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ABSTRACT 

In this paper, our proposal is to combine univariate ARMA models to produce a 

variant of the VARMA model that is much more easily implementable and does not 

involve certain complications. The original model is reduced to a series of univariate 

problems and a copula – like term (a mixture-of-normals densities) is introduced to 

handle dependence. Since the univariate problems are easy to handle by MCMC or 

other techniques, computations can be parallelized easily, and only univariate 

distribution functions are needed, which are quite often available in closed form. The 

results from parallel MCMC or other posterior simulators can then be taken together 

and use simple sampling - resampling to obtain a draw from the exact posterior which 

includes the copula - like term. We avoid optimization of the parameters entering the 

copula mixture form as its parameters are optimized only once before MCMC begins. 

We apply the new techniques in three types of challenging problems. Large time-

varying parameter vector autoregressions (TVP-VAR) with nearly 100 

macroeconomic variables, multivariate ARMA models with 25 macroeconomic 

variables and multivariate stochastic volatility models with 100 stock returns. Finally, 

we perform impulse response analysis in the data of Giannone, Lenza, and Primiceri 

(2015) and compare, as they proposed with results from a dynamic stochastic general 

equilibrium model. 
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1 Introduction

Since the seminal contribution of Sims (1990, 1993) Vector Autoregressions (VAR) have become part

of the standard arsenal in applied econometrics. In recent years many contributions have been made

including and summarized in Koop and Korobilis (2010, 2013) and Kadiyala and Karlsson (1997).

Recently, estimation of large VARs and vector autoregressive moving average models (VARMA)

has received increased attention in the literature. In the VAR front see, among many others, Ban-

bura, Giannone and Reichlin, 2010, Carriero, Kapetanios and Marcellino, 2009, Koop, 2013, Koop

and Korobilis, 2013, Korobilis, 2013, Giannone, Lenza, Momferatou and Onorante, 2014. For ex-

ample, attention has been given to time-varying-parameter (TVP, e.g. Primiceri, 2005) VAR with

stochastic volatility and Bayesian analysis of VARMA as alternatives to VARs in medium sized

data sets, see Chan, Eisenstat and Koop (2015). Koop, Korobilis and Pettenuzzo (2015) apply the

Bayesian compressed regression concept due to to Guhaniyogi and Dunson (2014) in large VARs

with favorable results.

Multivariate Stochastic Volatility (MSV) models have also been proposed and estimated.

With many time series these methods face serious challenges and shortcuts have been proposed. For

example, in TVP-VAR covariance matrices are replaced by approximations (Koop and Korobilis,

2013). In VARMA models, certain priors aid in identification but the substantive issues are still

outstanding (Chan and Eisenstat, 2013 and Chan, Eisenstat and Koop, 2015). The issue of estimat-

ing MSV models is also at large although considerable progress has been made by Creal and Tsay

(2015) based on copula models, Lopes, McCulloch and Tsay (2011) using a stage-wise decomposition

that relies on univariate stochastic volatility models, and Philipov and Glickman (2006a,b) using a

Wishart formulation. Flores de Frutos and Serrano (2002) propose a new generalized least squares.

They explicitly consider the stochastic structure of the error committed when lagged innovations

are replaced with lagged residuals obtained from a long VAR. Their simulation results show that

this method is similar to Mauricio’s (1995) exact maximum likelihood.

In this paper, we propose alternative formulations of the original problem rather than new

MCMC algorithms or special priors, identification restrictions etc. The original model is reduced to a

series of univariate problems and a copula - like term (a mixture-of-normals densities) is introduced to

handle dependence. Since the univariate problems are easy to handle by MCMC or other techniques,

computations can be parallelized easily on high-performance computing facilities and only univariate

distribution functions are needed, which are quite often available in closed form. The results from

parallel MCMC or other posterior simulators can then be taken together and use simple sampling -
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resampling to obtain a draw from the exact posterior which includes the copula - like term.

Our objective is to handle models whose sampling distribution is
∏T

t=1 p(yt|yt−1,θ) when the

dimensionality of both yt (say n) and the parameters θ is large. The model can include dynamic

latent variables and the restriction to one lag is, exclusively, for convenience in notation.

First, we reduce the model to a univariate specification of the form yit = gi(yi,t−1,θi) + εit

for some function gi and error term εit, for each i = 1, . . . , n. Second, dependence is taken into

account using a copula - like term. Each θi can, presumably, be simulated easily using MCMC as

we have a univariate model. Finally, the MCMC draws are re-weighted to obtain a sample from

the exact copula posterior. We avoid optimization of the parameters entering the copula mixture

form as its parameters are optimized only once before MCMC begins. We apply the new techniques

in three types of challenging problems. First, large time-varying parameter vector autoregressions

(TVP-VAR) with nearly 100 macroeconomic variables. Second, multivariate ARMA models with

25 macroeconomic variables. Third, MSV models with 100 stock returns. We should mention that

handling VARMA models is quite cumbersome as it has been shown in Chan, Eisenstat and Koop,

2015). Certain invertibility conditions have to be imposed and this non-trivial at all as it involves,

among other things, finding certain Kronecker indices associated with the model. For estimation

of VARMA models see Metaxoglou and Smith (2007) who introduced a state-space representation

for VARMA models that facilitates maximum likelihood estimation using the EM algorithm. This

state-space representation is related to that in Ansley and Kohn (1983) (also Jones, 1980), which

applies to VARMA models with missing data and observational errors.

A large part of the literature is based on Newbold (1974). Osborn (1977) and Hillmer and Tiao

(1979) extend Newbold’s (1974) method to vector MA models, and Nicholls and Hall (1979) extend

it to the VARMA case. These formulations still rely on calculation of the inverse and determinant of

a high-dimensional covariance matrix which is highly nonlinear in the parameters. Using operations

on lower dimension matrices, Mauricio (1995, 1997) improves its computational efficiency.

