show the expectesds€L) in dollar values and as
percent of totalEL. The following two columns give the single-fac{6f), stand-alone, capital
(total and percent). The last column shows thaistctor correlationgj for each sector. The
portfolio total exposure is 100, i is 75bps and the single-factor portfolio capite®i7%. The

CDI of almost 33% implies roughly three effective sesto

i Capital (Single Capital %

Portfolio EAD PD EL EL % Eactor) Sl Rho
P1 25 1.0% 0.25 33.3% 3.4 35.3% 20.1%
P2 25 1.0% 0.25 33.3% 2.1 21.5% 12.4%
P3 40 0.5% 0.20 26.7% 3.8 39.6% 21.9%
P4 10 0.5% 0.05 6.7% 0.4 3.7% 8.6%

Total 100 0.75 | 100.0% 9.7 100.0%

| CDI 32.9% |

Table 5. Four-sector portfolio: characteristics andstand-alone capital

We observe the effect of various credit paramedtgrsomparing the contributions to total
exposureEL and SF capital. The differences in exposureEndontributions can be explained
by the interaction of the exposures (dr@&Ds) with thePDs. Intra-sector correlations explain the

differences betweelL and capital contributions. For example, the fosebtor represents one
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tenth of the total exposure, almost 7%Ehf but less than 4% of SF capital. This indicates ith

is a lowPD sector with a lower than average intra-sectoretation. In contrast, the third sector
constitutes 40% of total exposure, 27%tfand about 40% of SF capital. This sector’s v
reduces it€L contribution, but its higher correlation (22%)rieases its share of SF capital. The

first sector’s high capital contribution is explaihby both highPD and intra-sector correlation.

To illustrate the computation of implied parametassume that the bank has a multi-factor MC-
based credit portfolio model (already parametelizetiich gives a portfolio EC of 7.3% of the
total exposure. From this “true” EC we imply th& and average inter-sector factor correlation.
The results are summarized in Table 6. Direis 75.5% (7.3 = 0.75% 9.7) and the implied the

average correlation i =54.9%.

. Capital EC % (Flat 7 .
Portfolio | Exposure (Single-Factor) Rho Beta=54.6%) EC % Implied Qk
P1 25 35.3% 20.1% 36.1% 31.9% 45.7%
P2 25 21.5% 12.4% 19.0% 17.2% 49.7%
P3 40 39.6% 21.9% 42.3% 47.5% 65.6%
P4 10 3.7% 8.6% 2.6% 3.4% 66.8%
Total 100
Capital (Single Implied
Factor) CDI DF £c Average Beta
9.7 32.9% 75.6% 7.3 54.9%

Table 6. Multi-factor capital and implied inter-sedor correlations

The fifth column of Table 10 gives the EC contribns assuming that all sector factor
correlations are equal to the average of 54.9%isncase, every sector factor is equally
correlated with the overall portfolio, and the odifference stems from the size component of the

sector diversification factossDF,**°. These contributions are close but not equaledSth capital

contributions. The decomposition of the sector diification factor for a flat correlation is given
on the left side of Table 7. Compared to the sifigtgor case, the size component of the sector
diversification factor increases contributionsttoe two biggest sectors (P1 and P3) and
decreases them for the two small ones (P2 andM4le the overall diversification factor is
75.6%, the marginal sector diversification fact@msge from 53% (P4) to 81% (P3).
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Flat Sector Factor Correlation (Average) Implied Sector Factor Correlations
Portfolio DF, . Por.tf.olio. Sef:tor Secto!’ DF, . Por.tf.olio. Sef:tor Secto!’
Diversification Size Correlation Diversification Size Correlation
P1 77.5% 75.6% 1.8% 0% 68.4% 75.6% 1.8% -9.1%
P2 66.9% 75.6% -8.7% 0% 60.7% 75.6% -8.7% -6.2%
P3 80.8% 75.6% 5.2% 0% 90.6% 75.6% 5.2% 9.8%
P4 53.3% 75.6% -22.3% 0% 70.7% 75.6% -22.3% 17.4%

Table 7. Decomposition of marginal sector diversifiation factors.

