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Abstract 

This article proposes methods for estimating a Bayesian vector autoregression (VAR) 

model with an informative steady state prior which also accounts for possible structural 

changes in the long-term trend of the macroeconomic variables. I show that, overall, the 

proposed time-varying steady state VAR model can lead to superior point and density 

macroeconomic forecasting compared to constant steady state VAR specifications.    
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1. Introduction 

Bayesian vector autoregressions (VARs) have been established as a standard 

forecasting tool for macroeconomists who have, now, plenty of choices in terms of 

priors and model specification. In the seminal study of Villani (2009), the author 

highlights the importance of steady state priors in macroeconomic forecasting and 

proposes Bayesian methods for estimating VAR models with informative steady state 

priors. These models have been shown to materially improve macroeconomic 

forecasting accuracy (Beechey and Österholm 2010; Clark, 2011; Wright, 2013).  

However, as shown in Chan and Koop (2014), steady states may undergo significant 

structural changes. The authors, based on Bayesian clustering methods, find that the 

steady states of inflation and the interest rate in the US economy changed during the 

1970s. Structural breaks in the steady states have also been implicitly taken into account 

by Clark (2011) and Wright (2013), who employed the long-term macroeconomic 

expectations of Blue Chip surveys, in order to impose steady state priors on the 

endogenous variables. 

The purpose of this study is to examine whether macroeconomic forecasting can be 

substantially improved when we explicitly account for the structural changes in the 

steady states. In particular, this note proposes a time-varying steady state VAR (TVSS-

VAR) model which is estimated using Bayesian methods employed in the time-varying 

parameter VAR (TVP-VAR) models (Primiceri, 2005). Recent empirical evidence 

suggests that TVP-VARs can adequately capture structural changes in terms of 

macroeconomic forecasting (D’Agostino et al., 2013; Carriero et al. 2015; Bauwens et 

al. 2015). Here, I focus solely on the time-varying nature of the unconditional mean and 

the ability of the TVSS-VAR to deliver superior macroeconomic forecasts compared to 

a standard (constant) steady state VAR.  

The paper is structured as follows: Section 2 presents the model; Section 3 describes 

the dataset, estimation and out-of-sample forecasting results; and Section 4 concludes. 
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2. The model 

Villani (2009) proposes the following steady state representation of a VAR model 

(SS-VAR): 

      tptptptttt εdμyBdμyBdμy   ...111  with  ΣNdiiεt ,0...~  (1) 

where ty  is a 1m  vector of endogenous variables, tdμ  is the unconditional mean of 

the process assuming stationarity for ty  with  td  being a 1q  vector of exogenous 

deterministic variables such as constants, dummies or trends. Obviously, this 

representation allows the economist to incorporate his steady state prior beliefs by 

directly specifying priors on μ .  

Here, I extend the SS-VAR model in order to account for possible structural changes 

in the steady states. In particular, I define a time-varying steady state VAR (TVSS-

VAR) model as follows: 

      tpttptptttttt εdμyBdμyBdμy   ...111  (2) 

Following the TVP-VAR literature, I specify the dynamics of the steady states 

parameters, tμ , as driftless random walks (e.g. see Primiceri, 2005): 

    ttt ημvecμvec  1  with  μt QNdiiη ,0...~  (3) 

where  vec  is the standard operator which stacks the columns of a matrix. The error 

terms,  tt ηε , , are assumed to be jointly normally distributed with zero mean and 

covariance matrix defined as: 

































μt

t

Q

Σ

η

ε
Var

0

0
  (4) 

 

2.1. Bayesian inference 

The TVSS-VAR model is estimated using Bayesian methods. The exact Gibbs 

sampling algorithm and the conditional posterior distributions are presented in the 
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Technical Appendix.  Here, I concentrate more on the specification of the priors which 

is an essential first step in Bayesian inference.  

Typically, the prior for the time invariant dynamic coefficients and the errors 

covariance matrix is a multivariate normal distribution and a scale-invariant improper 

Jeffreys prior, respectively  

 VβNβ
pm

,~ 2    

  2/1


m
ΣΣ  

where  Bvecβ   and   pBBB ,...,1 . Moreover, for the dynamic coefficients, β ,  I 

specify a Minnesota prior with overall and cross-equation tightness being set to 0.2 and 

0.5, respectively, while the prior mean on the first own lag is set to 0.25 for GDP and 

0.8 for inflation and the interest rate  (Clark, 2011).   