In this paper, our proposal is to combine univariate ARMA models to produce a variant of the

VARMA model that is much more easily implementable and does not involve complications such as

invertibility, finding certain Kronecker indices etc. The univariate ARMA models are efficiently com-

bined using a novel Multivariate Mixture-of-Normals copula. Similar ideas but in a non-parametric

Bayesian context have been proposed by Nieto-Barajas and Quintana (2015), Nieto-Barajas et al.

(2012), Taddy (2010), Basseti et al. (2014), Rodríguez and ter Horst (2008), Di Lucca et al. (2013).

The rest of the paper is organized as follows. The model and posterior simulation are dis-

cussed in Section 2. In Sections 3 and 4 we consider empirical applications: Large Bayesian VAR and
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VARMAs in section 3.1, and a larger VAR in Section 3.2. A Multivariate Stochastic Volatility is con-

sidered in Section 4.1. In Section 4.2 we take up a comparison with time-varying copulas. In section

5, we compare with Giannone, Lenza, and Primiceri (2015, GLP) who estimated a large Bayesian

VAR in 22 variables and proposed a comparison of impulse response functions of a Bayesian VAR

model with impulse response functions delivered from repeated simulations of a dynamic stochastic

general equilibrium (DSGE) model. The final section offers some concluding remarks.

2 Models and posterior simulation

2.1 General techniques

A VAR model is given by:

yt =
L
∑

l=1

Alyt−l + ut, t = L+ 1, . . . , T, (1)

where yt is an n × 1 time series. As the number of parameters is Ln2 the VAR quickly generates

a large number of parameters. When ut ∼ N(0,Σ) we have another n2 parameters in the error

covariance matrix Σ.

Here, we describe a viable alternative. For a random variable y taking values in R
k, we know

from Sklar’s (1959) theorem that a joint density can be represented as:

p(y) =
k
∏

j=1

pj(yj) · c(u1, . . . , uk), (2)

where uj = Pj(yj) =
´ yj

−∞
pj(ψ)dψ and c(u1, . . . , uk) represents a copula density. If we think of

pj(yj) as approximation to the marginals, then given a copula we have:

log p(y) ≃
k
∑

j=1

log pj(yj) + log c(u1, . . . , uk) ≡ log q(y). (3)

For the marginal distributions, in the context of a VAR model we can choose univariate AR

processes:

yit =
L
∑

l=1

βilyi,t−l + vit, vit ∼ i.i.d.N(0, σ2
i ), ∀i = 1, . . . , n. (4)

The specification can be enriched to take account of special features of the data like, for

example, different number of lags, fat tails or time-varying heteroskedasticity etc. For example, we
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may assume:

vit ∼ indep.N (0, σ2
it), ∀i = 1, . . . , n, (5)

σ2
it = αi + γiσ

2
i,t−1 + δiv

2
i,t−1, (6)

a simple GARCH(1,1) process. As the processes in (4) and (5) are univariate, they can be mod-

eled easily almost without restrictions. For the copula function in (2) or (3) we choose a flexi-

ble family based on a mixture of normals (henceforth, CMN). Given a multivariate distribution

f(x) = f(x1, ..., xd), x ∈ R
d, we can always model the joint distribution using a copula:

f(x) =

d
∏

j=1

fj(xj)c(u), (7)

where u ∈ S , S = {u ∈ R
d|0 ≤ uj ≤ 1, j = 1, ..., d}, uj = F−1

j (xj), j = 1, ..., d is the inverse

distribution function of xj , c(u) = c(u1, ..., ud) is a copula function and fj(xj), j = 1, ..., d denotes

the marginal densities. Of course, we have uj = Fj(xj), j = 1, .., ., d. A flexible model for a copula

is a mixture-of-normals:

c(u) = c(F1(x1), ..., Fd(xd)) ≡ ψ(x;α) =

G
∑

g=1

pgfN,d(µg,Ωg), (8)

where fN,d(µg,Ωg) is the density of a multivariate normal distribution with mean µg and covariance

matrix Ωg, g = 1, ..., G, p = [p1, ..., pG]
′ is a vector of mixing probabilities, and α ∈ A ⊆ R

dα denotes

the entire vector of parameters in probabilities p, means µ = [µ1, ..., µG]
′

and covariance matrices

Ωg.

Once a copula ψ(x;α) in (8) has been determined, the joint distribution in (7) can be deter-

mined easily. As an alternative to (8) we use a mixture of Student-t densities:

ψ(x;α) =
G
∑

g=1

pgft,d(µg,Ωg, ν(g)), (9)

where ν =
[

ν(1), ..., ν(G)

]′
is a vector of the degrees of freedom which becomes also an element of

vector α.

Typically, the marginals and their distribution functions, fj(xj ;βj) and Fj(xj ;βj), j = 1, ..., d,

belong in some parametric family parametrized by the vector βj ∈ R
dβj , j = 1, ..., d. Typically, esti-

mates β̂j of βj are obtained in a first stage where univariate analysis based on maximum likelihood,

for example, is used to determined these estimates. In the second stage, we can formulate a likelihood

6



function of the form:

L(α;X) =
T
∏

t=1

ψ (xt;α) , (10)

where X denotes the entire data set, and ψ is given by (8) or (9). Given a prior p(α) we can

formulate the posterior by Bayes’ theorem:

p (α|X) ∝ L(α;X) · p(α), α ∈ A ⊆ R
dα . (11)

In turn, the posterior can be analyzed using a variety of Sequential Monte Carlo (SMC) or

Markov Chain Monte Carlo (MCMC) techniques. The techniques we use are based on the Particle

Filtering (PF) approach and they are provided in the Technical Appendix. Of course, the possibility

is open to determine the parameters of the marginal models and the parameters of the copula in

one step, using the likelihood function:

L(θ;X) =

T
∏

t=1



ψ (xt;α) ·
d
∏

j=1

fj(xjt;βj)



 , (12)

where θ = [α′, β′
1, ..., β

′
d]

′ ∈ Θ ⊆ R
dθ . Using a prior, p(θ), we can formulate the posterior:

p(θ|X) ∝ L(θ;X) · p(θ), θ ∈ Θ. (13)

The substantial problem is how to deal with the dimensionality problems when d is large and,

therefore, the covariance matrices Ωg, g = 1, ..., G are high-dimensional. For parameters µg or νg

such problems can be dealt with more easily as they are in R
d and R respectively so we can tolerate

more easily their proliferation as d grows larger.

