
  

 

 

 

 

 

A Simple Multi-Factor “Factor Adjustment” for the Treatment of 

Credit Capital Diversification 

 

 

Juan Carlos Garcia Cespedes, Juan Antonio de Juan Herrero 1,  

Alex Kreinin 2 and Dan Rosen 3 

 

 

First version: March 23 2004 

This version: June 9th 2006 

 

 

 

                                                        

1 BBVA, Metodologías de Riesgo Corporativo, Paseo de la Castellana, 81, Planta 5 - 28046 Madrid, Spain. 

jcgarcia@grupobbva.com and juanantonio.dejuan@grupobbva.com  

2 Algorithmics Inc. 185 Spadina Ave., Toronto, CANADA. alex@algorithmics.com  

3 Corresponding author. Fields Institute for Research in Mathematical Sciences, 222 College Street, 

Toronto, Ontario, M5T 3J1, CANADA. drosen@fields.utoronto.ca .  



  

 2

A Simple Multi-Factor “Factor Adjustment” for the T reatment of 

Credit Capital Diversification 4 

 

Abstract 

We present a simple adjustment to the single-factor credit capital model, which recognizes the 

diversification from a multi-factor model. We introduce the concept of a diversification factor at 

the portfolio level, and show that it can be expressed as a function of two parameters that broadly 

capture the size (sector) concentration and the average cross-sector correlation. The model further 

supports an intuitive capital allocation methodology through the definition of marginal 

diversification factors at the sector or obligor level. We estimate the diversification factor for a 

family of models, and show that it can be express in parametric form or tabulated for potential 

regulatory applications and risk management. As a risk management tool, it can be used to 

understand concentration risk, capital allocation and sensitivities, stress testing, as well as to 

compute “real-time” marginal risk.  
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participants in the workshop “Concentration Risk in Credit Portfolios” (Eltville, November 2005) for their 

useful comments on earlier versions of the paper. Dan Rosen further acknowledges the kind support of the 
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1. Introduction 

Minimum credit capital requirements under the new Basel II Capital Accord (Basel Committee of 

Banking Supervision, 2003) are based on the estimation of the 99.9% systemic credit risk for a 

portfolio (the risk of an asymptotically fine-grained portfolio) under a one-factor Merton type 

credit model. This model results in a closed form solution, which provides additive risk 

contributions and is easy to implement. The two key limitations of the model are that it measures 

only systemic credit risk, and it might not recognize the full impact of diversification.  

 
The first shortcoming has been addressed in an analytical manner, most notably with the 

introduction of a granularity adjustment (Gordy 2003, 204, Wilde 2001, Martin and Wilde 2002). 

The second problem is perhaps more difficult to address analytically but has greater impact, 

especially for institutions with broad geographical and sector diversification. Diversification is 

one of the key tools for managing credit risk, and it is vital that the credit portfolio framework 

used to calculate and allocate credit capital effectively models portfolio diversification effects.  

 
Portfolio granularity and diversification within a multi-factor setting can be effectively addressed 

within a simulation-based credit portfolio framework. However, there are benefits for seeking 

analytical, closed-form, models both for regulatory applications as well as for credit portfolio 

management. While the use of simulation-based credit portfolio models is now widespread, they 

are computationally intensive and may not provide further insights into sources of risk. They are 

also not efficient for the calculation of sensitivities, stress testing or real-time decision support. 

Furthermore, the accurate calculation of marginal capital contributions in a simulation framework 

has proven to be a difficult computational problem, which is currently receiving substantial 

attention from both academics and practitioners (see Kalkbrener et al. 2004, Merino and Nyfeler, 

2004, Glasserman 2005).  Analytical or semi-analytical methods generally provide tractable 

solutions for capital contributions (c.f. Martin et al. 2001, Kurth and Tasche 2003).  

 
In terms of multi-factor credit portfolio modeling, Pykhtin (2004) recently obtains an elegant, 

analytical multi-factor adjustment, which extends the granularity adjustment technique of Gordy, 

Martin and Wilde. This method can also be used to compute capital contributions numerically 

(given its closed form solution to compute portfolio capital). However, the closed-form 

expressions for capital contributions can be quite intricate. 
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In this paper, we present an adjustment to the single-factor credit capital model, which recognizes 

the diversification from a multi-factor setting and which can be expressed parametrically or 

tabulated for risk management decision support and potential regulatory application. The 

objective is to obtain a simple and intuitive approximation, based only on a small number of 

parameters, and which is perhaps less general and requires some numerical estimation work.  

 
To develop the model, we introduce the concept of a diversification factor, DF, defined as 

Sf

mf

EC

EC
DF =   ,   1≤DF                            (1) 

where mfEC  denotes the diversified economic capital from a multi-factor credit model and 

sfEC  is the economic capital arising from the single-factor model.  

 
For a given α percentile level (e.g. α = 0.1%), we seek an approximation to the multi-factor 

economic capital of the form 

( ) ( ) ( )ααα sfmf ECDFEC ⋅≈⋅ ;;                (2) 

with ( ) 1; ≤⋅αDF  a scalar function of a small number of parameters.  Expression (2) allows us 

to express the diversified capital as the product of the “additive” bottoms-up capital from a one-

factor model (e.g. the Basel II model), and a diversification factor (which is a function of say two 

or three parameters). For potential regulatory use, we may also seek a conservative 

parameterization of the diversification factor.  

 
We estimate the diversification factor for a family of multi-factor models, and show that it can be 

expressed as a function of two parameters that broadly capture the size concentration and the 

average cross-sector correlation.  

 
The diversification factor provides a practical risk management tool to understand concentration 

risk, capital allocation and correlations. For this purpose, we introduce marginal diversification 

factors at the obligor or sector level, which further account for the diversification contributions to 

the portfolio.5  The model (2) supports an intuitive capital allocation methodology, where the 

                                                        

5 This paper is closely related to Tasche (2006) who further presents a mathematical foundation for the 

diversification factor and diversification contributions. The author presents a two-dimensional example 
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diversification contribution of a given sector can be further attributed to three components: the 

overall portfolio diversification, the sector’s relative size, and its cross-sector correlation.  

 
Finally we show how the model can be used in conjunction with a Monte Carlo based multi-

factor credit portfolio model (which may already be in use) by implying its parameters. The 

resulting implied parameters of the DF model provide simple risk and sensitivity indicators, 

which allow us to understand the sources of risk and concentration in the portfolio. The fitted DF 

model can be used further as a risk management tool for capital allocation and sensitivities, as 

well as for stress testing and real-time computation of marginal capital for new loans or other 

credit instruments. Since the DF model, on its own, is based on the computation of systemic 

credit capital it only captures sector and geographical concentrations. We further show how it 

may be augmented with a granularity adjustment to include name concentrations. 

 
The rest of the paper is organized as follows. We first introduce the underlying credit model, the 

diversification factor and its general analytical justification, and the capital allocation 

methodology. Thereafter, we explain the numerical estimation of the diversification factor, and 

provide a parameterization in the context of the Basel II formulae for wholesale exposures. Next, 

we discuss the application of the model as a risk management tool, its use in conjunction with a 

Monte Carlo based model and its extension with a granularity adjustment. We illustrate its 

application with an example. Finally, the paper ends with some concluding remarks 

 

2. A Model for the Diversification Factor  

We first introduce the underlying credit model. We then define the concepts of the diversification 

factor, capital diversification index and average cross-sector correlation. Finally, we discuss 

capital allocation and risk contributions within the model. 