The priors for the initial state (i.e. initial condition) of the time-varying steady states 

and the covariance matrix μQ   are a multivariate normal and an inverse-Wishart (IW) 

distribution, respectively
1
  

   Ωμ~Nμvec mq ,0  

 ξΓ~IWQμ ,  

where ξ  is the prior degrees of freedom and Γ is the mqmq prior scale matrix. The 

prior degrees of freedom are chosen to be equal to 1mq , i.e. the minimum necessary 

for reassuring a proper prior, while the prior scale matrix is defined as ΩξkΓ 2  

(Primiceri, 2005). In practice, prior hyperparameters μ  and k  encapsulate economist’s 

prior beliefs with regard to the level and the degree of time-variation of the steady 

states; therefore, they should be sensibly specified in order to avoid implausible 

behaviour and optimize models’ forecasting performance. 

                                                 
1
 Notice that the prior for each tμ , Tt ,...,1  is implicitly defined recursively as 

    μtmqt QμvecNμvec ,~ 1 .    
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 More specifically, for the initial conditions of the steady states I rely on the recent 

literature (Clark, 2011; Österholm, 2012) and economic theory (Fisher equation) and I 

set   5,2,3μ , expressed in annualized percentage points, and 

  222 7.0,5.0,5.0diagΩ  , where diag is a diagonal matrix. As regards the prior scale 

matrix, the TVP-VAR literature, typically, chooses a very tight prior (i.e. small k ) in 

order to avoid implausible behaviour and allow for a smooth variation of the time-

varying dynamic coefficients. Here, I set 4.0k , a relatively large value, in order to 

capture possibly large structural changes in the unconditional mean. Nonetheless, 

empirical results are also presented for other values of k  (see Section 3). 

 

3. Empirical results 

I evaluate the forecasting performance of the proposed model using three US 

macroeconomic series, i.e.  real GDP growth rate,  the CPI inflation rate and the 

effective Federal funds rate (GDP, inflation and the interest rate hereafter), spanning the 

period 1954:Q2 to 2015:Q1 on a quarterly basis.
2
 GDP and inflation are calculated as 

annualized quarter-on-quarter percentage changes while the interest rate is used in 

levels. For all models considered in this article I use four lags and I run the Gibbs 

sampler for 12,000 iterations discarding the first 10,000 iteration and keeping one in 

every five draws (D’Agostino et al. 2013). 

Next, I present some estimation results for the steady states. In particular, Figure 1 

depicts the posterior median of the time-varying steady states for the full sample using 

different values for the k  hyperparmeter,  1,8.0,4.0,2.0,1.0,01.0k , along with a 

constant steady state VAR estimated as in Villani (2009). The larger the k  

hyperparmeter, the larger are the changes in the steady-states, as expected. For a very 

small value of k , i.e. for  01.0k  (black dashed line), steady states are almost time-

invariant as in the case of the SS-VAR model (blue line).    

Estimation results are also in line with the stylized facts regarding the US economy. 

More specifically, inflation and the interest rate have an upward trend in the 1970s, i.e. 

                                                 
2
 The series were downloaded from http://research.stlouisfed.org/fred2. 

http://research.stlouisfed.org/fred2
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the Great Inflation period, and a subsequent de-escalation in the 1980s during the Great 

Moderation period 01.0k . Moreover, the time-varying steady states for both 

variables fall well below the constant steady state (blue line) during the recent Great 

Recession (2007-2009). Regarding GDP, the time-varying steady state fluctuates around 

the constant steady state (blue line) for most of the time, with the exception of the Great 

Recession, during which falls permanently in a lower level. Therefore, it seems that 

following the Great Recession the US economy has probably entered into a new regime 

characterized by lower growth, inflation and interest rates.  

 

3.1. Out-of-sample forecasting analysis 

The primary scope of the study is to examine whether the forecasting ability of a 

standard steady state VAR model is improved when we account for structural changes 

in the steady state. To that end, I compare the forecasting ability of the proposed TVSS-

VAR model with the SS-VAR of Villani (2009) and a baseline Bayesian VAR (BVAR) 

with uninformative steady state priors. Finally, following standard practice, I use as a 

benchmark model a random walk with drift in levels (RW).  

I consider a forecasting horizon of twelve quarters, 12,...,1h , and an out-of-sample 

period spanning from 1969:Q4 to 2015:Q1. The forecasts across all horizons are 

generated iteratively using a recursive forecasting scheme. Lastly, following D’ 

Agostino et al. (2013) I assume that the drifting steady states remain constant at their 

current level when I consider multi-step forecasts.  

Following the recent contributions in the field, I evaluate the forecasting 

performance of the models in terms of both point and density forecasts (e.g see Carierro 

et al., 2015). More specifically, I evaluate the point forecasts using the following metric: 

  1001 Relative ,,,  RW

hi

m

hi

m

hi RMSFERMSFERMSFE  (5) 

where  





N

t

m

hti

m

hi feNRMSFE
1

2

,

1

,   with 
m

htife ,  being the forecast error for model m, 

variable i, and forecast horizon h, while N is the number of out-of-sample observations. 

