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Abstract 
This study proposes methods for estimating Bayesian vector autoregressions (VARs) 
with an automatic variable selection and an informative prior on the unconditional 
mean or steady-state of the system. We show that extant Gibbs sampling methods for 
Bayesian variable selection can be efficiently extended to incorporate prior beliefs on 
the steady-state of the economy. Empirical analysis, based on three major US 
macroeconomic time series, indicates that the out-of-sample forecasting accuracy of a 
VAR model is considerably improved when it combines both variable selection and 
steady-state prior information.  
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1. Introduction 

The seminal studies of Sims (1980), Doan et al. (1984) and Linterman (1986) 

kick-started a flurry of research on Bayesian vector autoregressions (Bayesian VARs 

or BVARS hereafter) and their ability to generate accurate macroeconomic forecasts. 

Almost thirty years later, BVARs have been established as a standard forecasting tool 

in empirical macroeconomics (e.g. see Karlsson, 2013 for a recent review and 

references therein).  

A key element in the plethora of BVAR specifications is the shrinkage of 

dynamic parameters towards a specific representation of the data which reflects 

researchers’ prior beliefs and deals with the over-parameterization problem. A 

popular shrinkage method is the Minnesota (or Linterman) prior (Doan et al. 1984; 

Linterman, 1986) and its variants (Banbura et al, 2010; Koop 2013) which allow for 

different levels of shrinkage on VAR coefficients and in some cases lead to conjugate 

posterior densities eliminating the need of posterior simulations. Recently, Bayesian 

least absolute shrinkage and selection operator (Lasso) has also been proposed for 

VAR shrinkage (Korobilis, 2013; Gefang, 2014).  

Another strand of the literature has proposed Bayesian variable selection as an 

alternative way of VAR shrinkage. In general, variable selection techniques refer to a 

statistical procedure that stochastically decides which of the variables enter the VAR 

equation and which not, based on information provided by the data. Variable selection 

can be performed either by imposing a tight prior around zero on some of the VAR 

coefficients (George et al., 2008; Korobilis, 2008; Koop, 2013) or via restricting 

coefficients to be exactly zero (Korobilis, 2013). In the former case, all variables enter 

the VAR equations but some of them have coefficients very close, but not exactly, 

zero; whereas, in the latter case, some of the variables are actually excluded from the 

VAR system leading to a restricted VAR specification. The variable selection method 

of Korobilis (2013) is considered more flexible since it is fully automatic and 

independent of the prior specified on the dynamic parameters, a feature that simplifies 

posterior simulations and enables the adoption of the method in non-linear VAR 

models. 

Although the main bulk of the BVAR literature concentrates on prior 

specification and shrinkage techniques about the dynamic VAR coefficients, Villani 
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(2009) argues that the unconditional mean or the steady sate of the system is an 

equally, or even more, important aspect of BVARs forecasting performance. The 

rationale is that longer-term forecasts of a stationary VAR converge to their 

unconditional means and thus, their estimated level plays a crucial role in forecasting 

accuracy. Moreover, economists usually have a more crystallized view on the steady-

state level of an economy than on its short-term fluctuations, implying that a VAR 

model that accounts for this kind of prior information can improve its forecasting 

behavior. Therefore, the author proposes a mean-adjusted representation of a VAR 

model that enables the incorporation of prior beliefs on steady-states. The empirical 

evidence, so far, suggests that steady-state VAR models outperform their counterparts 

with uninformative priors on constant terms (e.g. see Villani, 2009; Beechey and 

Österholm, 2008; Clark 2011). In  Beechhey and Österholm (2010), the authors also 

show that univariate steady-state AR models have better forecasting performance than 

AR models with traditional specifications.1 

Against this background, this study extends those of Villani (2009) and 

Korobilis (2013) and proposes methods of estimating a VAR model that incorporates 

prior beliefs on the steady-state and also adopts a Bayesian variable selection method. 

More specifically, we show that extant Gibbs sampling algorithm for Bayesian 

variable selection proposed by Korobilis (2013) can be efficiently extended to allow 

for priors on the steady-state (Villani, 2009). The essential steps include re-writing the 

VAR model in a mean-adjusted form, which allows prior elicitation for the 

unconditional mean, and adding an extra fourth block to the Gibbs sampler of 

Korobilis (2013) that draws from the full conditional posterior density of the steady-

state parameters. 

The proposed specification is evaluated in terms of an out-of-sample forecasting 

exercise based on three US macroeconomic variables, namely, real gross domestic 

product (GDP) growth, inflation (consumer price index, CPI) and short-term interest 

rates (Federal funds rate). The out-of-sample period covers 20 years from 1993:Q1 to 

2013:Q4 and the suggested model is compared to alternative established 

specifications such us the steady-state VAR model of Villani (2009) and the VAR 

model with variable selection of Korobilis (2013). Finally, as a robustness check we 

also use three alternative prior specifications on the dynamic VAR parameters (see 

                                                 
1 Other studies that employ steady-state VARs are Adolfson et al. (2007), Jaronciski and Smets 

(2008), van Roye (2011), Österholm (2012). 
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also Korobilis, 2013) and investigate whether we reach different conclusions in terms 

of estimation results and forecasting performance.  

The rest of the paper is organized as follows. Section 2 develops the steady-state 

VAR with variable selection and the Gibbs sampling algorithm. Section 3 presents the 

empirical results while Section 4 concludes this paper. 

2. Steady-state VARs with variable selection  

A reduced-form VAR is written as 

  ttt εcdyLB   (1) 

where ty  is a 1m vector of time series at time t with Tt ,...,1=  observations,   

  p
pm LBLBILB  ...1  with 1 tt yLy , tε  are the errors distributed as  ΣN ,0  with 

Σ  being the mm  covariance matrix and td  is a ݍ-dimensional vector of exogenous 

deterministic variables such as constants, dummies or time trends. Assuming 

stationarity for ty , the unconditional mean or steady-state of the VAR process in Eq. 

(1) is defined as     ttt cdLBμyE 1 . From the steady-state definition it is clear 

that it is hard to encapsulate prior opinions with respect to tμ  into Eq. (1).2 To 

circumvent this problem, Villani (2009) proposes a steady-state representation of the 

VAR model that is practically a deviations-from-mean parameterization, i.e.:   

   ttt εdφyLB   (2) 

where   cLBφ 1  and the long-run mean is tt dφμ  . Therefore, a researcher can 

incorporate his prior beliefs on tμ by directly specifying priors on φ .  