 
Underlying Credit Model and Stand-Alone Capital 

Consider a single-step model with K sectors (sectors can represent an asset class, industry sector, 

geography, etc.). For each obligor j in a given sector k, the credit losses at the end of the horizon 

                                                                                                                                                                     

which has an analytical solution, and more generally the contribution expressions require integrals of 

dimension N-1, for problems of dimension N. 
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(say, one year) are driven by a single-factor Merton model 6. Obligor j defaults when a 

continuous random variablejY , which describes its creditworthiness, falls bellow a given 

threshold at the given horizon. If we denote by jPD the obligor’s (unconditional) default 

probability and assume that the creditworthiness is standard normal, we can express the default 

threshold by ( )jPDN 1− . For ease of notation, assume that for obligor j has a single loan with 

loss given default and exposure at default given by jj EADLGD ,  respectively. 

 
The creditworthiness of obligor j is driven by a single systemic factor: 

 

jkkkj ZY ερρ −+= 1          (3) 

where kZ  is a standard Normal variable representing the systemic factor for sector k, and the jε  

are independent standard Normal variables representing the idiosyncratic movement of an 

obligor’s creditworthiness. While in the Basel II model all sectors are driven by the same 

systemic factor Z, here each sector can be driven by a different factor. In the general case, the 

sector factors kZ   are jointly Normal, and denote the sector factor correlation matrix by Q .   

 
To motivate the methodology, it is useful to define a simpler model where the systemic factors 

are correlated through a single macro-factor, Z  

 

KkZZ kk ,...,1,1 =−+= ηββ                    (4) 

where kη  are independent standard Normals. We assume first a single correlation parameter β for 

all the factors, but later relax this assumption and allow for a more general correlation structure. 

 
As shown in Gordy (2003), for asymptotically fine-grained sector portfolios, the stand-alone α -

percentile portfolio loss for a given sector k, )(αkVaR , is given by the sum of the individual 

obligor losses in that sector, when an α -percentile move occurs in the systemic sector factor kZ : 

 

                                                        

6 For consistency with Basel II, we use on a one-period Merton model for default losses. The methodology 

is general and can be used with other credit models, and can also incorporate losses due to credit migration.   
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where αz denotes the α -percentile of  a standard normal variable.  

 
Consistent with common risk practices and with the Basel II capital rule, we define the stand-

alone capital for each sector, ( )αkEC , to cover only the unexpected losses. Thus, 

( ) ( ) kkk ELVaREC −= αα  , where jj
kSectorj

jk PDDEALGDEL ⋅⋅= ∑
∈

 are the expected sector 

losses.7 The capital for sector k can then be written as 
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    (5) 

Under the Basel II single-factor model, or equivalently assuming perfect correlation between all 

the sectors, the overall capital is simply the sum of the stand-alone capital for all individual 

sectors (for simplicity, we omit the parameter α  hereafter) 

 

∑
=

=
K

k
k

sf ECEC
1

             (6) 

We refer to it as the single-factor (SF) portfolio capital  

 
The Diversification Factor and Capital Diversification Index  

In equation (1) we define the diversification factor, DF, as the ratio of the capital computed with 

the multi-factor model and the SF capital, (equation 6), sfmf ECECDF /= , 1≤DF .  

 
As given in equation (2), for a given quantile, we seek to approximate the DF by a scalar function 

of a small number (two or three) of intuitive parameters. We can thus think of the DF as “factor 

adjustment” to the “additive” bottom-up SF capital   

 

( ) ∑
=

×⋅≈
K

k
k

mf ECDFEC
1

  

                                                        

7 The following discussion also holds for VaR (by simply adding back EL at the end of the analysis). 
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Let us first motivate the parameters used for this approximation. We can think of diversification 

basically being a result of two sources. The first one is the correlation between the sectors. Hence, 

a natural choice for a parameter in the model is the correlation β of the systemic sector factors Zk 

(equation 4) or more generally an “average cross-sector correlation”. The second source relates to 

the distribution of relative sizes of the various sector portfolios. Clearly, one dominating large 

sector leads to high concentration risk and limited diversification. So we seek a parameter 

representing essentially an “effective number of sectors”. This should account for the size of the 

sector exposures as well as for their credit characteristics. A large exposure sector with highly 

rated obligors might not necessarily represent a large contribution from a capital perspective. 

 
Define the capital diversification index, CDI, as the sum of squares of the SF capital weights in 

each sector 

( )
2

2

2

∑
∑

==
k

ksf

k
k

w
EC

EC
CDI          (7) 

with sf
kk ECECw /=  the contribution to the SF capital of sector k. The CDI is the well-known 

Herfindahl concentration index applied to the SF capital of the sectors (rather than to the 

exposures, as is more commonly used). Intuitively, it gives an indication of the portfolio capital 

diversification across sectors (not accounting for the correlation between them). For example, in 

the two-factor case, the CDI ranges between 0.5 (maximum diversification) and one (maximum 

concentration). The inverse of the CDI can be interpreted as an “effective number of sectors” in 

the portfolio (from a capital perspective). This interpretation of the inverse CDI is parallel to the 

“effective number of loans” interpretation of the inverse Herfindahl (defined on loan exposures) 

in the original Basel II granularity adjustment proposal (BCBS 2001, ¶436). 

 
It is easy to understand the motivation for the CDI. For a set of uncorrelated sectors, the standard 

deviation of the overall portfolio loss distribution is given by ∑=
k kP CDI σσ , with kP σσ ,  

the volatilities of credit losses for the portfolio and sector k, respectively. If we further assume 
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that the credit losses of each sector are correlated through a single correlation parameter, β~ , the 

volatility of portfolio credit losses is given by 8 

 

( ) ∑+−=
k

kP CDI σββσ ~~
1         (8) 

If credit losses were normally distributed, a similar equation to (8) would apply for the credit 

capital at a given confidence level, fNmf ECCDIDFEC 1)
~

,( ⋅= β , with 

( ) ββ ~~
1 +−= CDIDF N , the diversification factor for a Normal loss distribution. Figure 1 

shows a plot of NDF as a function of the CDI for different levels of the loss correlation, β~ .  For 

example, for a CDI of 0.2 and a correlation of 25%, the diversified loss volatility from a multi-

factor model is about 60% of the SF volatility. 

 
Although credit loss distributions are not Normal, it seems natural to use a similar two-factor 

parameterization for equation (1): 

 

( ) ( ) sfmf ECCDIDFCDIEC ⋅≈ ββ ,,         (9) 

with the sector systemic factor correlation substituting the loss correlation, given its availability, a 

priori , from the underlying model. 

 
Clearly, we do not expect the parameterization (9) to be exact, nor for the DF to follow 

necessarily the same functional form as NDF .  However, we expect the two parameters to 

                                                        

8 One can explicitly obtain the relationship between asset and loss correlations. For the simplest case of 

large homogeneous portfolios of unit exposures, default probability PD, with a single intra-sector asset 

correlation ρ and correlation of sector systemic factors  β , the systemic credit loss correlation is given by  

( )[ ] ( )[ ]211
2

211
2 ),(),(),(),(

~
PDPDNPDNNPDPDNPDNN −−= −−−− ρρββ  

with ),,(2 ρbaN  the standard  bivariate normal distribution of random variables a and b and correlation ρ. 

Note also that, more generally, the variance of portfolio losses is given by the well-known formula 

( )[ ])()(),(),( 1111
2

,

2
jiijjijj

ji
iip PDNPDNPDNPDNNEADLGDEADLGD −−−− −=∑ ρσ  

where 
kij ρρ =  for obligors in the same sector and

lkij ρρβρ =  for obligors in different sectors. 
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capture broadly the key sources for diversification: homogeneity of sector sizes and cross-sector 

correlation. Thus, it remains an empirical question whether these two parameters generate a 

reasonable approximation of the diversification factor. This is further explored in Section 3.  
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Figure 1. Diversification factor for volatility of losses (Normal distributions) 

 

General Correlation Structure and Average Factor Correlation 

So far, we have motivated the model using the simple correlation model implied by equation (4), 

with all sector systemic factors having the same correlation to an economy-wide systemic factor 

Z. Clearly, this is a very restrictive assumption in practical settings. A less restrictive multi-factor 

model can also be defined, which assumes a similar structure to equation (4) but where each 

sector has a different correlation level βk : 

 

  KkZZ kkkk ,...,1,1 =−+= ηββ     (10)  

More generally, we define a factor codependence for the sector factors given by a correlation 

matrix, Q. 9 

 
A natural choice for a correlation parameter in the general model is some form of average cross-

sector correlation (to substitute β in equation 9). From the various possible definitions for an 

average sector correlation, we choose the following one.  