Our first strategy is the following. Suppose we leave Ω1 unrestricted. For the remaining

matrices we choose:

Ωg = hgΩg−1 + Vg, g = 2, ..., G, (14)

where Vg = diag[vg1, ..., vgd], g = 2, ..., G are diagonal matrices (V1 = O) and hg > 0, g = 2, ..., G

are scalars. For Ω1 we can use the decomposition Ω1 = C ′
1C1 where C1 is lower triangular and

we treat the elements c1 ≡
[

cij , i ≥ j, i, j = 1, ..., d(d+1)
2

]

along and below the main diagonal as

unrestricted parameters. The parametrization is also in terms of h∗g and v∗gj where hg = exp
(

h∗g
)

and vgj = exp
(

v∗gj
)

(j = 1, ..., d, g = 2, ..., G) and h∗g, v
∗
gj ∈ R, are unrestricted. These parameters

are all elements of α or θ in (11) and (13) respectively.
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Whether or not the second-stage or single-stage posterior in (11) and (13) perform better is

an empirical matter.

Our second strategy is the following. Again, we leave Ω1 unrestricted. For any matrix V

we have:

V = QQ′ = EΛ1/2, (15)

where E is the d × d matrix of eigenvectors and Λ is the d × d diagonal matrix of eigenvalues.

Humphreys et al (2015) propose the approximation:

Vo = QoQ
′
o +D, (16)

where Qo is a d× k matrix containing the k eigenvectors, i.e. columns, of Q that correspond to the

k largest eigenvalues, and D is an d× d diagonal matrix. The approach of Humphreys et al (2015)

reduces the data storage requirements to scale proportional to the trace length d rather than d2

making the approach practical for storage.

In our setting Qo corresponds to any of the matrices Ω2, ...,ΩG. Therefore we have

Ωg = Qo,gQ
′
o,g +Dg, g = 2, ..., G, (17)

and we do not attempt to estimate Qo,g. Instead we fill its elements with dk random numbers

from N(0, h2g) and we perform R searches over these random numbers along with the dimensionality

parameter k in a fashion related to the Bayesian Compression (BC) literature (Guhaniyogi and

Dunson, 2016). The d diagonal elements of D and hgs are treated as unknown parameters and

they are estimated. However, the problem is not so daunting any more as sufficient dimensionality

reduction has taken place.

We call the two strategies above, S-1 and S-2 respectively.

3 Empirical Applications I

3.1 Large Bayesian VAR and VARMA

We follow the paper by Chan, Eisenstat and Koop (2015). They investigate the performance of

their algorithm (using soft SSVS and a special prior) in a substantive empirical application involving

quarterly US macroeconomic data in VARMAs of varying dimensions: n = 3,n = 7and n = 12. The
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data covers the quarters 1959:Q1 to 2013:Q4. All data is transformed to stationarity. For n = 3 the

variables are Real Gross Domestic Product, Consumer Price Index: All Items, and Effective Federal

Funds Rate. For n = 7 the variables are the ones we mentioned plus Average Hourly Earnings:

Manufacturing, M2 Money Stock, Spot Oil Price: West Texas Interm., and S&P 500 Stock Price

Index. For n = 12 the additional variables are Real Personal Consumption Exp., Housing Starts:

Total, Real Gross Private Domestic Invest., ISM Manuf.: PMI Composite Index. In Table 1 we

report sum of log predictive likelihoods for comparison with VARMA models for Chan, Eisenstat

and Koop (2015).

Our version of the VARMA(4,4) performs at least as well as the one in Chan, Eisenstat

and Koop (2015) and we see an improvement in the case with n = 12. Table 2 presents predictive

likelihoods for the variables which are common to all models. This allows for a comparison of different

dimensional VARMAs and VARs, at least in terms their ability to forecast inflation, output growth

and the interest rate.

Again, our VARMA performs as well as the models in Chan, Eisenstat and Koop (2015) and

we even have a slight improvement for n = 12. The VAR(4) models perform similarly: This fact is

quite reassuring as we can be relatively confident that our approach compares favorably with more

difficult to implement methods. Impulse response functions also behave quite similarly and they are

even better compared to the ones reported in Figures 1 and 2 of Chan, Eisenstat and Koop (2015).

3.2 A larger VAR

A larger VAR comprised of 25 U.S. macroeconomic variables is used in Koop (2013). The data set

runs from 1959:Q1 to 2010:Q2. Koop (2013) transforms all variables to stationarity. He investigates

the performance of our approach in forecasting inflation, GDP and the interest rate which are

the variables in our small TVP-VAR. The transformations are such that the dependent variables

are the percentage change in inflation (the second log difference of CPI), GDP growth (the log

difference of real GDP) and the change in the interest rate (the difference of the Fed funds rate).

He also standardized all variables by subtracting off a mean and dividing by a standard deviation.

He calculates this mean and standard deviation for each variable using data from 1959Q1 through

1969Q4 (i.e. data before the forecast evaluation period). Our comparison with his results is reported

in Table 3.

To implement the Heteroskedastic VAR we follow the same approach as in Koop (2013) for

our marginal models and we do the same for the TVP-VAR model. Koop (2013) uses forgetting
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factors and does not estimate the covariance matrix of the VAR or the covariance matrix of the time-

varying coefficients. Of course, in our univariate models we do not have such covariance matrices.

Dependence is introduced via a Multivariate Gaussian Mixture model whose implementation in

practice, is not particularly difficult.

4 Empirical Applications II

4.1 Multivariate Stochastic Volatility

For a comparison with existing MSV models we focus on McCausland, Miller and Pelletier (2012).