The steady-state VAR in Eq. (2) can be extended to allow for Bayesian variable 

selection in the form of Korobilis (2013). This means that each of the VAR equations 

may have different lagged variables and Eq. (2) should be re-written as a system of 

seemingly unrelated equations (SUR). To see this, first write the steady-state VAR as 

tptptt yByBy  
~...~~

11  (3) 

with ttt dφyy ~  being the mean-adjusted times series of ty . Then, the SUR 

representation of Eq. (3) is 

                                                 
2 Nonetheless, it is obvious that if one specifies a prior on c  he also specifies implicitly a prior on 

tμ . 
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ttt zy   ~~  (4) 

where tmt xIz ~~   is a nm  matrix with pmn 2  being the total number of 

coefficients in (4),  pttt yyx   ~,...,~~
1  is a k1   mpk   vector containing all 

dependent variables at time t ,  Bvec  is a 1n  vector of the VAR dynamic 

parameters  with   pBBB ,...,1 . The model in Eq. (4) is an unrestricted steady-state 

VAR since no restrictions are incorporated in the  n
jj 1

  elements of  . By contrast, 

the Bayesian variable selection method proposed by Korobilis (2013) restricts some 

of the j  coefficients to be zero as follows  








1 if 0

0 if 0

jj

jj

γβ

γβ
 (5) 

where jγ  is an indicator variable and the thj  element of the vector   nγγγ ,...,1 . We 

define the steady-state VAR with variable selection as  

ttt εθzy  ~~  (6) 

where βΓθ   and Γ  is a nn  diagonal matrix with the elements of γ on its main 

diagonal, i.e. jjj γΓ  . The specification in Eq. (6) implies that for 1jγ  for j we 

get the unrestricted steady-state VAR of Eq. (4).  

2.1. Prior distributions 

Bayesian estimation and inference on β , γ , φ  and Σ  requires the specification 

of prior distributions which are generally based on the propositions of Korobilis 

(2013) and Villani (2009). Accordingly, we define the prior density for the dynamic 

parameters, β , as a multivariate normal distribution, i.e.  VbΝβ n ,~ , with 

hyperparameters b  and V being further specified in Section 3 and Appendix B. The 

jγ  dummy variables are assumed to be independent of each other for j  and their 

prior density is defined as a Bernoulli density with jπ  prior probability, i.e. 

 jjj πBernoulliγγ ~\ , where jγ \  denotes all elements of γ  except for the thj . 

Finally, the prior on Σ  is taken to be the scale invariant improper Jeffreys prior, i.e. 
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  2/1 m
ΣΣ , while the prior on φ  is  φφmq VbΝφ ,~  assuming independence 

between φ  and β .Posterior distributions 

The posterior inference is based on the idea that conditional on the steady-state 

parameters, φ , the VAR specification in Eq. (6) is a standard restricted VAR for the 

mean-adjusted time series ty~  and tz~ , and therefore the Gibbs sampler framework of 

Korobilis (2013) can be implemented.3  In fact, estimation of (6) requires only an 

extra fourth block which samples steady-state parameters from a normal density 

described in Villani (2009). A general Gibbs sampler algorithm for the steady-state 

VAR with variable selection, which draws sequentially from the full conditional 

posterior density of the parameters, contains the following four steps: 4 

1. Draw D,,, Σφγβ  from  VβΝn , ; 

2. Draw D,,,,\ Σφβγγ jj   from  jπBernoulli ; 

3. Draw D,,,1 φβγΣ   from  1, STWishart ; 

4. Draw D,,, Σβγφ  from  φφmq VbΝ , . 

where  TT ddyy ,...,,,..., 11D  denote the data. The quantities β , V , jπ , S , φb  and 

φV  as well as the posterior sampling procedure are described in detail in Appendix A. 

Compared to the three-block structure of the standard restricted VAR model, the 

extra block requires only a very small portion of the total computing time as also 

pointed out in Villani (2009). In practice, the Gibbs sampler is proved to be very 

efficient and convergence problems may arise only under certain conditions. More 

specifically, the unconditional mean is not identified for a non-stationary VAR 

process and this may lead to convergence difficulties only if it is combined with an 

uninformative (i.e. very large prior variance) steady-state prior (Villani, 2005, 2009, 

Appendix A, p. 646-647). Villani (2005, 2009) shows theoretically how an 

informative prior on steady-state stabilizes the Gibbs sampler even if the VAR system 

approaches a unit root process. The author also uses a simulation exercise and shows 

that even moderately informative steady-state priors can produce acceptable posterior 

                                                 
3 Alternatively, one can argue that conditional on γ the model in Eq. (6) is a standard steady-state 

VAR and full conditional posterior distributions of Villani (2009) can be implemented. In both cases 
the posterior analysis is identical.   

4 A full conditional posterior density of a parameter is the posterior density conditional on all other 
parameters.	 
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simulations. We also confirm the abovementioned findings for the proposed model by 

implementing a similar simulation exercise.5 Moreover, in Appendix C, we use 

simulated datasets and we show that the Bayesian variable selection technique of 

Korobilis (2013) works equally well under the new steady-state framework.  

3. Empirical analysis 

We use three major US macroeconomic series, i.e.  real GDP growth rate,  CPI 

inflation rate and effective Federal funds rate, in order to estimate the proposed model 

and evaluate its forecasting performance (henceforth, we refer to these variables as 

GDP )( tr , inflation )( tπ  and interest rate )( ti  respectively). The data series cover the 

period form 1974:Q1 to 2013:Q4 and were obtained from the St. Louis’ FRED 

database on a quarterly basis.6 Real GDP growth and CPI inflation rates are calculated 

as year-on-year percentage changes (i.e. the percentage change of the current quarter 

over the corresponding quarter of the previous year) while we use the interest rate in 

levels. Thus, the vector of the endogenous variables is given by   tttt iπry ,, and all 

variables are expressed in yearly percentages. 

 

3.1. Prior specifications and alternative models 

An initial first step in Bayesian estimation is to specify the hyperparameters in 

prior distributions described in Section 2.1. We follow closely Korobillis (2013) and 

we use three distinct prior specifications on the dynamic parameters vector, β .  These 

are: (i) the ridge regression prior (ridge prior hereafter), (ii) the Minnesota prior and 

(iii) the hierarchical Bayes shrinkage prior (shrink prior hereafter); all three of them 

are based on the Normal distribution and are briefly described in Appendix B.7 We 

also set the prior probability of the Bernoulli density equal to 0.8, i.e. 8.0jπ , while 

the standard non-informative prior 
  2/1 m

Σ  is used for Σ . 