                                                        

9 The model in equation (10) results in only K parameters (instead of K( K-1)/2 for a general correlation 

matrix),  and a correlation matrix Q with entries ijQ jiij ≠= ,ββ . 
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For a vector of portfolio weights ( )T
SwwW ...1= , define the average factor correlation as  

 

22

22

δϑ
δσβ

−
−==

∑∑

∑∑

≠

≠

i ij
ji

i ij
jiij

ww

wwQ

               (11) 

where QWWT=2σ  is the variance of the random variable given by the weighted sum of the 

factors, ( ) 2222   and  ∑∑ ==
i ii i ww ϑδ . β  is an average correlation in the sense that 

 
2σ== QWWBWW TT    

with B the correlation matrix with all the non-diagonal entries equal to β .  

 
In a similar way to the CDI, we define the average correlation to be also “capital weighted”, in 

order to account for the contributions of each sector (and accounting for both credit quality and 

size). Thus, for our specific case, we chose the portfolio weights to be the stand-alone capital for 

each sector, i.e. 

 

( ) ( )22222     and    sf

i ii i ECECEC === ∑∑ ϑδ            (12) 

We refer to the general model given by 

( ) ( ) sfmf ECCDIDFCDIEC ⋅≈ ββ ,,              (13) 

with β defined by equations (11) and (12) as the DF credit capital model. 

 

Capital Allocation and Risk Contributions 

Under a single-factor credit model, capital allocation is straightforward. The capital attributed to a 

given sector is the same as its stand-alone capital,kEC , since the model does not allow further 

diversification. Under al multi-factor model, the total capital is not necessarily the sum of the 

stand-alone capitals in each sector. Clearly, the standalone risk of each component does not 

represent a valid contribution for sub-additive risk measures in general, since it fails to reflect the 

beneficial effects of diversification. Rather, it is necessary to compute contributions on a marginal 

basis. The theory behind marginal risk contributions and additive capital allocation is well 



  

 12

developed and the reader is referred elsewhere for its more formal derivation and justification 

(e.g. Gouriéroux  et al 2000, Hallerbach 2003, Kurth and Tasche, 2003, Kalkbrener et al 2004). 

 
After computing the diversification factor in equation (13), one might be tempted simply to 

allocate back the diversification effect evenly across sectors, so that the total capital contributed 

by a given sector is kECDF ⋅ . We refer to these as the unadjusted capital contributions. These 

do not account, however, for the fact that each sector contributes differently to the overall 

portfolio diversification. Instead, we seek an additive capital allocation of the form  

  

∑
=

⋅=
K

k
kk

mf ECDFEC
1

         (14) 

We refer to the factors kDF  in equation (14) as the marginal sector diversification factors.  

 

If DF only depends on CDI andβ , then the economic capital mfEC in equation (13) is a 

homogeneous function of degree one in the kEC ’s (indeed it is homogeneous in the exposure’ 

sizes as well). This is a direct consequence of both the CDI and β  being homogenous of degree 

zero. Applying Euler’s theorem, leads to the additive marginal capital decomposition (14) with10 

 

Kk
EC

EC
DF

k

mf

k ,...,1, =
∂
∂=         (15) 

By directly taking the partial derivative on the right side of expression (15), we obtain a closed 

form expression for the k-th marginal diversification factor: 

 

( ) [ ]β
β

−⋅
−

−⋅
∂

∂+




 −⋅
∂
∂+= k

sf
k

sf
k

k Q
CDI

ECECDF
CDI

EC

EC

CDI

DF
DFDF

1

1
22         (16) 

where 

                                                        

10 Tasche (2006) formally generalizes the diversification factor and the marginal diversification factors 

introduced here for a general risk measure (he defines the marginal diversification factor of a given 

position, with respect to a given risk measure, as the ratio of its risk contribution and its stand alone risk). 
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∑

∑

≠

≠=

kj
j

kj
jkj

k EC

ECQ

Q   

is the average correlation of factor k to the rest of the systemic factors in the portfolio. The terms 

CDIDF ∂∂ /  and β∂∂ /DF  are the slopes of the DF surface in the direction of the CDI and the 

average correlation, respectively (they are obtained directly from the parameterized surface as 

shown later in Section 3). These slopes are non-negative since the portfolios is less diversified as 

either the CDI or the average correlation increase (see for example Figure 1). A brief outline of 

the derivation of expressions (15) and (16) is given in the appendix. 11 

 
Expression (16) shows that the marginal capital allocation resulting from the DF model leads to 

an intuitive decomposition of diversification effects (or concentration risk) into three 

components: overall portfolio diversification, sector size and sector correlation: 

 
 CorrSizek DFDFDFDF ∆+∆+=                (17) 

The first term is simply the overall portfolio DF. The second terms can be interpreted as an 

adjustment due to the “relative size” of the sector to the overall portfolio. Intuitively, a sector 

with small stand-alone capital ( CDIECEC sf
k </ ) contributes, on the margin, less to the 

overall portfolio capital; thus, it gets a higher diversification benefit, kDF . The last term is an 

adjustment due to the sector’s correlation to the overall portfolio. Sectors with lower than average 

correlation to the rest of the systemic sector factors in the portfolio get a higher diversification 

benefit, as one would expect. 

 

3. Estimating the Diversification Factor Surface  

We refer to the function ( )β,CDIDF as the diversification factor surface (DF surface). We 

propose to estimate it numerically using Monte Carlo simulations. In general, this exercise 

                                                        

11 When one defines the average correlation as an arithmetic average, ∑ ⋅= k
sf

k ECEC ββ )/( , the 

resulting formula for the marginal sector diversification factor is simpler and given by 

[ ]ββ
β

−⋅
∂

∂+




 −⋅
∂
∂+= ksf

k
k

DF
CDI

EC

EC

CDI

DF
DFDF 2    

Although simpler, this definition has some undesirable properties which result in inconsistencies. 
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requires the use of a multi-factor credit portfolio application (which might itself use simulation to 

obtain a capital estimate). The estimated surface can then be used generally in parametric or for 

economic capital (EC) calculations in a multi-factor setting, without recourse to further 

simulation. Note that, for regulatory use, we might seek to estimate a conservative diversification 

factor surface, by finding reasonable upper bounds for the DF.   

 
This section presents the general estimation methodology and illustrates its application to a 

portfolio of wholesale exposures (corporates, banks and sovereign) in the context of the Basel II 

formula. We first explore the feasibility of the methodology and illustrate it in detail for a two-

dimensional case and a fixed cross-sector average correlation. We extend the results to multiple 

sectors and correlation levels. As the number of sectors is increased and correlations are changed, 

this exercise demonstrates the basic characteristics of the surface, the approximation errors and 

the robustness of the results. Thereafter, a parametric form of the overall surface is provided. 

Finally, we show that the estimated surface produces accurate capital estimates for the more 

general (and realistic) case where sectors have different correlations to the overall portfolio. 