The authors analyze daily returns of 10 currencies relative to the US dollar: the Swiss Franc (CHF),

Euro (EUR), Australian Dollar (AUD), New Zealand Dollar (NZD), Mexican Peso (MXN), Brazil

Real (BRL), British Pound (GBP), Canadian Dollar (CAD), Japanese Yen (JPY) and Singapore

Dollar (SGD). The exchange rates are the noon spot rate obtained from the Federal Reserve Bank of

New York. The sample covers the period from January 5, 1999 to December 31, 2008. The authors

compute the log returns of the exchange rates and remove returns for those days when one or more

of the markets was closed, giving 2503 observations for each return series.

McCausland, Miller and Pelletier (2012) propose and use a model with no factors (MSV-q0)

and a model with one common factor (MSV-q1). Posterior means and s.d. of their parameters are

reported in their Tables 10 and 11. In Table 4, we report percentage differences of our approach

compared to theirs.

Unfortunately, relative numerical efficiency (RNE) in McCausland, Miller and Pelletier (2012)

is quite small (on the average 2 · 10−3 approximately). In our case with 55,000 draws the first

5,000 of which are discarded, RNE ranged from 0.212 (MXN) to 0.453 (EUR) which represents a

substantial improvement. The (vast) improvement is that our sampling - resampling scheme draws

practically i.i.d. from the posterior and any remaining autocorrelation is due to MCMC in the

univariate models. As MCMC in the univariate models follows Kim, Shephard, and Chib (1998),

autocorrelation is reduced substantially as the blocks of latent volatilities are sampled together.

4.2 A comparison with time-varying copulas

Creal and Tsay (2015) proposed copula models that have flexible dynamics and heavy tails yet remain

tractable in high dimensions due to their factor structure. Their Bayesian estimation approach

uses recent advances in sequential Monte Carlo methods (the particle Gibbs sampling) which can
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draw large blocks of latent variables efficiently and in parallel. As copulas rely on a vector ut =

[ut1, . . . , utn]
′, 0 ≤ uit ≤ 1, Creal and Tsay (2015) proposed the following model:

ut ∼ p(ut, |Λt,Yt, θ), t = 1, . . . , T,

Λt+1 = µ+Φ (Λt − µ) + ηt, ηt ∼ N (0,Σ),
(18)

where Λt is an unobserved state vector, Yt = (Yt1, . . . , Ytn) denotes the data, and θ contains all

parameters of the model. From the marginals, Creal and Tsay (2015) calculate the probability

integral transforms uit and then use them as data to perform statistical inference in (18). Although

the c.d.f’s of stochastic volatility models are not known in closed-form, the authors show how to

calculate the probability integral transforms using the particle filter. In this paper, we follow a

similar approach.

Our approach is different in that we take the copula from the data without the need to perform

further MCMC computations. We introduce here a variation of our basic formulation in (11):

p(θ|Yτ ) ∝

{

n
∏

i=1

p(yi,τ |βi,τ ) ·
n
∏

i=1

p(βi,τ |ατ )

}

· p(ατ ) · c(uτ ;ατ ), τ = T ∗ + 1, . . . , T, (19)

where T ∗ represents a certain minimum sample size, Yτ represents the data from observa-

tion 1 to τ and the parameters βi,τ and ατ are indexed in a similar way. Instead of building a

dynamic copula as in Creal and Tsay (2015) we keep the same functional form of the copula density

function and re-estimate the univariate models for horizons 1 to τ where τ = T ∗ + 1, . . . , T . The

re-computations are easily done using MCMC in parallel. As an alternative, to estimate the model

for 1 to τ + h we use sampling - resampling of the draws for 1 to τ . The exact value of h is an em-

pirical matter, and we report some basic results below. In practice, we proceed backwards starting

from t = T , then we take t = T − 1, and so on until t = T − r := T ∗.

Creal and Tsay (2015) have collected daily equity returns and log differences in credit default

swap (CDS) rates for 100 U.S. Corporations from January 2, 2008 to February 28, 2013. All 100

firms are components of the S&P 500 index. The CDS rate is the 5 year contract with the XR

clause. The data on equity prices are from the Center for Research in Securities Prices (CRSP)

and the data on the 5 year CDS are from the Markit Corporation. They restrict attention to days

when equity markets are open. This makes for a cross-section of n = 200 series with T = 1299

observations. From these nT total days, there are 2,487 observations that are randomly missing. As

we do not have the CDS data we consider data from FTSE-100 for the same time period.

As in their paper, we model the marginal distribution for each of the n = 200 series using
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univariate stochastic volatility models with leverage and skewed Student’s- t errors for the conditional

distribution subject to the qualifications in their footnote 9. The model is as follows:

yit =Witβy,i + γy,iδit + δ
1/2
it exp

(

hit

2

)

εy,it, εy,it ∼ N (0, 1), t = 1, . . . , T,

hi,t+1 = µh,i + φh,i(ht,i − µh,i) + σh,iεh,it, εh,it ∼ N (0, 1),

δit ∼ IG
( νy,i

2 ,
νy,i

2

)

, corr(εy,it, εh,it) = ρi,

(20)

where βy,i are regression parameters, Wit is a vector of covariates, νy,i is the degrees of freedom of the

Student-t distribution, γy,i is a skewness parameter, and ρi represents leverage. We have successfully

replicated Table 1 in Creal and Tsay (2015) containing posterior results for the univariate models in

(20). Our interest in the comparison with the methodology of Creal and Tsay (2015) lies in filtered

values of average conditional correlations and the simulated values ỹit = P−1(uit). In the interest

of brevity and space we provide as much information as we can in Table 5. For the comparison we

use MCMC for each univariate model re-estimated for each observation from 100 to T . So, in terms

of previous notation we have h = 0. Results for different values of h are available on request but are

not reported in the interest of space: We have tried values of h=5,10,20,50 and 100 and the results

were robust.

5 Impulse response analysis

In this section we use the same data as Giannone, Lenza, and Primiceri (2015, GLP) who estimated

a large Bayesian VAR in 22 variables (see their Table 1, p. 441). In Figures 1-3 we report impulse

responses that correspond exactly to Figures 2-4 in GLP (pp. 445-447). The pattern of impulse

responses is similar which is in itself striking but there are important differences in uncertainty, viz.