                                                 
5 Simulation results are available upon request.      
6 More specifically, the series were downloaded from http://research.stlouisfed.org/fred2 and are 

defined in more detail as follows: Real gross domestic product (code: CDPC96), 3 decimal, billions of 
chained 2009 dollars, seasonally adjusted annual rate. Consumer Price Index (code: CPIAUCSL_PC1) 
for all urban consumers: all Items, percentage change from a year ago, seasonally adjusted. Effective 
Federal Funds Rate (code: FEDFUNDS), percent, not seasonally adjusted    

7 As pointed out in Korobillis (2013) all these specifications offer some kind of shrinkage but no 
exact zero shrinkage as in the variable selection methodology. 
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In the steady-state version of VAR models we also have to specify the prior 

mean and standard deviation on steady-states coefficients, φ . We follow Österholm 

(2012) and we set both steady-state GDP growth and inflation rate equal to 2% and 

nominal interest rate equal to 4%, while we assume a 0.5 standard deviation for all 

three variables. These values reflect researcher’s perception regarding the long-run 

level of the variables and are also in accordance with the contribution of Jaronciski 

and Smets (2008) who use economic theory, i.e. the Fisher equation, to specify 

steady-state values for the US economy.  

The primary scope of the empirical analysis is to examine whether the 

forecasting ability of a Bayesian VAR model is improved when we incorporate prior 

beliefs with respect to the steady-state of the economy and we also allow for an 

automatic Bayesian variable selection. To that end, we compare the forecasting ability 

of the following four alternative specifications:  

(i) a baseline BVAR without variable selection and steady-state priors,  

(ii) a steady-state BVAR (Villani, 2009) 

(iii) a BVAR with variable selection (Kororbillis, 2013) and 

(iv) a BVAR with both variable selection and steady-state priors. 

Each of these four specifications is estimated using each of the three prior 

specifications on β (see Appendix B for details), resulting in twelve distinct BVAR 

models. For all models we use a lag length of 4. For comparison reasons we also 

estimate a standard VAR model using ordinary least squares (OLS) with one lag. 

 

3.2. In-sample analysis 

In this section we present some estimation results using the full data sample 

(1974:Q1 - 2014:Q1). We use the Gibbs sampler in Appendix A to sample 30,000 

draws of models’ parameters after discarding the first 20,000 draws used for initial 

convergence (burn-in period). Convergence of the Gibbs sample was excellent in all 

cases. 

Table 1 presents the posterior means and standard deviations for the steady-

states across different priors and VAR specifications. Overall, the results show that 

neither different priors nor parameter restrictions (i.e. models with variable selection) 

have a significant impact on steady-states estimation. In particular, the steady-state 

growth rate of GDP is estimated to be close to 2.68% ranging between 2.63 and 2.75. 
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The average CPI inflation across priors and specifications is close to 2.71% with its 

minimum (maximum) value being 2.49 (2.91) while the Fed funds rate is estimated to 

be close to 3.78% (3.65 and 3.95 are the minimum and maximum values respectively)    

[Insert Table 1 here] 

In Table 2 we also present estimation results regarding the restriction 

parameters jγ . As pointed out in Korobilis (2013) the posterior mean of jγ can be 

seen as an average probability of including the respective jβ  parameter to the true 

model. Our intention is to examine whether the incorporation of steady-state priors in 

a restricted VAR model has a significant impact on jγ ’s estimations. Indeed, the 

results in Table 2 reveal that the differences in jγ  estimations between models with 

and without steady-state priors are non-negligible. More specifically, except for the 

first own lag of each dependent variable which is always one across models, meaning 

that the first lag should always be included, all other jγ estimates differentiate 

substantially. In particular, steady-state models tend to produce, overall, much lower 

jγ  posterior means with the majority of these estimates being lower than 50%.  For 

instance, the second lag of inflation ( 2tπ ) and the fourth lag of interest rates ( 4ti ) in 

models with uninformative steady-state seem to affect the current level of inflation 

with the average jγ  being close to 95% and 87%, respectively, across priors. 

Nonetheless, these estimates are close to 21% and 13% for the steady-state models. 

[Insert Table 2 here] 

However, as underlined in Korobilis (2013) what really matters is not the jγ  

posterior mean per se but the combined posterior mean of jjj γβθ  . The intuition is 

that a lagged dependent variable will enter the equation with a jθ  coefficient which 

implies that if 0jθ  this variable is actually excluded from the VAR system. 

Therefore, in practice, the differences between jθ ’s of alternative specifications may 

not always be as acute as implied by the posterior probabilities of inclusion. An 

indicative example is the 4ti  variable in the inflation equation with a Shrink prior. In 

particular, the posterior mean of  
4ti

γ  is 85% and 19% for the uninformative and the 

steady-state models respectively, but we get posterior means of 
4ti

θ  that are very 

close to each other (-0.20 and -0.22 respectively).  
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3.3. Out-of-sample forecasting analysis 

We evaluate the alternative VAR specifications using a forecasting horizon of 

twelve quarters (3 years), 12,...,1h , and an out-of-sample period spanning from 

1993:Q1 to 2013:Q4. The forecasts across all horizons are produced using a recursive 

forecasting scheme. This means that we use an initial sample (1974:Q1-1992:Q4) to 

generate forecasts from 1993:Q1 to 1995:Q4, i.e. 12 quarters ahead. Next, we allow 

the sample to expand and include one more period, i.e. 1974:Q1-1993:Q1, and 

generate forecasts from 1993:Q2 to 1996:Q1. This procedure is continued till the end 

of the sample period. As mentioned in Section 3.2 estimation and forecasting results 

are based on 30,000 posterior simulations (after a burn-in period of 20,000 

simulations) and forecasts are generated iteratively following Korobilis (2013, p. 215-

216). 