Next, assume that the MC-based portfolio modelutates the “true” marginal EC contributions

given in the sixth column in Table 6. Note thatsthare different from those obtained assuming a
flat inter-sector correlation (fifth column in T&b10)). The impliedjk 's for each sector (as well

as an implied correlation structure for the sefaotors) are calculated from these true capital

contributions (last columns of Table 6).

For the first two sectors, the “true” EC contriloums are lower than those with flat correlations,
which results in lower than average implied cotietes of their sector factors to the rest of the
portfolio. The right side of Table 7 gives the depmsition of the sector diversification factors.
The first two sectors have negative sector coiigglativersification components (last column).
The opposite is true for P3 and P4 (higher thameaeeimplied correlations and positive

correlation component in the marginal se@é).

The fittedDF model provides analytical sensitivities to all rerameters and can now be used to
compute, instantaneously, stress tests or cajpitdtibution of new loans, while providing an

explanation of the sources of risk and diversifaratin what follows, we give several examples.

First, the derivatives ddF andEC with respect to the average sector correlation are

aDF/_ _ OEC™ /  _
AB 05, 53 49

Thus, a 5% increase in average inter-sector coieléfrom today’s level at 55% to 60%) results
in an increase in capital of 0.25 (from 7.3 to J.%%gure 11 further presents a stress test of
average inter-sector correlation. It shows thathiatlevel ofCDI), EC behaves linearly with

average inter-sector correlation.
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Figure 11. Average correlation stress test.

Consider now a new loan in Sector 1 witRB=1%. A new small exposure to Sector 1 roughly
adds 0.136 single-factor capital per unit of expegthe sector's SF capital of 3.4 divided by its
exposure of 25). In contrast, given diversificatimonly results in additional marginal EC of
0.093 per unit of exposure (the product of it's@lpital and the margin8lF of 68.4%).

Although this is sector with a high PD apdthe benefit of diversification is greater, sifiicis

the least correlated sector (the smal@3t

We can further investigate the impact on EC of new-marginal portfolios of transactions in
Sector 1, as the effect of other sector paramétagare 12 presents standardized stress tests of
exposurePD and intra-sector correlation for Sector 1. In ecabe, the parameters lie between
half and double their current values. The resuttsexpressed as percent changes of the current
value (for both, the portfolio SF capital and EC).
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Figure 12. Parameter stress tests for Sector 1.

While SF capital is linear in exposures, EC shoarsvexity when adding bigger positions. Stress

test ofPDs and correlation provide useful guidance on mddklor the effects of changing
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economic conditions. For example, conservativetabpstimates assuming a 50% higher
correlation level (from 20.1% to 30.2%) for Sectaresult in additional 20.5% SF capital for the
portfolio and 17% higher EC. In all cases, thecpet capital impact is smaller for EC (this is

true for this sector, but not necessarily so fosattors).

Finally, Figure 13 presents a stress test of E@hagall the sectoPDs. EC most sensitive to
Sector 3 (the largest sector with the lowest difieadion contribution). In contrast, a change of

PD in Sector 4 (which is the smallest) has a verylkimpact.
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Figure 13. SectorPD stress test.

5. Concluding Remarks

We present a simple adjustment to the single-faarexdtit capital model, which recognizes the
diversification obtained from a multi-factor segiinn contrast to MC methods, there are benefits
for seeking analytical approximations both for degpry purposes as well as for credit portfolio
management. As a risk management tool, the moddbeaised to understand concentration risk,
capital allocation and sensitivities, as well apéoform stress testing and compute “real-time”

marginal risk for new deals or portfolios.