 
DF Surface Estimation Methodology 

The general estimation methodology can be summarized as follows. Assume in each simulation, a 

set of homogeneous portfolios representing each sector. Each sector is assumed to contain an 

infinite number of obligors with the same PD and EAD. Without loss of generality, we set LGD = 

100%, and the total portfolio exposure equal to one, 1=∑ kEAD , and assume that all loans in the 

portfolio have a maturity of one year  The following numerical experiments are then performed:  

 
• Run a large number of portfolios, varying independently in each run: 

• The number of sectors and sizes of each sector 

• KkEADPD kkk ,...,1,,, =ρ  

• The average factor correlationβ   

• For each portfolio 

o Compute the stand-alone capital for each sector, ),...,1( KkECk =  the single-factor 

capital for the portfolio, sfEC , and CDI (equations 5, 6 and 7) 

o Compute the “true” mfEC from the multi-factor Monte-Carlo based model12   

                                                        

12 We use a MC-based portfolio model, although a semi-analytical model can be used alternatively. 
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o Plot the ratio of ( sfmf ECEC / ) vs. the CDI and average sector correlation β  

• Estimate the function DF (CDI, β ) by fitting a parametric function through the points 

As a simple example, Figure 2 presents the plot for K=2 to 5 for a fixed β = 25% and random 

independent draws with %]20%,2[,%]20%,02[. ∈∈ kkPD ρ . The dots represent portfolios 

with different parameters. The colours of the points represent the different number of sectors. 

Simply for reference, for each K, we also plot the convex polygons enveloping the points. Figure 

2 shows that, in the case where all parameters are varied independently, the approximation is not 

perfect; otherwise all the points would lie on a line (not necessarily straight). However, all the 

points lie within a well bounded area, suggesting it as a reasonable approach. A function DF can 

be reliably parameterized either as a fit to the points or, more conservatively, as their envelope. 

The latter might be more desirable from a regulatory perspective, and can also be estimated with 

standard statistical methods. For example, for a CDI of 0.5, a diversification factor of 80% results 

in a conservative estimate of the capital reduction incurred by diversification, while the mean fit 

of the surface would lead to a DF  of 74%. 

 

DF

CDI

DF

CDI
 

Figure 2. DF as a function of the CDI (K=2 to 5, and ββββ=25%) 

 
This example illustrates the estimation methodology for a general setting where sector PDs, 

exposures and intra-sector correlations are varied independently. Even in this case, two 

parameters (CDI, β ) provide a reasonable explanation of the diversification factor. One can get a 

tighter approximation, by either searching for more explanatory variables, or by constraining the 

set over which the approximation is valid. In practice, PDs and intra-sector correlations do not 

vary independently and they might only vary over small ranges. For example, under the Basel II 
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formula, the asset correlation is either constant on a given asset class (e.g. revolving retail 

exposures, at 4%) or varies as a function of PDs (e.g. wholesale exposures).13 See also Lopez 

(2004), which provides evidence that the average asset correlation is a decreasing function of PD 

and an increasing function of asset size. 

 
For the rest of this section, we focus on the estimation of the DF surface for the case of wholesale 

exposures (corporates, banks and sovereign) in the context of Basel II.  

 

DF for Wholesale Exposures – Two-Factors and Constant Correlation Level 

Consider a portfolio of wholesale exposures in two homogeneous sectors, each driven by a single 

factor model. Assume a cross-sector correlation β = 60%. We perform a simulation of three 

thousand portfolios. The PDs are sampled randomly and independently from a uniform 

distribution in the range [0,10%]. Asset correlations for each sector are given as a function of PDs 

from the Basel II formula for wholesale exposures without the firm-size adjustment. For each of 

the 3,000 portfolios, the multi-factor EC is calculated using a MC simulation with one million 

scenarios on the sector factors, and assuming granular portfolios. EC is estimated at the 99.9% 

percentile of credit losses (net of the expected losses). 

 
Figure 3 plots the DF as a function of the CDI for the simulated portfolios. With two factors, the 

CDI ranges between 0.5 (maximum diversification) and 1 (maximum concentration).  There is a 

clear relationship between the diversification factor and the CDI, and a linear model fits the data 

very well, with an R2 of 0.97. We can express the diversification factor as14 

 
CDICDIDF ⋅+== 3228.06798.0)6.0,( β  

The figure further presents in tabular form the results of the regression. Accounting for maximum 

diversification, the capital savings are 16% . 

 

                                                        

13 In this case, the asset correlation is given by       
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Figure 3. Two-factor diversification factor as a function of CDI ( β = 60%) 

 
Figure 4 displays, for all simulated portfolios, the actual EC against that estimated from the DF 

model (using the regression in Figure 3). There is clearly a close fit between the two models, with 

the standard error of the estimated DF model of only 10 basis points. 
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Figure 4. Capital from DF model vs. actual two-factor capital (β =60%) 

 

Estimation of DF for Varying Number of Sectors and Average Factor Correlation levels 

Next, we investigate the behaviour of the DF as a function of the number of factors and average 

cross-sector correlation levels. First, consider portfolios of wholesale exposures consisting of k 

homogeneous sectors, K=2, 3,…,10, and average cross-sector correlation fixed at  β = 60% .We 

follow the same estimation procedure using a simulations of three thousand portfolios, for each K.  
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Figure 5 plots the nine regression lines. At this correlation level, a linear model fit the data well in 

all cases with R2 ranging between 96-98%, and standard approximation errors of 10-11 bps. Table 

1 tabulates the estimated DF for each K, and gives the coefficients of the regressions, as well the 

average over the range of factors. 
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Figure 5. DF model regression lines for K=2, …, 10 ( β =60%). 

 

CDI \ Factors 2 3 4 5 6 7 8 9 10 Average
10% 70.7% 70.7%
15% 72.3% 71.9% 72.2% 72.4% 72.2%
20% 74.0% 74.0% 74.0% 73.6% 73.9% 74.0% 73.9%
25% 75.0% 75.7% 75.7% 75.7% 75.3% 75.6% 75.7% 75.5%
30% 76.8% 77.4% 77.4% 77.4% 77.0% 77.3% 77.4% 77.2%
35% 79.1% 78.5% 79.1% 79.1% 79.0% 78.7% 79.0% 79.1% 78.9%
40% 80.7% 80.2% 80.8% 80.8% 80.7% 80.4% 80.7% 80.8% 80.6%
45% 82.4% 81.9% 82.5% 82.5% 82.4% 82.1% 82.4% 82.4% 82.3%
50% 84.1% 84.1% 83.7% 84.2% 84.2% 84.1% 83.8% 84.1% 84.1% 84.0%
55% 85.7% 85.8% 85.4% 85.9% 85.8% 85.8% 85.5% 85.8% 85.8% 85.7%
60% 87.3% 87.4% 87.1% 87.6% 87.5% 87.5% 87.2% 87.5% 87.5% 87.4%
65% 89.0% 89.1% 88.8% 89.3% 89.2% 89.2% 88.9% 89.2% 89.1% 89.1%
70% 90.6% 90.8% 90.6% 91.0% 90.9% 90.8% 90.6% 90.9% 90.8% 90.8%
75% 92.2% 92.5% 92.3% 92.7% 92.6% 92.5% 92.4% 92.6% 92.5% 92.5%
80% 93.8% 94.1% 94.0% 94.4% 94.3% 94.2% 94.1% 94.3% 94.2% 94.1%
85% 95.4% 95.8% 95.7% 96.1% 95.9% 95.9% 95.8% 96.0% 95.9% 95.8%
90% 97.0% 97.5% 97.5% 97.8% 97.6% 97.6% 97.5% 97.7% 97.5% 97.5%
95% 98.6% 99.1% 99.2% 99.5% 99.3% 99.3% 99.2% 99.4% 99.2% 99.2%
100% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Intercept 0.6798 0.6734 0.6641 0.6722 0.6731 0.6726 0.6675 0.6706 0.6732 0.6718
slope 0.3228 0.3349 0.3449 0.3397 0.3369 0.3368 0.3413 0.3406 0.3359 0.3371
R^2 96.3% 96.9% 97.2% 97.6% 98.0% 97.9% 97.9% 98.0% 98.1%

 

Table 1. Tabulated results for the DF model, K=2,…10 ( β =60%). 