Before proceeding to the forecasting evaluation, we present the sequential GDP, 

inflation and interest rate out-of-sample forecasts along with the actual variables in 

Figures 1–3. The forecasts has been generated by three alternative models: a VAR(1) 

estimated with OLS, a VAR model with variable selection and a Minnesota prior and 

a steady-state VAR model with variable selection and a Minnesota prior. As expected, 

the forecasts generated by the steady-state VAR converge to the steady-state of each 

variable much faster than its counterparts. By contrast, the other two models seem to 

over- or under- estimate the steady-state levels and their forecasts drift away even 

when the level of the variables is too high (or too low) to justify an upward (or a 

downwar) movement. Our main research interest is to examine whether the 

abovementioned forecasting behavior leads to superior forecasting ability for the 

models that incorporate both steady-state priors and variable selection techniques. To 

that end, we use two popular forecasting evaluation metrics, namely, the root mean 

square forecast error (RMSFE) and the mean absolute forecast error (MAFE). 

[Insert Figures 1–3 here] 

Figures 4, 5 and 6 present the out-of sample forecasting results for the ridge, 

Minnesota and shrink prior on β , respectively. Following the usual convention, we 

use relative forecasting evaluation metrics, i.e. we present the RMSFE and MAFE 

metrics of the various competing models as proportion of the corresponding RMAFE 

and MAFE metrics of a random walk (RW) process 
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h
RWi

h
ijh

ij RMSFE

RMSFE
RMSFE

,

 Realtive  , 
h

RWi

h
ijh

ij RMAFE

RMAFE
MAFE

,

 Realtive   

where h = 1,…,12 is the forecasting horizon, i is the variable of interest, i.e. GDP, 

inflation and interest rate, and j are the following competing models: a VAR(1) 

estimated with OLS (VAR-OLS), a BVAR(4) model (VAR), a steady-state BVAR(4) 

model (VAR-STEADY), a BVAR(4) model with variable selection (VAR-VS) and 

finally a steady-state BVAR(4) model with variable selection (VAR-VS-STEADY). 

Values below one indicate that the corresponding model outperforms the random 

walk process and vice versa. The left column in Figures presents the relative RMSFE 

of the various competing models as a function of the forecasting horizon while the 

right column presents the relative MAFE.  

[Insert Figures 4–6 here] 

Overall, the results presented in Figures 4–6 indicate that the proposed model, 

i.e. the steady-state VAR model with variable selection (red dotted lined), is the best 

performing model across variables, forecasting horizons, priors on β  and evaluation 

metrics. Moreover, the proposed model is the only Bayesian specification that 

consistently outperforms the VAR-OLS model and the RW process. These results 

indicate that the incorporation of steady-state beliefs in a VAR model with variable 

selection enhances its forecasting ability and leads to more accurate macroeconomic 

forecasting. 

More specifically, as regards the GDP forecasts the proposed model almost 

always outperforms its competitors. Only at very long forecasting horizons ( 10h ) 

the rest of the BVARs produce RMSFE and MAFE metrics which are very close to 

the ones produced by the proposed model. This evidence can be explained on the 

grounds of Figure 1 which shows that a BVAR with variable selection, but 

uninformative steady-state, usually overestimates steady-state at short horizons but 

eventually tends to generate long-term forecasts that are not that far from the steady-

state levels presented in Table 1.  

The picture is almost the same with respect to inflation forecasts with the 

proposed model outperforming all its competitors. Only the steady-state VAR in the 

case of Minnesota prior (Figure 5) generates forecasts of comparable forecasting 

accuracy at very long forecasting horizons ( 10h ). 
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Moreover, the forecasting results for the interest rates reveal that steady-state 

VAR models with or without variable selection and the VAR-OLS are the main 

competitors, since they produce overall the best forecasts. In particular, Bayesian 

models outperform the VAR-OLS model for forecasting horizons longer than five 

quarters, across evaluation metrics. The proposed model also outperforms the steady-

state VAR at shorter horizons with the latter being the overall best forecasting model 

for horizons longer than six and ten quarters for the RMSFE and MAFE metrics, 

respectively. In line with the literature (e.g. see Villani, 2009; Korobilis, 2013) a RW 

process also provides good short-term forecasts for the interest rates.  

In addition, variable selection (red solid line) tends to improve GDP and 

inflation forecasts over unrestricted VARs (blue solid line) across all forecasting 

horizons. Nonetheless, as also evidenced in Korobilis (2013), the degree of 

improvement depends on the prior used and the level of information it carries. Thus, 

the improvement is substantial when we use the relative uninformative ridge prior and 

marginal or even negligible when we use priors that are more informative (Shrink and 

Minnesota prior respectively). The results for the interest rates are mixed and mostly 

depend on the forecasting horizon.  

Finally, the empirical findings underline the importance of forcing the 

endogenous variables to converge to a specific steady-state level. In particular, 

steady-state VAR outperforms both OLS and BVARs with or without variable 

selection in the majority of cases examined here. Therefore, in practice, steady-state 

VAR is the second best performing model after the steady-state VAR with variable 

selection. These results also align with other studies that highlight the contribution of 

steady-state priors to the accuracy of macroeconomic forecasts (Villani, 2009; 

Beechey and Österholm, 2008; Clark, 2011).    

3.3.1. Model confidence set results 

In this section, we employ the Model Confidence Set (MCS) method of Hansen 

et al. (2003, 2011) and we construct a set of models, 0
*
1 MM a , that present 

statistically superior predictive ability at a given confidence level. The scope of this 

analysis is twofold: first, based on the RMSFE and MAFE metrics we discern that set 

of models that generate statistically significant superior forecasts and second, we 

evaluate the forecasting ability of the full set of models across priors and 

specifications. Next, we briefly describe the MCS methodology. 
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Assuming an initial set of 0MM   models, the MCS method is based on a 

specific loss function, tmL , with M,...,1m , and applies an iterative process of 

sequential Equal Predictive Ability (EPA) tests of the form: 

  MM  kmdEH tmk , allfor  0: ,0,0  (15) 

where tktmtmk LLd ,,,   is the loss differential between models m and k and tL ,  is one 

of the RMSFE or MAFE at each point in time, t. A rejection of the null hypothesis 

indicates that a model has inferior predictive ability and should not be included in the 

MCS at an a  significance level. Τhe  EPA test in Eq. (10) is repeated for the 

remaining a1M  models, with MM a1 , and this procedure continues until the null 

hypothesis cannot be rejected. The final set of surviving models forms the MCS at a 

a1  confidence level, denoted by *
1 aM . The models included in the MCS have equal 

predictive ability, but they outperform the eliminated models, while the MCS p-values 

indicate the probability of a model being a member of the MCS.8 

Table 3 presents only a synopsis of the main MCS results, while we refer the 

interested reader to Tables D.1-D.3 of Appendix D for a more detailed analysis. The 

first column for each of the variables in Table 3 presents the percentage of times a 

model is included in the MCS at 10% significance level across forecasting horizons 

and evaluation metrics. The second column presents the percentage of times a model 

also ranks first, i.e. minimizes RMSFE or MAFE, across forecasting horizons and 

evaluation metrics.  The initial set includes all 13 models: the VAR-OLS and all 

twelve BVARS.  