The model is based on the concept dheersification factorWe estimate the diversification
factor for a family of multi-factor models, and shthat it can be expressed as a function of two
parameters that broadly capture the size concemtrand the average cross-sector correlation.
The model further supports an intuitive capitabedition methodology. For this purpose we
definemarginal diversification factorat the sub-portfolio (or obligor) level, which acmt for

their diversification contributions to the portli
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The estimation of the diversification factor sudaequires substantial numerical work. Once
estimated, however, it can then be expressed paiaatly or tabulated. This results in a
practical, simple and fast method that can be f@atsk management including stress testing
and pre-deal analytics. In addition, the modellawalibrated to a MC-based credit portfolio
model on a periodic basis (e.g. monthly or evelylitd adjust for changing market conditions
and portfolio composition. The model can then beduduring the day to support decision making

in real time, origination and trading.

We believe the diversification factor has potertidbe applied to extend the Basel Il regulatory
framework to a general multi-factor setting, thilswing for more accurate modelling of
diversification within portfolios across varioussasclasses, sectors and regions. However, a few
remarks are appropriate with respect to its cdiibmetogether with the regulatory parameters

from Basel II. While we have used in Section 3Blasel formulae for wholesale exposures, we
do not wish to imply that, as presented, the calibn exercises are generally appropriate for
regulatory rules or that the economic capital fammulti-factor model should always be smaller

than the Basel Il capital. One can argue thahgf¢sample used for calibrating a single-factor
model such as in Basel Il already covers the sedahe portfolio, the asset correlatigms

already account, to a large extent, for cross-s&kitersification (see also e.g. Lopez 2004). To
the degree that the original parameter calibragimrounts for cross sector diversification, some
scaling (up) for intra-sector correlations or (dywre diversification factor is required, in order

to not incur in double counting.
Finally, there are several enhancements of the hathéch can be addressed in future research:

» TheDF presented only covers systemic credit risk (as tue8asel Il model) and it was
extended in Section 4 to cover granular portfaiioa simple way. Its current strength is
on capturing sector and geographical concentratidnseful extension of the model

would further refine the coverage of name concéiotia in a more rigorous way.

e There is potential for improving the parameterizatf the model. More parameters can
be added or perhaps one can search for paranteeresult in a better or more general
fit. In our opinion, this should not be done at éxpense of too much complexity or of

loosing the intuitive interpretation of its paraemst results and capital allocation.
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* We have formulated how risk concentrations workimithis model. Further work is
needed to explore their mathematical behaviouir, th& in model calibration and

further application in practice.

» Perhaps the most obvious limitation of the modeéatois its reliance on costly numerical
estimation. Ideally, we would like also a closedd@approximation for th®F that is
accurate and perhaps does not rely as much on mmainealibration. As such, for
example, the known solution for Normal distribusamay provide useful insights into

the more general problem.
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Appendix. Derivation of Marginal Diversification Factors

We briefly outline the derivation of the expressidar themarginal sector diversification factors

DF, in equation (16). The first step is to note tiwet EC in equation (13)EC™ ,is a
homogeneous functicof degree one in th&C, ’s. A function f(xixn) is said to be

(positively) homogeneous of degrad
f(kx,....kx )= k®f(x,,....x, ), for k a(positive) real number

To see thaEC™ is homogeneous of degree one, we write equatiorad.3

EC™ = DF(CDI,B)DZK: EC,
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and observe th@F only depends o@Dl and,[_?, which are both homogenous functions of

degree zero. Homogeneous functions of degree adiséydauler's theorem:
f ()(1 xn) = i X ..t i X,

ox, ox.
This leads to the additive marginal capital decositim (14) with

_9EC™

= k=1..K (15)

DF,

To obtain expression (16), we explicitly take tlaatial derivatives on the right side of expression

(15), by applying the chain rule, as follows:

EC” _bE (CDI,E)#ECQ + gco (PP CDLA) (cor.A)

9EC, 9EC, 9EC,

-pE + gcs g?PF JCDI | pos (9OF 05
0CDI 0EC, 08 OEC,

Equation (16) is finally obtained by taking theidatives of theCDI (equation 7) and of the
average correlation (equations 11 and 12) witheesip the stand-alone capital for the sector and

arranging terms.
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