 
While a linear function works well at this correlation level, further experiments show that the DF 

is non-linear at lower correlation, and its curvature increases with decreasing correlation. Figure 6 
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illustrates this point by plotting the DF for three levels of correlation. One can get some intuition 

on the curvature of the DF surface by revisiting the functional form for portfolio loss volatility, 

Equation (8) (note also the similarity between Figures 1 and 6).  
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Figure 6. DF model for various correlation levels. 

 

Parametric Estimation of DF Surface 

Based on the insights gained in the previous exercises, we now estimate a parametric DF surface 

as a function of both the CDI and average cross-sector correlation. We search for a polynomial 

function in CDI and β of the form 

),( βCDIPDF n=    

with 

1)1,( =CDIPn
  and  1),1( =βnP        (18) 

The first restriction states that when the inter-sector correlations are one, the model reduces to the 

single-factor model and DF = 1. The second restriction refers to the case where there is 

essentially one sector and hence no diversification. The restrictions (18) suggest the following 

functional form 15 

∑
≥≥

−−+=
1,1

, )1()1(1),(
ji

ji
jin CDIaCDIP ββ           (19) 

More specifically, we investigate the second order approximation (in each variable): 

                                                        

15 Note that a Taylor series expansion of equation (8) suggests a similar functional form. 



  

 20

 

22
2,2

21
2,1

12
1,21,12

)1()1(

)1()1()1()1()1)(1(1),(

CDIa

CDIaCDIaCDIaCDIP

−−+

+−−+−−+−−+=

β

ββββ               (20) 

We proceed to estimate the DF surface defined by equation (20) as follows. We randomly 

simulate 22,000 portfolios with up to 10 sectors (CDI in [0.1, –1]). For each portfolio, the weights 

and PDs in each sector are sampled randomly, as well as the average inter-sector correlation β  

(sampled uniformly between 0 and 1). Figure 7 gives the 3-D plot of the DF for all simulated 

portfolios as a function of the CDI andβ . 

 

 

Figure 7. DF for simulated portfolios. 

 
Table 2 presents the specification of equation (20) resulting from fitting the simulated data. The 

approximation is excellent, with R2 coefficients of 99.4% and above and a volatility of errors of 

11 bps. Note that all the coefficients have tight bounds and also are significant, except for the 

third one, where we cannot reject the null hypothesis that it is zero. 

 
 

  Coefficients Standard Error t Stat Lower 95% Upper 95% 

A11 -0.845 0.0046 -185 -0.854 -0836 

A21 0.417 0.0059 71 0.406 0.429 

A12 -0.0118 0.0072 -1.6 -0.0260 0.0023 

A22 -0.467 0.0093 -50 -0.485 -0.449 

 
Table 2. Estimated parametric DF model (equation 20). 

Regression Statistics 

Multiple R 0.997 

R Square 0.994 

Adjusted R Square 0.994 

Standard Error 0.0107 

Observations 22,000 
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Table 3 presents the final specification of the model, restricting the third coefficient to zero. 

 
 Coefficients Standard Error t Stat 

A11 -0.852 0.0009 -911 

A21 0.426 0.0019 225 

A12 0   

A22 -0.481 0.0023 -205 

 
Table 3. Final Estimated (simplified) parametric DF model (equation 20). 

 

Figure 8 presents the surface in equation (20) with the coefficients in Table 3. Figure 9 compares 

the estimated surface with the simulated portfolios (left side), and shows the model estimation 

errors for the simulated portfolios. 16 

 

 

Figure 8. Estimated DF Surface. 

  

                                                        

16 Additional estimation exercises were performed. For example, a specification where the 

constant polynomial term is estimated (instead of fixing it at one) yields an estimated constant of 

1.0021. However, the explanatory power increases only marginally. Another model with the 

additional constraint 0)0,0( == nPDF  implies a restriction of the form: 
2,22,11,21,11 aaaa +++=− .  

At the expense of fitting the surface to an area not relevant in practice (infinite number of 

independent sectors), this model results in reduced explanatory power. 
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Figure 9. Simulated portfolios and the estimated DF Surface. 

 

Estimated DF Surface for Non-Homogeneous Factor Correlations 

The model developed in this paper suggests parameterizes the DF surface in terms of a single 

average correlation (and the CDI). As a practical exercise, the surface estimated above assumes a 

simplistic correlation structure with a single (average) correlation for all sectors. Since, in 

practice, different sectors likely present different levels of correlation to the overall portfolio, it is 

important to assess the impact of this assumption on the estimated model.  

 
In order to test this impact we perform the following (out of sample) exercise. We simulate 

22,000 new portfolios with up to 10 sectors (as before, with random weights and PDs). For each 

portfolio we assume a multi-factor model defined by equation (10) 

 
KkZZ kkkk ,...,1,1 =−+= ηββ     

where each sector has a different correlation level βk. Thus, in addition, we randomly simulate the  

βk’s for each sector and calculate the average inter-sector correlation (equation 11). 

 
Figure 10 shows the actual diversification factor for all simulated portfolios (as the ratio of their 

true EC to their single-factor capital) as well as the estimated DF surface above. It also plots the 

true EC vs. the estimated EC from the model (equation 20 and Table3). Contrasting Figures 9 and 

10, the out-of-sample model performance (with non-homogeneous sector correlations) is very 

good and generally of the same quality as the in-sample performance. The volatility of the errors 

is only 14bps (with a mean error of 4bps), only slightly higher than the in-sample errors. 
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Figure 10. Out-of-sample simulated portfolios (non-homogeneous correlations). 

 

4. The Diversification Factor as a Management Tool 

The DF model provides a simple alternative to Monte Carlo (MC) simulation for the computation 

of portfolio EC. Due its analytical tractability as well as its intuitive parameters and capital 

allocation, the model can be used as a risk management tool for  

 
• Understanding concentration risk and capital allocation 

• Identifying capital sensitivities 

• Stress testing 

• “Real-time” marginal risk contributions for new deals or portfolios 

In this section, we explore these applications. First, we summarize the parameters of the model 

and analytical sensitivities. Next, we review its application for stress testing. Thereafter, we show 

how the model can be used for risk management in conjunction with an existing MC-based multi-

factor credit portfolio model, by computing its implied parameters. While the DF model, as 

presented, covers only systemic risk and hence measures sector and geographical concentrations, 

we outline how the framework might be extended, in conjunction with the granularity adjustment, 

to cover also name concentrations. Finally, we present a stylized example to illustrate the 

calculation of implied parameters, and show the model’s application for sensitivities, stress 

testing and real-time marginal capital calculation of new deals. 
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Summary of Model Parameters and Sensitivities 

The DF model’s parameters can be seen as intuitive risk and concentration indicators. We divide 

these parameters into: sector-specific indicators, portfolio capital indicators, capital 

contributions and correlation indicators. For completeness, we summarize them in Table 4. 