[Insert Table 3 here] 

The MCS results in Table 3 confirm the evidence presented in Section 3.3. In 

particular, with regard to GDP forecasts, we find that the steady-state VAR with 

variable selection (VAR-VS-STEADY) and a shrink prior is always included in the 

MCS across forecasting horizons and evaluation metrics followed by the VAR-VS-

STEADY with the Minnesota and ridge prior which are part of the MCS in 95.8% of 

cases. The steady-state VAR (VAR-STEADY) models are included in the MCS in 

approximately 50% of cases while the percentages for the rest of the models are much 

                                                 
8 For details on MCS technique and its implementation see Hansen et al. (2003, 2011). The MCS is 

implemented using MULCOM 2.00 package for Ox, kindly provided by the authors. The MULCOM 
2.00 package is available at http://mit.econ.au.dk/vip_htm/alunde/mulcom/mulcom.htm. 
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lower. The VAR-VS-STEADY model with the Minnesota prior ranks first in 50% of 

cases while the VAR-VS-STEADY models with ridge and shrink priors follow. 

The results with respect to inflation are clear cut since the VAR-VS-STEADY 

with the ridge prior is always part of the MCS and ranks first across forecasting 

horizons and evaluation metrics. The VAR-VS-STEADY model with Minnesota prior 

ranks first in 42% of cases as regards the interest rate, while it is part of the MCS in 

96% of cases followed by VAR-VS-STEADY with ridge and shrink prior (88% of 

cases). VAR-OLS and steady-state VARs (VAR-STEADY) also present high 

percentages confirming the evidence presented in Section 3.3. 

In general, the MCS results confirm that steady-state VARs with variable 

selection can considerably enhance the macroeconomic forecasting accuracy of small-

scale VARs irrespective of the prior used on the dynamic parameters. The empirical 

evidence also suggest that the simple and relatively uninformative ridge prior can also 

provide accurate forecasts compared to the more informative and sophisticated 

Minnesota and shrink priors. 

4. Conclusions 

Empirical evidence in extant literature has highlighted the importance of steady-

state prior beliefs in Bayesian VAR forecasting. Moreover, Bayesian variable 

selection techniques have also been suggested as an efficient and automatic way of 

VAR shrinkage and model parsimony with beneficial effects on forecasting accuracy. 

In this paper, we propose a Gibbs sampler algorithm for estimating a Bayesian VAR 

model that efficiently combines this two promising VAR specifications: informative 

priors on the steady state of the system and parameter restrictions based on Bayesian 

variable selection methods. We evaluate the proposed specification in terms of an out-

of-sample forecasting exercise using three major US macroeconomic variables and we 

find that it clearly outperforms alternative VAR models that encapsulate only one (or 

none) of the abovementioned specifications. Empirical evidence also suggests that 

these results are robust against alternative priors on dynamic parameters that carry 

different degree of information regarding VAR shrinkage.     
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Appendix A: Posterior inference in the linear steady-state VAR with variable 

selection 

We follow Korobilis (2013) and we re-write the VAR model in a vectorized 

form to exploit the computational efficiency of matrix multiplications. To this end, we 

define Y
~

 as a mT   matrix with its tth row being  mttttt yyyyY ~,...,~,~~~
21 , X

~
 as an 

kT   matrix with its tth row being tt xX ~~   and E  as an mT   with its tth row being 

 mttttt εεεεE ,...,, 21 . Then,  Yvecy
~~   and  Εvecε   are 1Tm  vectors with 

 vec  being the standard operator which stacks the columns of a matrix. Then, the 

VAR model can be written as  

       111

~~



TmnnTmTm
εθZy  (A. 1) 

where  XIZ m

~~   is a nTm  block diagonal matrix with X
~

 being repeatedly on its 

main diagonal, βΓθ   is the 1n  vector of coefficients with  Bvec . To 

facilitate reading, we remind that m  is the number of variables, mpk   is the number 

of explanatory variables in each VAR equation, and pmmkn 2 is the total number 

of VAR coefficients. Also recall that ttt dφyy ~  and  pttt yyx   ~,...,~~
1  are the 

mean-adjusted time-series of ty  and tx  respectively.   

Next, we derive the full conditional posteriors of the four-block Gibbs sampler 

algorithm which employ the priors of Section 2.1. As already mentioned, conditional 

on steady-state parameters, φ , the VAR model in (A.1) is a standard VAR model with 

variable selection for the mean-adjusted series ty~ . Therefore, the first three blocks of 

the Gibbs sampler reproduce the Korobilis (2013) algorithm for the mean-adjusted 

series. The fourth block samples the steady-state parameters, φ , conditional on all 

other parameters from a normal posterior density. Conditional on β  and  γ  (or 

equivalentlyθ ) the model in (A.1) is a standard steady-state VAR model and can be 

written in a form so that we can apply Villani’s (2009) methodology.  

More specifically, the algorithm and the conditional posteriors are given below: 

 

Step 1. Draw the slope coefficients β  from the following n-dimensional 

multivariate Normal density 

 VβΝZyΣφγβ n ,~,,,,  (A.2) 
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where  
1

*1*1 ~~ 








 


 ZIΣZVV T ,   






 


  yIΣZbVVβ T

~~ 1*1
 and ΓZZ

~~*  . 

 

Step 2. Draw jγ in random order j  with nj ,...,1  from  

 jjj πBernoulliZyΣφβγγ ~,,,,,\  (A.3) 

Where  jjjj lllπ 100 /  ,      jTj πθZyIΣθZyl 





 


  *1*

0

~~~~5.0exp , 

      jTj πθZyIΣθZyl 





 


  1

~~~~5.0exp **1**
1  with *θ and **θ  being equal to 

θ but with their thj element being equal to jβ  and 0 respectively.  