95% Bayes probability intervals for impulse responses. Our findings can be summarized as follows,

since we follow the same identification scheme as in GLP: “A 1-standard deviation (approximately

60 basis points) exogenous increase in the federal funds rate generates a substantial contraction in

GDP, employment, and all other variables related to economic activity. Monetary aggregates also

decrease on impact, indicating strong liquidity effects. Moreover, stock prices decline, the exchange

rate appreciates, and the yield curve flattens. Prices decrease with a delay. Notice that with the

exception of the CPI, the response of prices does not exhibit the so-called price puzzle, that is, a

counterintuitive positive response to a monetary contraction, which is instead typical of VARs with
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small information sets” (GLP, p. 446).1

GLP want also to compare their model in terms of impulse response functions with a “real”

counterpart. As we do not have one, they use a dynamic stochastic general equilibrium model

(DSGE) and assess the gains in terms of accuracy for estimating impulse responses to monetary

policy shocks relative to flat-prior Bayesian VARs. In this experiment they adopt a medium-size

DSGE model to simulate 500 artificial time series of length 200 (quarters) for seven variables, viz,

output(Y), consumption (C), investment (I), hours worked (H), wages (W), prices (P) and the short-

term interest rate (R). The DSGE model is the same as in Justiniano, Primiceri, and Tambalotti

(2010) with the exception that the private sector conditions on monetary policy as in Christano et

al. (2005). Here, we focus on the MSE of our copula-VARMA model and the model in GLP which

was compared to a flat-prior Bayesian VAR (see their Figure 6, p. 449).

From Figure 6 in GLP (p. 449) we have the ratio of MSEs of flat-prior VAR versus their

Bayesian VAR which is mostly greater than one for most horizons indicating that they approximate

better the actual impulse response function of the DSGE model. Specifically, “[f]or each replication,

we compute the overall error as the difference between the theoretical response and the estimated

median response across variables and horizons. Then, for each variable and horizon, we take the

average of the squared errors across replications (MSE). Figure 6 reports the ratio between the MSE

for the flat-prior VAR and the hierarchical BVAR. Such a ratio is greater than 1 for most variables

and horizons, indicating that the hierarchical BVAR yields substantial accuracy gains” (GLP, p.

449).

If a = MSEV AR

MSEBV AR
in GLP and b = MSEV ARMA

MSEBV AR
in our study, the ratio r = a

b = MSEV AR

MSEV ARMA
and

it can be used to compare directly with the MSE in GLP. We report this ratio for various horizons

in Figure 5. As the ratio turns out to be substantially greater than unity in many cases, we conclude

that the approach proposed here works very well in practice according to the norm put forward

by GLP. viz. by comparing directly the results obtained through repeated simulations of a DSGE

model.

Concluding Remarks

In this paper we provide reasonable approximations to large VARMA and Mutivariate Stochastic

Volatility Models (MSV) based on the idea that we can specify the marginal distributions as ARMA

1One difference in Figures 2-4 of GLP is that the gray areas refer to error bands for a flat-prior Bayesian VAR
whereas in this study they reflect the 95% Bayes probability interval, computed numerically using simulation tech-
niques.
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or univariate stochastic volatility models and then use a Multivariate Mixture-of-Normals distribu-

tion to capture the dependence. We explain how we can fit multivariate mixture-of-normals in large

dimensions by exploiting recent advances in covariance matrix representations and Bayesian Com-

pression. The encouraging results that we obtain relative to existing work, are in line with the good

performance of Multivariate Mixture-of-Normals in related fields, e.g. Geweke and Keane (2007)

and Villani, Kohn and Giordani (2009). The new copula is found to work reasonably well relative

to the exact VARMA or MSV models and its implementation using numerical MCMC techniques is

not particularly difficult. The better performance of Multivariate Mixture-of-Normals copulas, espe-

cially in high dimensions, relative to their conventional counterparts, clearly implies that there are

features in the data that are captured by the copula but not the original models (MSV or VARMA).

In this sense, we can think of the copula models not only as approximations to the original models

but rather as viable alternatives in modeling and forecasting. An application to the data by Gian-

none, Lenza, and Primiceri (2015) shows that the new model performs much better and is closer to

results delivered by medium-sized DSGE models, a fact that reinforces our conclusion.
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TECHNICAL APPENDIX

Particle filtering

The particle filter methodology can be applied to state space models of the general form:

yT ∼ p(yt|xt), st ∼ p(st|st−1), (A.1)

where st is a state variable. For general introductions see Gordon (1997), Gordon et al. (1993),

Doucet et al (2001) and Ristic et al. (2004).

Given the data Yt the posterior distribution p(st|Yt) can be approximated by a set of (auxil-

iary) particles
{

s
(i)
t , i = 1, ..., .N

}

with probability weights
{

w
(i)
t , i = 1, ..., N

}

where
∑N

i=1 w
(i)
t = 1.

The predictive density can be approximated by:

p(st+1|Yt) =

ˆ

p(st+1|st)p(st|Yt)dst ≃
N
∑

i=1

p(st+1|s
(i)
t )w

(i)
t , (A.2)

and the final approximation for the filtering density is:

p(st+1|Yt) ∝ p(yt+1|st+1)p(st+1|Yt) ≃ p(yt+1|st+1)
N
∑

i=1

p(st+1|s
(i)
t )w

(i)
t . (A.3)

The basic mechanism of particle filtering rests on propagating
{

s
(i)
t , w

(i)
t , i = 1, . . . , N

}

to the

next step, viz.
{

s
(i)
t+1, w

(i)
t+1, i = 1, . . . , N

}

but this often suffers from the weight degeneracy problem.