For the density forecasts I use:   
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  100,,,  RW

hi

m

hi

m

hi SCORESCORESCOREΔ
 (6) 

where  





N

t
thti

m

hi myypNSCORE
1

,

1

, ,~log , with  myyp thti ,~
,   being the predictive 

density produced by model m and evaluated at the realized value of htiy , . The 

predictive density is obtained using a univariate kernel estimation based on the Gibbs 

sampling output.  

[Insert Figure 1] 

In practice, both metrics in Eqs. (5) and (6) show the percentage gains or losses over 

the benchmark (RW) model in terms of RMSFE  and SCORE. Obviously the highest 

the value of the metric, the better the model is, while positive values indicate that the 

model outperforms the benchmark.  

[Insert Figure 2] 

Figure 2 presents the values for both evaluation measures as a function of the 

forecasting horizon. Overall, the results suggest that the TVSS-VAR (with 4.0k ) 

does outperform its counterparts in terms of both point and density forecasting 

evaluation. More specifically, regarding the relative RMSFE metric, the proposed 

model ranks first across almost all forecasting horizons for GDP and inflation followed 

by the constant steady state counterpart and the BVAR. The picture is different 

regarding the interest rate where the SS-VAR specification outperforms the TVSS-VAR 

and ranks first across all horizons. Nonetheless, acknowledging time-variation in the 

steady states is much more beneficial in terms of density forecasting since the 

improvement of the proposed model over its competitors is impressive. In particular, the 

TVSS-VAR outranks its competitors across all horizons and variables. It is also worth 

noting that TVSS-VAR and SS-VAR outperform the RW model in all instances 

examined here. 

[Insert Figure 3] 

I also investigate the robustness of the forecasting results by performing two 

sensitivity checks. The first is with respect to the forecasting period: Figure 3 presents 

the results for the 1985:Q1-2015:Q1 period for which macroeconomic forecasting is 

generally more difficult (Faust and Wright, 2013). Forecasting results are qualitatively 
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similar to those presented for the full forecasting period. The second check concerns the 

hyperaparameter k: Figure 4 presents the forecasting results for 

 1,8.0,4.0,2.0,1.0,01.0k  along with the constant steady state VAR. Overall, the results 

are robust to the different choices of k with the only exceptions being for point forecasts 

of GDP and inflation and for 2.0k .  

[Insert Figure 4] 

 

4. Conclusions 

This article proposes a time-varying steady state VAR model which accounts for 

structural changes in the steady state level of macroeconomic variables. Using three US 

macroeconomic variables I show that, overall, the proposed model materially improves 

both point and density forecast accuracy compared to a constant steady state VAR.  
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Figure 1 Time-varying and constant steady states estimates for the full sample  
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Figure 2 Forecasting results over the sample: 1969:Q4-2015:Q1 

 

 

 

Figure 3 Forecasting results over the sample: 1985:Q1-2015:Q1 
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Figure 4 Forecasting results with different values of k hyperparameter 
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Appendix 

A. Technical Appendix: Posterior sampling for the time-varying steady state 

VAR model 

This Appendix presents the Gibbs sampler algorithm for the time-varying steady 

state VAR (TVSS-VAR) model. For convenience, I rewrite the model and the priors as 

specified in the main text. Thus, the TVSS-VAR model is defined as: 

      tpttptptttttt εdμyBdμyBdμy   ...111  with  ΣNεt ,0~  (A.7) 

    ttt ημvecμvec  1  with  μt QNη ,0~  (A.8) 

and 







































μt

t

Q

Σ
Ndii

η

ε

0

0
,

0

0
...~   (A.9) 

where ty  is a 1m  vector of endogenous variables, iB , pi ,...,1  are mm  dynamic 

coefficient matrices and td  is a 1q  vector of exogenous deterministic variables such 

as constants, dummies or trends. The priors for the time invariant parameters and the 

initial state of the state equation are: 

 VβNβ
pm

,~ 2   (A.10) 

  2/1


m
ΣΣ

 
(A.11) 

   Ωμ~Nμvec mq ,0  (A.12) 

 ξΓ~IWQμ ,  (A.13) 

where  Bvecβ   and   pBBB ,...,1 , IW  is the inverse-Wishart distribution, 

1mqξ  and  ΩξkΓ 2 . All priors are assumed to be independent from each other.  

For computational reasons it is also useful to rewrite the TVSS-VAR model using 

matrix notation, i.e.: 

EBXY 
~~

 (A.14) 



 14   

 

where Y
~

 and E are defined as a mT   matrices with their t
th

 row being 

 mtttt yyyY ~,...,~~~
1  and  mtttt εεεE ,...,1 , respectively, while ty~  is the mean-

adjusted time-series of ty  defined as 
tttt dμyy ~ . Finally, the t

th 
row of the kT   

matrix X
~

 is defined as  ptttt yyxX 
 ~,...,~~~

1 . 