 

Step 3. Draw 1Σ  from  

 11 ,~,,,,  STWishartzyφγβΣ  (A.4) 

For this step, re-write the VAR as 

 
       mTmkkTmT

EΘXY


 ~~
 (A.5) 

where Θ  is a mk  matrix which thij  element is given by    ikjij θΘ  1 for 

ki ,...,1  and mj ,...,1 . Then, S  is given by    ΘXYΘXYEES
~~~~ 


 .  

 

Step 4. Draw the steady-state coefficients ߮ from the following mq-

dimensional multivariate Normal density 

 φφmq VbΝZyΣγβφ ,~,,,,  (A. 6) 

For this step the VAR model conditional on β  and  γ  (or equivalentlyθ ) is 

written as follows 

      tptptptttt εdφyΘdφyΘdφy   ...111   (A.7) 

where lΘ , pl ,...,1  is a mm  matrix of coefficients which thij  element is 

given by   ijmlijl ΘΘ ,1,   for pl ,...,1  and mji ,...,1,  . Rearranging the terms in 

(A.6) we get    

    tptpttttt εdφΘdφΘdφεdφLΘyLΘ   ...11  (A.8) 
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where   p
pm LΘLΘILΘ  ...1 . Following Villani (2009) I define φY  as a 

mT   matrix with its tth row being    ttφ yLΘY , D  as a  qpT 1  matrix 

which tth row is given by  ptttt dddD   ...,,, 1  and   φΘφΘφΛ p,...,, 1  as the 

  mqp 1  matrix of coefficients. Therefore, the model in (A.8) can be written as 

ΕΛDYφ   and standard results for multivariate regressions can be applied (see 

Villani, 2009, p. 646-647). Thus, given that    φUvecΛvec '  with  


























pq

q

mq

ΘI

ΘI

I

U


1
 

we define the mean, φb , and variance, φV , of the posterior distribution in (A.6) as  

  φφφφφ bVDYΣvecUVb 11    and   111 
 φφ VUΣDDUV  

respectively.  

The Gibbs sampler described above was implemented in Matlab and extends the 

Matlab code for VAR models with variable selection kindly provided by Dimitris 

Korobilis in his website: https://sites.google.com/site/dimitriskorobilis/matlab. The 

Matlab code is avalaible upon request.   

 

Appendix B: Specifying priors on β  

This appendix briefly describes the three different types of prior distribution on 

β  (for more details see Kororbillis (2013) and references therein): 

The ridge regression prior which defines 10  nb  and nIλV   with the 

hyperparameter λ  determining the degree of shrinkage on β . We choose 100λ  for 

the intercepts (diffuse prior) and 9λ for the dynamic parameters. 

The popular Minnesota prior which assumes that variables follow a AR(1) 

process implying that all elements of b are zero except for the parameter of the first 

own lag of each of the variables which is equal to iδ .9 Here, we set the autoregressive 

parameter equal to 0.5 for the GDP and 0.8 for the inflation and interest rate variables. 

                                                 
9  Doan et al. (1984) and Linterman (1986) originally proposed that all variables follow a random 

walk process meaning that 1δ . However, if we work with stationary variables we can set 1δ .   
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The prior covariance matrix V  is assumed to be a nn diagonal matrix with each of 

its diagonal elements being defined as 

 jijσlλσ

l

σ

v
th

ji

i
l
ij










parameter   variablelagged  for  the    

 parameters lagown for 

intercepts for the

/

1

100

222

2

2

 

where pl ,...,1  denotes the lag. We define 2
iσ  as the residual variance from a 

univariate AR(p) for variable i estimated with OLS. We choose 1.0λ  for the three 

variable VARs. 

The hierarchical Bayes shrinkage prior proposed by Korobillis (2013) is an 

hierarchical Normal-Jeffreys prior which defines 10  nb  and jjj λV  , nj ,...,1  

with  

 





otherwise/1

intercepts for the100

j
j λ

λδ
λ  

where  λδ100  is the Dirac delta function.  Assuming a scale invariant Jeffreys prior on 

jλ , its posterior value is solely data driven. This is in contrast to the previous two 

approaches where the shrinkage parameter λ is an ad hoc selection of the researchers.  

We should note that the mean-adjusted form used in the steady-state VARs does 

not contain constant terms and the priors presented above are implemented only for 

the dynamic coefficients. 

 

Appendix C: Simulation analysis 

In this Appendix we evaluate the performance of the proposed specification 

using simulated data sets as in Korobilis (2009). In particular, we generate 100 

samples of six variables of length T = 50 using a stationary mean-adjusted VAR 

process with one lag ( 1p ) and 1td  for all t . The first lag parameter matrix, B , is 

given by     





























95.000000

095.00000

0095.0000

00095.000

000095.00

0000095.0

B  . 
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The matrix Ψ , where   1 ΨΨΣ  is given by  





























1.000000

01.00000

001.0000

0001.000

00001.00

5.05.05.05.05.01.0

Ψ   

while the steady-states vector is specified as  4,4,4,2,2,2φ . For each of the 100 

samples we estimate two BVAR specifications: a steady-state VAR and a steady-state 

VAR with variable selection. For both specifications we use 30,000 posterior 

simulations after discarding the first 20,000 draws, while we use a ridge prior on the 

dynamic coefficients as described in Appendix B and a prior Bernoulli probability 

equal to 0.8, i.e. 8.0jπ . We also use informative steady-state priors with prior mean 

given by  4,4,4,2,2,2φb  and prior standard deviations being equal to 0.5 for all 

variables. The average over the 100 posterior means (along with the average posterior 

standard deviations in parenthesis) are presented below. 

 

Specification I: Steady-state VAR  

            





41.039.039.039.039.013.0
97.396.396.300.203.298.1φ̂  

 

 

 

 

 

  



































45.0

47.0

47.0

41.0

41.0

18.0

77.002.003.001.004.009.0

04.073.003.004.004.009.0

10.012.079.012.011.009.0

12.010.011.064.009.008.0