If parameters θ ∈ Θ ∈ ℜk are available, as is often the case, we follow Liu and West (2001) parameter

learning takes place via a mixture of multivariate normals:

p(θ|Yt) ≃
N
∑

i=1

w
(i)
t N(θ|aθ

(i)
t + (1− a)θ̄t, b

2Vt), (A.4)

where θ̄t =
∑N

i=1 w
(i)
t θ

(i)
t , and Vt =

∑N
i=1 w

(i)
t (θ

(i)
t − θ̄t)(θ

(i)
t − θ̄t)

′. The constants a and b are

related to shrinkage and are determined via a discount factor δ ∈ (0, 1) as a = (1 − b2)1/2 and

b2 = 1− [(3δ − 1)/2δ]2. See also Casarin and Marin (2007).

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide

the Particle Metropolis-Hastimgs (PMCMC) technique which uses an unbiased estimator of the

likelihood function p̂N (Y |θ) as p(Y |θ) is often not available in closed form.

Given the current state of the parameter θ(j) and the current estimate of the likelihood, say
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Lj = p̂N (Y |θ(j)), a candidate θc is drawn from q(θc|θ(j)) yielding Lc = p̂N (Y |θc) . Then, we set

θ(j+1) = θc with the Metropolis - Hastings probability:

A = min

{

1,
p(θc)Lc

p(θ(j)Lj

q(θ(j)|θc

q(θc|θ(j))

}

, (A.5)

otherwise we repeat the current draws:
{

θ(j+1), Lj+1
}

=
{

θ(j), Lj
}

.

Hall, Pitt and Kohn (2014) propose an auxiliary particle filter which rests upon the idea that

adaptive particle filtering (Pitt et al., 2012) used within PMCMC requires far fewer particles that

the standard particle filtering algorithm to approximate p(Y |θ). From Pitt and Shephard (1999)

we know that auxiliary particle filtering can be implemented easily once we can evaluate the state

transition density p(st|st−1). When this is not possible, Hall, Pitt and Kohn (2014) present a new

approach when, for instance, st = g(st−1, ut) for a certain disturbance. In this case we have:

p(yt|st−1) =

ˆ

p(yt|st)p(st|st−1)dst, (A.6)

p(ut|st−1; yt) = p(yt|st−1, ut)p(ut|st−1)/p(yt|st−1). (A.7)

If one can evaluate p(yt|st−1) and simulate from p(ut|st−1; yt) the filter would be fully adaptable

(Pitt and Shephard, 1999). One can use a Gaussian approximation for the first-stage proposal

g(yt|st−1) by matching the first two moments of p(yt|st−1). So in some way we find that the

approximating density p(yt|st−1) = N (E(yt|st−1),V(yt|st−1)). In the second stage, we know that

p(ut|yt, st−1) ∝ p(yt|st−1, ut)p(ut) . For p(ut|yt, st−1) we know it is multimodal so suppose it has

M modes are ûmt , for m = 1, . . . ,M . For each mode we can use a Laplace approximation. Let

l(ut) = log [p(yt|st−1, ut)p(ut)] . From the Laplace approximation we obtain:

l(ut) ≃ l(ûmt ) + 1
2 (ut − ûmt )′∇2l(ûmt )(ut − ûmt ). (A.8)

Then we can construct a mixture approximation:

g(ut|xt, st−1) =
M
∑

m=1

λm(2π)−d/2|Σm|−1/2 exp
{

1
2 (ut − ûmt )′Σ−1

m (ut − ûmt
}

, (A.9)

where Σm = −
[

∇2l(ûmt )
]−1

and λm ∝ exp {l(umt )} with
∑M

m=1 = 1. This is done for each particle

sit. This is known as the Auxiliary Disturbance Particle Filter (ADPF).

An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a
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proposal for st directly from the measurement density p(yt|st) although Hall, Pitt and Kohn (2014)

are quite right in pointing out that the state equation can be very informative.

In the standard particle filter of Gordon et al. (1993) particles are simulated through the state

density p(sit|s
i
t−1) and they are re-sampled with weights determined by the measurement density

evaluated at the resulting particle, viz. p(yt|s
i
t).

The ADPF is simple to construct and rests upon the following steps:

For t = 0, . . . , T − 1 given samples skt ∼ p(st|Y1:t) with mass πk
t for k = 1, ..., N .

1) For k = 1, . . . , N compute ωk
t|t+1 = g(yt+1|s

k
t )π

k
t , π

k
t|t+1 = ωk

t|t+1/
∑N

i=1 ω
i
t|t+1 .

2) For k = 1, . . . , N draw s̃kt ∼
∑N

i=1 π
i
t|t+1δ

i
st(dst).

3) For k = 1, . . . , N draw ukt+1 ∼ g(ut+1|s̃
k
t , yt+1) and set skt+1 = h(skt ;u

k
t+1).

4) For k = 1, . . . , N compute

ωk
t+1 =

p(yt+1|s
k
t+1)p(u

k
t+1)

g(yt+1|skt )g(u
k
t+1|s̃

k
t , yt+1)

, πk
t+1 =

ωk
t+1

∑N
i=1 ω

i
t+1

. (A.10)

It should be mentioned that the estimate of likelihood from ADPF is:

p(Y1:T ) =

T
∏

t=1

(

N
∑

i=1

ωi
t−1|t

)(

N−1
N
∑

i=1

ωi
t

)

. (A.11)

Particle Metropolis adjusted Langevin filters

Nemeth, Sherlock and Fearnhead (2014) provide a particle version of a Metropolis adjusted Langevin

algorithm (MALA). In Sequential Monte Carlo we are interested in approximating p(st|Y1:t, θ).