The TVSS-VAR model is estimated using the Gibbs sampling algorithm outlined 

below. The basic idea is that conditional on steady states, tμ t , the model is a standard 

Bayesian VAR model for the mean-adjusted  variables and thus standard results can be 

applied (e.g. see Villani, 2009). On the other hand, conditional on other parameters, I 

show that the TVSS-VAR model can be written in a form of a standard TVP-VAR 

model of Primiceri (2005) and thus I can estimate the unobserved time-varying steady 

states by applying the methods proposed by the author. More specifically, the Gibbs 

sampler involves drawing sequentially from the following conditional posteriors: 

1. Sample β  conditional on other model parameters and data from 

 VβΝΣQμβ μ

Τ ,~,,, D  

with  TddY ,...,, 1D ,  T
tt

Τ μμ
1

  ,   βVΣYXvecVβ
11~

'
~    and 

   111 ~
'

~   VXXΣV  and   denoting the kronecker product. 

 

2. Sample Σ  conditional on other model parameters and data from 

 TEEIWQμβΣ μ

Τ ,~,,, D  

where  BXYE
~~

 . 

 

3. Sample Τμ  conditional on other model parameters and data using the Carter and 

Khon (1994) algorithm. 

 

For this step the TVSS-VAR model should be rewritten in a form that makes 

Bayesian inference tractable.  
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Proposition A.1. The TVSS-VAR model can be written as: 

  ttt

B

t εμvecZy 
 (A.15) 

    ttt ημvecμvec  1  (A.16) 

where ptptt

B

t yByByy   ...11 , UDIZ tmt
 ,    ptttt dddD ,...,, 1  and  

 
























pq

q

mq

BI

BI

I

U


1
.  

Proof. Rearranging the terms in Eq. (A.1) we get 

  tpttpttttptptt εdμBdμBdμyByBy   ...... 1111  (A.17) 

Let ptptt

B

t yByByy   ...11 ,  tpttt μBμBμΘ ,...,, 1  be a km matrix that 

collects the coefficients with  qpk 1 , and    ptttt dddD ,...,, 1  be a 1k  

vector that collects deterministic variables td . The model can now be written 

ttt

B

t εDΘy   which is a standard homoscedastic TVP-VAR model. Then, it is 

straightforward to write the model in the form of Eq. (4) of Primiceri (2005, p. 824):  

tttm

B

t εθDIy   (A.18) 

where    ttt μUvecΘvecθ   with  U  being the following    mqmk   matrix 

 
























pq

q

mq

BI

BI

I

U


1
 (Villani, 2009).  

The model in Eqs. (A.9)-(A.10) is a standard homoscedastic TVP-VAR model as 

defined in Eqs. (4)-(5) of Primiceri (2005, p. 824) and, thus, the Carter and Khon 

(1994) algorithm can be implemented. For notational simplicity I assume that only a 

constant is included in the VAR model, i.e. 1td t , implying that   tt μμvec  .  
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Given the assumption in Eq. (A.3) and defining  ΣQβμμEμ μstst
,,,  and 

 ΣQβμμVarP μstst
,,, , we can obtain 

TT
μ  and  

TT
P

 
by applying the following 

Kalman filter recursions:   

  
111 


tttt

μμ  

 μtttt
QPP 

 111
 

   1

11




 ΣZPZZPK tttttttt  

  
11 


ttt

B

tttttt
μZyKμμ  

 
11 


tttttttt

PΖKPP  

Given the initial conditions, i.e. μμ 0|0  and ΩP 0|0  and running the above 

recursions from t = 1,…,T , we get 
TT

μ  and  
TT

P  and we use them to draw from the 

posterior of Tμ  from   
TTTT

PμN , . Then, we can use 
TT

μ  and  
TT

P  as initial values 

and apply the Carter and Kohn (1994) recursions backwards for t = T – 1,…,1 to 

smooth the initial Kalman filter estimates with subsequent information and obtain 

1tt
μ  and 

1tt
P  as follows:  

   
tttμtttttttt

μμQPPμμ  



 1

1

1
 

 
ttμtttttttt

PQPPPP
1

1




  

Finally, we draw from the posterior of tμ , 1,...,1Tt   using a Normal distribution 

with mean 
1tt

μ  and variance 
1tt

P . 

 

4. Sample μQ  conditional on other parameters and data from 

 ξΓIWβΣμQ Τ

μ ,~,,, D  

where       



T

t tttt μμμμΓΓ
1 11  and ξΤξ  . 
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