10.010.009.006.065.008.0

32.038.044.003.005.098.0

ˆ
UNB  

Specification II: Steady state VAR with variable selection  

            





45.046.045.046.046.011.0
97.395.393.396.102.299.1ˆVSφ  
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 

 

 

 

 

  

























 



09.0

09.0

09.0

07.0

08.0

01.0

86.003.002.001.001.000.0

03.085.002.001.001.000.0

02.001.087.001.001.000.0

01.002.001.089.003.000.0

01.000.001.002.088.000.0

12.012.007.006.004.095.0

ˆ
VSB  





























00.121.017.014.015.002.0

20.000.118.015.015.002.0

19.019.000.115.013.002.0

14.018.013.000.121.002.0

13.014.013.018.000.102.0

30.031.029.023.022.000.1

Γ̂  

 

where matrix Γ̂  is the average posterior mean of γ  vector in a matrix form. 

Simulation results reveal that the proposed specification works well in small samples. 

In particular, we show that the Bayesian variable selection technique of Korobilis 

(2013) leads to more accurate estimates of dynamic coefficients under the new steady-

state framework. The VSB̂  average estimates are much closer to the data generating 

matrix, B , with smaller posterior standard deviations compared to the UNB̂  estimates 

produced by the unrestricted steady-state VAR. Finally, the average posterior means 

of steady-states are almost identical for both specifications.        

 

Appendix D: Forecasting evaluation using Model Confidence Set  

[Insert Table D.1 here] 

[Insert Table D.2 here] 

[Insert Table D.3 here] 
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Table 1 Posterior means and standard deviations of the steady-states 
 VAR dynamic coefficients prior 
 Ridge Minnesota Shrink 
 no 

VS 
with 
VS 

no 
VS 

with 
VS 

no 
VS 

with 
VS 

Real GDP       
Posterior mean 2.66 2.69 2.69 2.63 2.75 2.68 
St. deviation 0.34 0.38 0.33 0.49 0.31 0.42 
Inflation       
Posterior mean 2.91 2.49 2.87 2.66 2.81 2.54 
St. deviation 0.49 0.65 0.49 0.70 0.51 0.66 
Federal funds 
rates 

      

Posterior mean 3.67 3.86 3.65 3.95 3.68 3.88 
St. deviation 0.63 0.69 0.63 0.73 0.63 0.69 
Notes: ‘no VS’ denotes the models without variable selection while 
‘with VS’ denotes the models with variable selection. 
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Table 2 Posterior means of γ  vector elements using the full sample 
 Ridge Minnesota Shrink 
 Uninformative  Steady

-state 
Uninformative Steady-

state 
Uninformative  Steady-

state 
Dependent variable: tr  

1tr  1.00 1.00 1.00 1.00 1.00 1.00
1tπ  0.16 0.03 0.64 0.09 0.70 0.22

1ti  0.06 0.02 0.62 0.08 0.62 0.24
2tr  0.36 0.45 0.67 0.29 0.76 0.45
2tπ  0.11 0.03 0.69 0.14 0.68 0.24

2ti  0.10 0.02 0.88 0.13 0.65 0.24
3tr  0.86 0.30 0.86 0.32 0.93 0.38
3tπ  0.07 0.03 0.71 0.16 0.65 0.24

3ti  0.08 0.03 0.75 0.17 0.64 0.25
4tr  0.15 0.09 0.63 0.22 0.70 0.26
4tπ  0.07 0.03 0.73 0.18 0.66 0.26

4ti  0.06 0.02 0.83 0.19 0.65 0.24
Dependent variable: tπ  

1tr  0.10 0.05 0.58 0.16 0.68 0.23
1tπ  1.00 1.00 1.00 1.00 1.00 1.00

1ti  0.67 0.03 0.93 0.11 0.83 0.23
2tr  0.06 0.04 0.69 0.20 0.65 0.24
2tπ  0.93 0.17 0.98 0.19 0.96 0.26

2ti  0.18 0.02 0.74 0.15 0.68 0.25
3tr  0.06 0.04 0.71 0.22 0.67 0.24
3tπ  0.16 0.02 0.64 0.09 0.67 0.19

3ti  0.18 0.02 0.75 0.16 0.65 0.21
4tr  0.05 0.04 0.74 0.23 0.65 0.24
4tπ  0.09 0.02 0.60 0.09 0.67 0.19

4ti  0.81 0.02 0.96 0.17 0.85 0.19
Dependent variable: ti  

1tr  0.44 0.04 0.67 0.14 0.77 0.23
1tπ  0.35 0.14 0.50 0.16 0.76 0.34

1ti  1.00 1.00 1.00 1.00 1.00 1.00
2tr  0.35 0.05 0.75 0.19 0.75 0.23
2tπ  0.67 0.21 0.89 0.39 0.88 0.42

2ti  0.29 0.01 0.89 0.06 0.71 0.20
3tr  0.15 0.05 0.72 0.22 0.71 0.24
3tπ  0.21 0.09 0.73 0.25 0.68 0.29

3ti  0.13 0.02 0.71 0.08 0.65 0.24
4tr  0.06 0.04 0.71 0.22 0.66 0.24
4tπ  0.11 0.04 0.71 0.20 0.63 0.24

4ti  0.07 0.02 0.53 0.09 0.67 0.23
Notes: ‘Uninformative’ denotes models with uninformative priors on steady-state. 
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Table 3 Synopsis of the Model Confidence Set (MCS) results 
  GDP Inflation Interest rates 

  
% of 
times 
in the 
MCS 

% of 
times a 
model 
ranks 
first 

% of times 
in the 
MCS 

% of 
times a 
model 
ranks 
first 

% of 
times in 

the 
MCS 

% of 
times a 
model 
ranks 
first 

- VAR-OLS 13 0 21 0 75 21 
Ridge VAR 13 0 0 0 0 0 

VAR-STEADY 54 0 17 0 67 25 
VAR-VS 38 0 4 0 0 0 

 
VAR-VS-
STEADY 96 46 100 100 88 0 

Minnesota VAR 13 0 8 0 0 0 
VAR-STEADY 50 0 17 0 71 13 
VAR-VS 8 0 8 0 0 0 

 
VAR-VS-
STEADY 96 50 21 0 96 42 

Shrink VAR 8 0 4 0 0 0 
VAR-STEADY 58 0 21 0 67 0 
VAR-VS 17 0 4 0 0 0 

 
VAR-VS-
STEADY 100 4 25 0 88 0 

Notes: For each of the variables the table shows the percentage (%) of times a model is included 
in the MCS at 10% significance level as well as the percentage (%) of times a model ranks first 
across evaluation metrics (RMSFE and MAFE) and forecasting horizons. VAR-OLS is a 
standard VAR(1) estimated using ordinary least squares (OLS). VAR is a Bayesian VAR(4) 
model and the suffices ‘-STEADY’, ‘-VS’ and ‘-VS-STEADY’ denote a steady-state VAR 
model, a VAR model with variable selection and a steady-state VAR model with variable 
selection, respectively. Bold faced number indicate the best performing model. 
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Table D.1   Model confidence set (MCS) results for GDP 
Panel A. RMSFE results  

Forecasting horizon (quarters ahead) 
Prior Specification 1 2 3 4 5 6 7 8 9 10 11 12 
- VAR-OLS             

Ridge 

VAR             
VAR-
STEADY            
VAR-VS             
VAR-VS-
STEADY            

Minnesota 

VAR             
VAR-
STEADY            
VAR-VS             
VAR-VS-
STEADY            

Shrink 

VAR             
VAR-
STEADY            
VAR-VS             
VAR-VS-
STEADY            

Panel B. MAFE results             
- VAR-OLS             