 
Sector specific 

(sectors k=1,…,K) 17 

Portfolio capital Marginal capital contributions 

(sectors k=1,…,K) 
Inputs 

kρ  Intra-sector (asset) 
correlation 

sfEC
 

Capital one-factor 
(undiversified) kβ  Sector factor correlation 

weights 

kPD  average default 
probability 

CDI Capital 
diversification index kQ  Average correlation of a sector 

factor to the other sectors 

kEAD  

kLGD  

Average exposure, 
loss given default 

β  Average cross sector 
correlation 

  

Outputs 

kEC  Stand-alone capital DF Diversification factor 
kk ECDF ⋅

 
Marginal capital contribution 

  mfEC
 

Economic capital 
(diversified) 

kDF  Sector diversification factor 
corr

k
size

kk DFDFDFDF ∆+∆+=  

    size
kDF∆

 

Sector size diversification 
component  

    corr
kDF∆

 

Sector’s correlation 
diversification component 

  
Table 4. Parameters and risk indicators of DF model  

 
Due to its analytical tractability, closed form formulae are obtained for the sensitivities of the DF 

or the EC to every input parameter of the model. The sensitivities of the DF to the average cross-

sector correlation and the CDI  

 
β∂

∂DF  ,  
CDI

DF

∂
∂  

are given directly as the slopes from the estimated DF surface. It is straightforward (through the 

chain rule) to get the sensitivities of the DF or EC to the parameters such as sector single-factor 

(SF) capital (ECk), exposures, PDs, LGDs, or sector correlation parameters (kρ kQ , kβ ). Thus, 

for example, the change in EC per unit of sector factor correlation for k-th sector is given by 

                                                        

17 Commonly, the (exposure-weighted) average EAD and LGD for each sector are computed, and the 

average PD is implied from the actual calculation of expected losses. 
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where β∂∂= DFdf c  is the slope in the DF surface in the direction of the average correlation. 

 
In addition to portfolio EC, sensitivities can also be explicitly written for the marginal 

diversification factors and marginal EC for any given sector or exposure in a sector. 

 
Stress Testing and Real-Time Marginal Capital 

Stress testing of EC and real-time marginal capital calculations for new deals are difficult when 

using a portfolio model which requires MC simulation. Each stress test or marginal capital 

calculation for a new deal or portfolio requires, in essence, an additional MC simulation. For 

example, measuring the impact of an increase in PD for a given sector requires to re-run the MC 

simulation for the entire portfolio and comparing the capital with the base case. Adding a new 

loan or new portfolio also requires simulating the whole portfolio in order to aggregate the losses 

over each scenario and account for correlations. 18  

 
The DF model offers analytical formulae that can be used to calculate the capital for new 

portfolios or changes in parameters. It also provides intuitive parameters, sensitivities and a 

capital allocation breakdown which can be used to explain the results further and manage the 

portfolio. As an example, consider correlations stress testing. Given that the correlation structure 

generally involves a large number of parameters (which are also closely related to each other), it 

is not straightforward to define reasonable, and useful, correlation stress tests. The DF model 

provides clear guidance for correlation stress testing. First, in addition to intra-sector correlations 

parameters ( kρ ), it defines measures of average portfolio cross-sector correlation (β ) and of 

average cross sector correlation of each sector to the rest of the portfolio ( kQ , kβ ).  Thus, we can 

explicit calculate sensitivities or stress tests of the portfolio EC, or the capital contribution of any 

given sector (or the diversification factors), to changes in:  

 
• A sector’s intra-sector correlation (kρ ) 

                                                        

18 It is possible to implement a MC method with efficient short cuts for these new simulations. This is 

difficult to implement and still orders of magnitude slower than analytical solutions. 
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• Average cross-sector correlation across the portfolio ( β ) 

• Average correlation of a sector to the rest of the portfolio ( kQ ) 

• Sector factor loading for a sector (kβ ) (in the simplified model, equation 10)  

The impact of correlations on sector capital contributions can also be explained through the 

decomposition of the marginal diversification factor (equations 16 and 17).  Finally, stress tests 

with discrete changes in correlations are computed instantaneously using the closed-from EC 

formula. An example at the end of this section illustrates correlation stress testing. 

 

Implied Parameters from a Monte Carlo based Multi-Factor Portfolio Model 

Many institutions today have implemented advanced (internally built or vendor) multi-factor 

credit portfolio models based on MC simulation.19 The DF model provides a simple alternative 

approximation to a full MC simulation. In this section, we show how the DF model can also be 

used in conjunction with an existing, and perhaps more detailed, multi-factor credit portfolio 

model by calculating its implied parameters.20 Furthermore, the DF model as presented so far 

only covers systemic risk and, hence, captures only sector and geographical concentrations. In 

this context, the framework can be extended using the granularity adjustment concept to include 

name concentrations for non-granular portfolios, The fitted DF model, with its implied 

parameters, can be used then as a simpler and much faster model to 

 
• Understand the problem better, provide concentration measures and communicate risks 

• Obtain analytical sensitivities and perform systematic portfolio stress testing 

• Perform real-time marginal capital calculations 

Assume that the institution already has a (calibrated) credit portfolio model which it runs 

periodically to obtain EC via a MC simulation. Also, for ease of exposition, assume that the 

                                                        

19 A large portion of the implementation effort is spent on estimating all the relevant parameters of the 

portfolio model (PDs, LGDs, EADs, correlations – intra-sector and inter-sector, etc.). The estimation of 

these parameters is beyond the scope of this paper. 

20 In this sense, the fitted DF model is akin to a Black-Scholes model with an implied volatility surface or a 

CDO copula model with implied correlations. 
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portfolio can be divided into K homogeneous sectors (not necessarily granular), each with a 

single PD, EAD and LGD (in practice this latter assumption is easy to relax).21 The simpler, 

multi-factor DF model given by equations (3) and (10), requires 2K correlation parameters 

( kk βρ , ). Thus, we require as many statistics on the systemic EC to be calculated from the MC 

model to imply a DF model which produces (locally) the same results.22 In addition, we would 

like to extend the model to capture idiosyncratic risk. Thus, we assume that the credit portfolio 

MC model provides estimates of 

 
• Expected losses, systemic EC and total EC (including idiosyncratic risk) for the portfolio 

(i.e. it computes the EC of the portfolio under the assumption of an infinitely granular 

portfolio and also accounting for idiosyncratic risk). 

 
• Marginal (systemic) EC contributions for each sector 

 
We refer in this section to these outcomes of the MC model as the “true” values. 

 
The implied DF model is obtained in two steps. The first step calculates the implied parameters 

of the DF model in equation (13) from the true systemic capital numbers obtained from the MC 

model. The second step adds an idiosyncratic component to the model in the form of the 

granularity adjustment. We now describe these two steps.   

   
First Step: Systemic Risk and Implied DF Model 

The algorithm to solve the inverse problem for the DF model’s implied parameters is as follows: 

• Get for each sector portfolio k=1,…,K , its “true” stand-alone systemic EC (e.g. from the MC 

simulation of each sector separately). 

• Solve for the implied intra-sector correlation,kρ , from equation (5). This provides an 

indication of the average correlation (even for non- homogeneous portfolios). 

                                                        

21 Sector homogeneity is not a requirement. Note that equation (4) does not require single PDs, EADs and 

LGDs for each sector.  

22 The general DF credit capital model allows for defining a full correlation matrix Q, instead of the 

simpler model in equation 10. Obtaining an implied DF model, in this case, may require a much larger 

number of parameters, and this is more readily obtained using an optimization procedure. 
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• From the K stand-alone systemic EC for each sector, kEC , compute the systemic single-

factor capital for the overall portfolio, sfEC , and the CDI (equations 6 and 7). 

• Get the overall “true” systemic EC for the portfolio, mfEC (from MC simulation). 

• Use the estimated DF surface to solve for the implied average correlation,β  from equation 

(13): 

( ) ( ) sfmf ECCDIDFCDIEC ⋅= ββ ,,    

• Get the K  “true” marginal EC contributions for each sector,
kk ECDF ⋅  (from MC simulation)  

• Solve for the implied inter-sector correlation parameters kQ and kβ  from the marginal 

capital contributions (equations 15 and 16) 23 

 
We can see from this algorithm that the DF model basically provides a map from the correlation 

parameters to various systemic capital measures:  

• Single-factor systemic EC �� intra-sector correlations 

• Overall systemic EC (or DF) ��  average cross-sector correlation 

• Marginal systemic capital contributions �� individual cross-sector correlations 

 
Second Step: Idiosyncratic Risk and Implied Granularity Adjustment 

To add idiosyncratic risk (and handle name concentrations), we can use the concept of the 

granularity adjustment (GA) introduced by Gordy (2003, 2004). Thus, a natural generalization of 

the DF model for non-granular portfolios is obtained by adding a GA to equation (2): 

 
( ) DFsf GAECCDIDFEC +⋅≈ β,         (21) 

In the context of using the model in conjunction with a MC-based model, the GA can be implied 

directly from the “true” total EC and the “true” systemic EC simply as   

 
SysTrueDF ECECGA −=     

 

                                                        

23 An implied correlation matrix Q can be more generally obtained from the 
kQ ’s using an optimization 

procedure. While multiple solutions might exist, one can use simple criteria to choose one. Also, the 

implied correlation structure implied by the
kβ ’s in equation (10) may only result in an approximate match. 