Given that:

p(st|Y1:t, θ) ∝ g(yt|xt, θ)

ˆ

f(st|st−1, θ)p(st−1|y1:t−1, θ)dst−1, (A.12)

where p(st−1|y1:t−1, θ) is the posterior as of time t − 1. If at time t − 1 we have a set set of

particles
{

sit−1, i = 1, . . . , N
}

and weights
{

wi
t−1, i = 1, . . . .N

}

which form a discrete approximation

for p(st−1|y1:t−1, θ) then we have the approximation:

p̂(st−1|y1:t−1, θ) ∝
N
∑

i=1

wi
t−1f(st|s

i
t−1, θ). (A.13)

See Andrieu et al. (2010) and Cappe at al. (2005) for reviews. From (A.13) Fernhead (2007)
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makes the important observation that the joint probability of sampling particle sit−1 and state st is:

ωt =
wi

t−1g(yt|st, θ)f(s|s
i
t−1, θ)

ξitq(st|s
i
t−1, yt, θ)

, (A.14)

where q(st|s
i
t−1, yt, θ) is a density function amenable to simulation and

ξitq(st|s
i
t−1, yt, θ) ≃ cg(yt|st, θ)f(st|s

i
t−1, θ), (A.15)

and c is the normalizing constant in (A.12).

In the MALA algorithm of Roberts and Rosenthal (1998)2 we form a proposal:

θc = θ(s) + λz + λ2

2 ∇logp(θ(s)|Y1:T ), (A.16)

where z ∼ N(0, I) which should result in larger jumps and better mixing properties, plus lower

autocorrelations for a certain scale parameter λ. Acceptance probabilities are:

a(θc|θ(s)) = min

{

1,
p(Y1:T |θ

c)q(θ(s)|θc)

p(Y1:T |θ(s))q(θc|θ(s))

}

. (A.17)

Using particle filtering it is possible to create an approximation of the score vector using Fisher’s

identity:

∇ log p(Y1:T |θ) = E [∇ log p(s1:T , Y1:T |θ)|Y1:T , θ] , (A.18)

which corresponds to the expectation of:

∇ log p(s1:T , Y1:T |θ) = ∇ log p(|s1:T−1, Y1:T−1|θ) +∇ log g(yT |sT , θ) +∇ log f(sT |s|T−1, θ),

over the path s1:T . The particle approximation to the score vector results from replacing p(s1:T |Y1:T , θ)

with a particle approximation p̂(s1:T |Y1:T , θ) . With particle i at time t-1 we can associate a value

αi
t−1 = ∇ log p(si1:t−1, Y1:t−1|θ) which can be updated recursively. As we sample κi in the APF (the

index of particle at time t− 1 that is propagated to produce the ith particle at time t) we have the

update:

αi
t = aκi

t−1 +∇ log g(yt|s
i
t, θ) +∇ log f(sit|s

i
t−1, θ). (A.19)

2The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters n is large. This
happens because the scaling parameter λ is O(n−1/2)for Random-Walk-Metropolis but it is O(n−1/6) for MALA, see
Roberts et al. (1997) and Roberts and Rosenthal (1998)
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To avoid problems with increasing variance of the score estimate ∇ log p(Y1:t|θ) we can use the

approximation:

αi
t−1 ∼ N(mi

t−1, Vt−1). (A.20)

The mean is obtained by shrinking αi
t−1 towards the mean of αt−1 as follows:

mi
t−1 = δαi

t−1 + (1− δ)

N
∑

i=1

wi
t−1α

i
t−1, (A.21)

where δ ∈ (0, 1) is a shrinkage parameter. Using Rao-Blackwellization one can avoid sampling αi
t

and instead use the following recursion for the means:

mi
t = δmκi

t−1 + (1− δ)

N
∑

i=1

wi
t−1m

i
t−1 +∇ log g(yt|s

i
t, θ) +∇ log f(sit|s

κi

t−1, θ), (A.22)

which yields the final score estimate:

∇ log p̂(Y1:t|θ) =
N
∑

i=1

wi
tm

i
t. (A.23)

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking δ = 0.95. Fur-

thermore, they show the important result that the algorithm should be tuned to the asymptotically

optimal acceptance rate of 15.47% and the number of particles must be selected so that the variance

of the estimated log-posterior is about 3. Additionally, if measures are not taken to control the error

in the variance of the score vector, there is no gain over a simple random walk proposal.

Of course, the marginal likelihood is:

p(Y1:T |θ) = p(y1|θ)
T
∏

t=2

p(yt|Y1:t−1, θ), (A.24)

where

p(yt|Y1:t−1, θ) =

ˆ

g(yt|st)

ˆ

f(st|st−1, θ)p(st−1|Y1:T−1, θ)dst−1dst, (A.25)

provides, in explicit form, the predictive likelihood.
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Table 1. Sum of log predictive likelihoods

n = 3 n = 7 n = 12 W

VARMA(4,4)(a) -182.5 -401.9 -492.3

VARMA(4,4)(a) -188.1 -406.0 -504.2

VAR(4) -187.1 -406.7 -496.9

this paper -179.41 -401.12 -490.02 0.32

VAR(4) -187.1 -406.8 -496.9 0.24

VARMA(4,4) -182.5 -401.9 -492.1 0.29

VAR(4), S-1 -187.0 -406.7 -496.7 0.22

VAR(4), S-2 -182.3 -401.7 -492.0 0.21
Notes: (a) These are different versions of the VARMA model corresponding to different prior (echelon) restrictions. The numbers in the first three rows are

taken from Chan, Eisenstat and Koop (2015), Table 7. In the multivariate normal mixture we consider G = 3 based on values of the marginal likelihood. For

the Linear Combination approach we average across 10,000 different sets of weights. The averaging is performed using weights derived from marginal likelihoods

converted to posterior model probabilities. S-1 and S-2 correspond to the two alternative strategies in Section 2, related to Multivariate Mixture-of-Normals.
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Table 3. Sum of log predictive likelihoods based on the predictive density of the three variables in the n = 3

case.

n = 3 n = 7 n = 12

VARMA(4,4)(a) -182.5 -182.2 -181.1

VARMA(4,4)(a) -188.1 -185.4 -187.4

VAR(4) -187.1 -187.2 -191.0

VAR(4) this paper -183.1 -184.2 -189.0

VARMA(4,4) this paper -180.5 -180.2 -180.0
Notes: (a) These are different versions of the VARMA model corresponding to different prior (echelon) restrictions. The numbers in the first three rows are

taken from Chan, Eisenstat and Koop (2015), Table 8.
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Table 4: Relative Mean Squared Forecast Errors, GDP, Comparison with Koop (2013)