Ridge VAR            

 
VAR-
STEADY            

 VAR-VS            

 
VAR-VS-
STEADY            

Minnesota VAR            

 
VAR-
STEADY            

 VAR-VS             

 
VAR-VS-
STEADY             

Shrink VAR             

 
VAR-
STEADY            

 VAR-VS             

 
VAR-VS-
STEADY            

Notes: The MCS p-values are calculated using the quadratic test statistic. The symbol  denotes that a model belongs to the 
MCS because its p-value is greater than the prespecified significance level, a , where a = 0.10. The symbol  denotes that 
the respective model also ranks first among its counterparts, i.e. minimizes the RMSFE or MAFE metrics or maximizes the 
MCS p-values. VAR-OLS is a standard VAR(1) estimated using ordinary least squares (OLS). VAR is a Bayesian VAR(4) 
model and the suffices ‘-STEADY’, ‘-VS’ and ‘-VS-STEADY’ denote a steady-state VAR model, a VAR model with 
variable selection and a steady-state VAR model with variable selection, respectively. 
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 Table D.2 Model confidence set (MCS) results for inflation 
Panel A. RMSFE results  

Forecasting horizon (quarters ahead) 
Prior Specification 1 2 3 4 5 6 7 8 9 10 11 12 
- VAR-OLS             

Ridge 

VAR             
VAR-
STEADY             
VAR-VS             
VAR-VS-
STEADY            

Minnesota 

VAR             
VAR-
STEADY             
VAR-VS             
VAR-VS-
STEADY             

Shrink 

VAR             
VAR-
STEADY             
VAR-VS             
VAR-VS-
STEADY             

Panel B. MAFE results             
- VAR-OLS             
Ridge VAR             

 
VAR-
STEADY             

 VAR-VS             

 
VAR-VS-
STEADY            

Minnesota VAR             

 
VAR-
STEADY             

 VAR-VS             

 
VAR-VS-
STEADY             

Shrink VAR             

 
VAR-
STEADY             

 VAR-VS             

 
VAR-VS-
STEADY             

Notes: See notes in Table D.1 
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 Table D.3 Model confidence set (MCS) results for Federal funds rate 
Panel A. RMSFE results  

Forecasting horizon (quarters ahead) 
Prior Specification 1 2 3 4 5 6 7 8 9 10 11 12 
- VAR-OLS             

Ridge 

VAR             
VAR-
STEADY            
VAR-VS             
VAR-VS-
STEADY            

Minnesota 

VAR             
VAR-
STEADY            
VAR-VS             
VAR-VS-
STEADY             

Shrink 

VAR             
VAR-
STEADY            
VAR-VS             
VAR-VS-
STEADY            

Panel B. MAFE results             
- VAR-OLS             
Ridge VAR             

 
VAR-
STEADY            

 VAR-VS             

 
VAR-VS-
STEADY            

Minnesota VAR             

 
VAR-
STEADY            

 VAR-VS             

 
VAR-VS-
STEADY            

Shrink VAR             

 
VAR-
STEADY            

 VAR-VS             

 
VAR-VS-
STEADY            

Notes: See notes in Table D.1 
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Figure 1 Out-of-sample point forecasts for GDP growth  

 

Notes: The Figure presents the GDP growth (year-on-year) out-of-sample forecasts for 12 quarters ahead (dotted 

lines) along with the actual values (solid line). The forecasts are plotted every other quarter for clarity in 
presentation. For the BVAR models we use the Minnesota prior for the dynamic coefficients. 
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Figure 2 Out-of-sample point forecasts for inflation 

 

Notes: The Figure presents the CPI inflation (year-on-year change) out-of-sample forecasts for 12 
quarters ahead (dotted lines) along with the actual values (solid line). The forecasts are plotted every 
other quarter for clarity in presentation. For the BVAR models we use the Minnesota prior for the 
dynamic coefficients.   
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Figure 3 Out-of-sample point forecasts for Federal funds rate 

 

Notes: The Figure presents the Federal funds rate out-of-sample forecasts for 12 quarters ahead (dotted 
lines) along with the actual values (solid line). The forecasts are plotted every other quarter for clarity 
in presentation. For the BVAR models we use the Minnesota prior for the dynamic coefficients. 



33 
 

Figure 4 Forecasting results using VAR models with ridge prior 

 
Notes: The figures show the relative RMSFE and MAFE as a function of the forecasting horizon. 
VAR-OLS is a standard VAR(1) estimated using ordinary least squares (OLS). VAR is the Bayesian 
VAR(4) with a Ridge regression prior. The suffices ‘-STEADY’, ‘-VS’ and ‘-VS-STEADY’ denote a 
steady-state VAR model, a VAR model with variable selection and a steady-state VAR model with 
variable selection, respectively. 
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Figure 5 Forecasting results using VAR models with Minnesota prior 

 

Notes: The figures show the relative RMSFE and MAFE as a function of the forecasting 
horizon. VAR-OLS is a standard VAR(1) estimated using ordinary least squares (OLS). VAR 
is the Bayesian VAR(4) with a Minnesota regression prior. The suffices ‘-STEADY’, ‘-VS’ 
and ‘-VS-STEADY’ denote a steady-state VAR model, a VAR model with variable selection 
and a steady-state VAR model with variable selection, respectively. 
  



35 
 

Figure 6 Forecasting results using VAR models with shrink prior 

 

Notes: The figures show the relative RMSFE and MAFE as a function of the forecasting horizon. 
VAR-OLS is a standard VAR(1) estimated using ordinary least squares (OLS). VAR is the Bayesian 
VAR(4) with a shrink regression prior. The suffices ‘-STEADY’, ‘-VS’ and ‘-VS-STEADY’ denote a 
steady-state VAR model, a VAR model with variable selection and a steady-state VAR model with 
variable selection, respectively. 
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