  

 29

For a homogenous portfolio, Gordy (2003) shows that the GA is proportional to 1/n , where n is 

the number of loans in the portfolio. For non-homogeneous portfolios24, Gordy proposes a two-

step method: first, map the actual portfolio to a homogeneous “comparable portfolio” by 

matching moments of the loss distribution. Second, determine the GA for the comparable 

portfolio. The same add-on is applied to the capital charge for the actual portfolio.  

 
Using this intuition, we may simply write the GA in equation (21) as 








⋅=
*

1
n

bGA GADF               (22) 

The effective number of loans n* may be calculated bottom-up, as explained in Gordy (2003).  

The slope bGA can be then implied from the “true” total EC, the “true” systemic EC and the 

effective number of loans as: 

( ) *nECECb SysTrueGA ⋅−=            (23) 

In this sense, we can complement the CDI  (which is essentially a measure of sector capital 

concentration) with the effective number of loans n* (or its inverse, Herfindahl-like index) as an 

overall portfolio name concentration measure. 

 
Before concluding this section, some comments on the GA are appropriate. The original GA 

method is essentially a second order Taylor series expansion of the quantile (around the 

“infinitely granular” portfolio for the single-factor model).25  Pykhtin (2004) developed an 

extension for multiple factors. In this model, portfolio EC is essentially represented as the 

combination of three terms 

 
GAMFSFECEC ∆+∆+≈ ∞∞    

where SFEC∞  denotes the EC for systematic loss in a “properly chosen single-factor model”,26 

MF
∞∆  is a correction accounting for the effect of all systematic factors, and GA∆  is a correction 

                                                        

24 Wilde (2001) takes an alternative, direct approach. 

25 Gordy (2003, 2003b) presented this approach first and was then refined in Wilde (2001) Martin and 

Wilde (2002). 

26 This is different form the single-factor EC as defined in equation (5). 
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accounting for idiosyncratic risk (similar to the standard GA in Gordy 2003 and Wilde 2001).  To 

the degree that the Pykhtin model and the DF model are correct, we have 

 
MFSFSF ECECDF ∞∞ ∆+≈⋅    

 
In order to provide a single framework to understand sector/geographic and name concentrations, 

in this section, we have taken here a simple top-down approach for the GA in the context of a 

model with implied parameters which can be fitted to the “true” EC computed from the MC 

simulation model, or in practice also using the Pykhtin model.  

 
Example 

We present a stylized example to illustrate the behaviour of the model, the computation of 

implied parameters, and its application to compute sensitivities, stress testing and marginal capital 

of new positions.  

 
Consider the credit portfolio with four sectors given in Table 5. The first two sectors have a PD 

of 1% and exposure of 25; the other two sectors have a lower PD (0.5%). For simplicity, assume 

a 100% LGD. The third and fourth columns show the expected losses (EL) in dollar values and as 

percent of total EL. The following two columns give the single-factor (SF), stand-alone, capital 

(total and percent). The last column shows the intra-sector correlation (ρ) for each sector. The 

portfolio total exposure is 100, the EL is 75bps and the single-factor portfolio capital is 9.7%. The 

CDI of almost 33% implies roughly three effective sectors. 

 

Portfolio EAD PD EL EL %
 Capital  (Single 

Factor)    
 Capital %  

(Single Factor)    
Rho

P1 25 1.0% 0.25 33.3% 3.4 35.3% 20.1%
P2 25 1.0% 0.25 33.3% 2.1 21.5% 12.4%
P3 40 0.5% 0.20 26.7% 3.8 39.6% 21.9%
P4 10 0.5% 0.05 6.7% 0.4 3.7% 8.6%

Total 100 0.75 100.0% 9.7 100.0%

CDI 32.9%

 

Table 5. Four-sector portfolio: characteristics and stand-alone capital  

 
We observe the effect of various credit parameters by comparing the contributions to total 

exposure, EL and SF capital. The differences in exposure and EL contributions can be explained 

by the interaction of the exposures (and LGDs) with the PDs. Intra-sector correlations explain the 

differences between EL and capital contributions. For example, the fourth sector represents one 
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tenth of the total exposure, almost 7% of EL, but less than 4% of SF capital. This indicates that it 

is a low PD sector with a lower than average intra-sector correlation. In contrast, the third sector 

constitutes 40% of total exposure, 27% of EL and about 40% of SF capital. This sector’s low PD 

reduces its EL contribution, but its higher correlation (22%) increases its share of SF capital. The 

first sector’s high capital contribution is explained by both high PD and intra-sector correlation.  

 
To illustrate the computation of implied parameters, assume that the bank has a multi-factor MC-

based credit portfolio model (already parameterized), which gives a portfolio EC of 7.3% of the 

total exposure. From this “true” EC we imply the DF and average inter-sector factor correlation. 

The results are summarized in Table 6. The DF is 75.5% (7.3 = 0.755 x 9.7) and the implied the 

average correlation is %9.54=β .  

  

Portfolio Exposure
Capital    

(Single-Factor)
Rho

EC  %            (Flat 
Beta=54.6%)

EC % Implied Qk

P1 25 35.3% 20.1% 36.1% 31.9% 45.7%

P2 25 21.5% 12.4% 19.0% 17.2% 49.7%

P3 40 39.6% 21.9% 42.3% 47.5% 65.6%

P4 10 3.7% 8.6% 2.6% 3.4% 66.8%

Total 100

Capital  (Single-
Factor)

CDI DF EC
Implied 

Average Beta

9.7 32.9% 75.6% 7.3 54.9%

 

Table 6. Multi-factor capital and implied inter-sector correlations  

 
The fifth column of Table 10 gives the EC contributions assuming that all sector factor 

correlations are equal to the average of 54.9%. In this case, every sector factor is equally 

correlated with the overall portfolio, and the only difference stems from the size component of the 

sector diversification factors size
kDF∆ . These contributions are close but not equal to the SF capital 

contributions. The decomposition of the sector diversification factor for a flat correlation is given 

on the left side of Table 7. Compared to the single-factor case, the size component of the sector 

diversification factor increases contributions for the two biggest sectors (P1 and P3) and 

decreases them for the two small ones (P2 and P4). While the overall diversification factor is 

75.6%, the marginal sector diversification factors range from 53% (P4) to 81% (P3). 
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Portfolio DF k
Portfolio 

Diversification
Sector 
Size

Sector 
Correlation

DF k
Portfolio 

Diversification
Sector 
Size

Sector 
Correlation

P1 77.5% 75.6% 1.8% 0% 68.4% 75.6% 1.8% -9.1%
P2 66.9% 75.6% -8.7% 0% 60.7% 75.6% -8.7% -6.2%
P3 80.8% 75.6% 5.2% 0% 90.6% 75.6% 5.2% 9.8%
P4 53.3% 75.6% -22.3% 0% 70.7% 75.6% -22.3% 17.4%

Flat Sector Factor Correlation (Average) Implied Sector Factor Correlations

 

Table 7. Decomposition of marginal sector diversification factors.  

 
Next, assume that the MC-based portfolio model calculates the “true” marginal EC contributions 

given in the sixth column in Table 6. Note that these are different from those obtained assuming a 

flat inter-sector correlation (fifth column in Table 10)). The implied kQ ’s for each sector (as well 

as an implied correlation structure for the sector factors) are calculated from these true capital 

contributions (last columns of Table 6).  

 
For the first two sectors, the “true” EC contributions are lower than those with flat correlations, 

which results in lower than average implied correlations of their sector factors to the rest of the 

portfolio. The right side of Table 7 gives the decomposition of the sector diversification factors. 

The first two sectors have negative sector correlation diversification components (last column). 

The opposite is true for P3 and P4 (higher than average implied correlations and positive 

correlation component in the marginal sector DF).  

 
The fitted DF model provides analytical sensitivities to all the parameters and can now be used to 

compute, instantaneously, stress tests or capital contribution of new loans, while providing an 

explanation of the sources of risk and diversification. In what follows, we give several examples.  

 
First, the derivatives of DF and EC with respect to the average sector correlation are 

 

9.4,5.0 =∂
∂=∂

∂
ββ

mfECDF   

Thus, a 5% increase in average inter-sector correlation (from today’s level at 55% to 60%) results 

in an increase in capital of 0.25 (from 7.3 to 7.55). Figure 11 further presents a stress test of 

average inter-sector correlation. It shows that (at this level of CDI), EC behaves linearly with 

average inter-sector correlation. 
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Figure 11. Average correlation stress test.  

 
Consider now a new loan in Sector 1 with a PD=1%. A new small exposure to Sector 1 roughly 

adds 0.136 single-factor capital per unit of exposure (the sector’s SF capital of 3.4 divided by its 

exposure of 25). In contrast, given diversification, it only results in additional marginal EC of 

0.093 per unit of exposure (the product of it’s SF capital and the marginal DF of 68.4%). 

Although this is sector with a high PD and ρ, the benefit of diversification is greater, since it is 

the least correlated sector (the smallest Qk).   

 
We can further investigate the impact on EC of new non-marginal portfolios of transactions in 

Sector 1, as the effect of other sector parameters. Figure 12 presents standardized stress tests of 

exposure, PD and intra-sector correlation for Sector 1. In each case, the parameters lie between 

half and double their current values. The results are expressed as percent changes of the current 

value (for both, the portfolio SF capital and EC). 
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Figure 12. Parameter stress tests for Sector 1.  

 
While SF capital is linear in exposures, EC shows convexity when adding bigger positions. Stress 

test of PDs and correlation provide useful guidance on model risk or the effects of changing 
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economic conditions. For example, conservative capital estimates assuming a 50% higher 

correlation level (from 20.1% to 30.2%) for Sector 1 result in additional 20.5% SF capital for the 

portfolio and 17% higher EC.  In all cases, the percent capital impact is smaller for EC (this is 

true for this sector, but not necessarily so for all sectors). 

 
Finally, Figure 13 presents a stress test of EC against all the sector PDs. EC most sensitive to 

Sector 3 (the largest sector with the lowest diversification contribution). In contrast, a change of 

PD in Sector 4 (which is the smallest) has a very small impact. 
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Figure 13. Sector PD stress test.  

   

5. Concluding Remarks 

We present a simple adjustment to the single-factor credit capital model, which recognizes the 

diversification obtained from a multi-factor setting. In contrast to MC methods, there are benefits 

for seeking analytical approximations both for regulatory purposes as well as for credit portfolio 

management. As a risk management tool, the model can be used to understand concentration risk, 

capital allocation and sensitivities, as well as to perform stress testing and compute “real-time” 

marginal risk for new deals or portfolios. 

 
The model is based on the concept of a diversification factor. We estimate the diversification 

factor for a family of multi-factor models, and show that it can be expressed as a function of two 

parameters that broadly capture the size concentration and the average cross-sector correlation.  

The model further supports an intuitive capital allocation methodology.  For this purpose we 

define marginal diversification factors at the sub-portfolio (or obligor) level, which account for 

their diversification contributions to the portfolio.  
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The estimation of the diversification factor surface requires substantial numerical work. Once 

estimated, however, it can then be expressed parametrically or tabulated. This results in a 

practical, simple and fast method that can be used for risk management including stress testing 

and pre-deal analytics. In addition, the model can be calibrated to a MC-based credit portfolio 

model on a periodic basis (e.g. monthly or even daily) to adjust for changing market conditions 

and portfolio composition. The model can then be used during the day to support decision making 

in real time, origination and trading.  

 
We believe the diversification factor has potential to be applied to extend the Basel II regulatory 

framework to a general multi-factor setting, thus allowing for more accurate modelling of 

diversification within portfolios across various asset classes, sectors and regions. However, a few 

remarks are appropriate with respect to its calibration together with the regulatory parameters 

from Basel II. While we have used in Section 3 the Basel formulae for wholesale exposures, we 

do not wish to imply that, as presented, the calibration exercises are generally appropriate for 

regulatory rules or that the economic capital from a multi-factor model should always be smaller 

than the Basel II capital. One can argue that, if the sample used for calibrating a single-factor 

model such as in Basel II already covers the sectors in the portfolio, the asset correlationskρ  

already account, to a large extent, for cross-sector diversification (see also e.g. Lopez 2004). To 

the degree that the original parameter calibration accounts for cross sector diversification, some 

scaling (up) for intra-sector correlations or (down) the diversification factor is required, in order 

to not incur in double counting.  

 
Finally, there are several enhancements of the model, which can be addressed in future research:  

 
• The DF presented only covers systemic credit risk (as does the Basel II model) and it was 

extended in Section 4 to cover granular portfolios in a simple way. Its current strength is 

on capturing sector and geographical concentrations. A useful extension of the model 

would further refine the coverage of name concentrations in a more rigorous way.  

 
• There is potential for improving the parameterization of the model. More parameters can 

be added or perhaps one can search for parameters that result in a better or more general 

fit. In our opinion, this should not be done at the expense of too much complexity or of 

loosing the intuitive interpretation of its parameters, results and capital allocation. 
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• We have formulated how risk concentrations work within this model. Further work is 

needed to explore their mathematical behaviour, their role in model calibration and 

further application in practice. 

 
• Perhaps the most obvious limitation of the model today is its reliance on costly numerical 

estimation. Ideally, we would like also a closed form approximation for the DF that is 

accurate and perhaps does not rely as much on numerical calibration. As such, for 

example, the known solution for Normal distributions may provide useful insights into 

the more general problem. 
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Appendix. Derivation of Marginal Diversification Factors 

We briefly outline the derivation of the expressions for the marginal sector diversification factors 

kDF  in equation (16). The first step is to note that the EC in equation (13),  mfEC , is a 

homogeneous function of degree one in the kEC ’s. A function ( ) ,...,1 nxxf is said to be 

(positively) homogeneous of degree a if 

 
( ) ( ) number   real  (positive) a  for   ,,...,,..., 11 kxxfkkxkxf n

a
n =  

To see that mfEC is homogeneous of degree one, we write equation (13) as  

( ) ∑
=

⋅=
K

k
k

mf ECCDIDFEC
1

,β    
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and observe that DF only depends on CDI andβ , which are both homogenous functions of 

degree zero. Homogeneous functions of degree one satisfy Euler’s theorem: 

( )  ...,..., 1
1

1 n
n

n x
x

f
x

x

f
xxf

∂
∂++

∂
∂=    

This leads to the additive marginal capital decomposition (14) with 

Kk
EC

EC
DF

k

mf

k ,...,1, =
∂
∂=         (15) 

To obtain expression (16), we explicitly take the partial derivatives on the right side of expression 

(15), by applying the chain rule, as follows: 
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Equation (16) is finally obtained by taking the derivatives of the CDI (equation 7) and of the 

average correlation (equations 11 and 12) with respect to the stand-alone capital for the sector and 

arranging terms. 

 