Forecast horizon W

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

TVP-VAR(a), λ = 0.99, βT+h = βT 1.03 1.04 1.02 1.06 1.07 1.07 1.06 1.10

TVP-VAR(a), λ = 0.99, βT+h ∼ RW 1.02 1.05 1.03 1.06 1.06 1.08 1.07 1.09

TVP-VAR, this paper 1.01 1.02 1.03 1.04 1.04 1.05 1.06 1.06 0.32

TVP-VAR, S-1 1.01 1.02 1.02 1.03 1.03 1.04 1.05 1.05 0.25

TVP-VAR, S-2 1.02 1.02 1.03 1.04 1.04 1.05 1.06 1.07 0.20

VAR Heteroskedastic(a) 1.09 1.12 1.08 1.11 1.09 1.10 1.10 1.13

VAR Heteroskedastic, this paper 1.09 1.11 1.08 1.10 1.09 1.10 1.11 1.13 0.35

VAR Heteroskedastic, mixture 1.09 1.10 1.05 1.12 1.08 1.12 1.11 1.14 0.27

VAR Heteroskedastic, lin.comb. 1.09 1.11 1.07 1.11 1.13 1.11 1.12 1.13 0.21

VAR Homoskedastic(a) 1.02 1.05 1.04 1.04 1.03 1.03 1.03 1.05

VAR Homoskedastic, this paper 1.02 1.05 1.04 1.04 1.03 1.03 1.04 1.05 0.22

VAR Homoskedastic, mixture 1.02 1.05 1.06 1.05 1.03 1.05 1.04 1.06 0.19

VAR Homoskedastic, lin. comb. 1.02 1.05 1.05 1.05 1.06 1.07 1.04 1.05 0.13
Notes: (a) These are taken from Koop (2013), Table 8. “RW” stands for “random walk”. In the multivariate normal mixture we consider G = 4 based on

values of the marginal likelihood. For the Linear Combination approach we average across 10,000 different sets of weights. The averaging is performed using

weights derived from marginal likelihoods converted to posterior model probabilities.
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Table 5: Posterior parameters for MSV-q1 model

(Comparison with McCausland, Miller and Pelletier, 2012. Reported results are % differences of first two posterior moments)

post. mean post. s.d. post. mean post. s.d.

CHF EUR

αi 0.13% 0.071% αi 0.15% 0.051%

Aii 0.43 0.032 Aii 0.31 0.024

Aij 0.17 0.11 Aij 0.22 0.15

σii 0.32 0.17 σii 0.15 0.07

νi 0.11 0.11 νi 0.15 0.13

σα 0.07 0.03 σα 0.04 0.04

AUD NZD

αi 0.10% 0.09% αi 0.15% 0.13%

Aii 0.17 0.12 Aii 0.13 0.11

Aij 0.15 0.14 Aij 0.14 0.12

σii 0.09 0.12 σii 0.15 0.07

νi 0.06 0.05 νi 0.07 0.08

MXN BRL

αi 0.13% 0.21% αi 0.18% 0.13%

Aii 0.14 0.07 Aii 0.11 0.11

Aij 0.15 0.13 Aij 0.10 0.15

σii 0.14 0.11 σii 0.14 0.12

νi 0.21 0.17 νi 0.18 0.13

GBP CAD

αi 0.14% 0.12% αi 0.11% 0.11%

Aii 0.17 0.10 Aii 0.15 0.09

Aij 0.08 0.07 Aij 0.12 0.10

σii 0.15 0.10 σii 0.10 0.10

νi 0.11 0.10 νi 0.12 0.11

JPY SGD

αi 0.21% 0.33% αi 0.18% 0.10%

Aii 0.15 0.15 Aii 0.22 0.11

Aij 0.11 0.20 Aij 0.16 0.17

σii 0.12 0.32 σii 0.34 0.25

νi 0.13 0.15 νi 0.10 0.44
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Table 6: Comparison with Creal and Tsay (2015)

5% 25% 50% 75% 95%

ỹit difference(a) 0.007 0.001 0.001 0.001 -0.002

Gaussian mixture 0.006 0.001 0.001 0.001 -0.002

Linear combinations 0.007 0.001 0.002 0.002 -0.003

conditional correlations

posterior mean for FTSE 0.0035 0.0017 0.0011 0.008 0.015

posterior mean for S&P 0.0022 0.0010 0.007 0.009 0.0011

conditional volatility

KO, equity 0.006 0.003 0.003 0.003 0.005

BA, equity 0.005 0.003 0.002 0.002 0.004

AIG, equity 0.005 0.003 0.002 0.003 0.003

GS, equity 0.003 0.002 0.002 0.003 0.005
Notes: (a) The comparison is with the factor model in Creal and Tsay (2015) using a particle filter that we implemented ourselves. For the Gaussian mixture

we used G = 5 components. For the linear combinations we used 10,000 random sets of weights.
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Figure 2
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Figure 3
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Figure 4

0 10 20
1

1.5

2

2.5

3
Y

0 10 20
0

1

2

3

4

5
C

0 10 20
0

1

2

3

4

5
I

0 10 20
0

1

2

3

4
H

0 10 20
0

2

4

6

8

10
W

0 10 20
0

1

2

3

4
P

0

1

2

3

4
R

34



 

35 
 

BANK OF GREECE WORKING PAPERS 

185. Adam, A., and T., Moutos, “Industry-Level Labour Demand Elasticities Across the 

Eurozone: Will There Be Any Gain After the Pain of Internal Devaluation?” July, 2014. 

186. Tagkalakis, O.A., “Fiscal Policy, Net Exports, and the Sectoral Composition of Output in 

Greece”, September 2014. 

187. Hondroyiannis, G. and D., Papaoikonomou, “When Does it Pay To Tax? Evidence from 

State-Dependent Fiscal Multipliers in the Euro Area”, October 2014. 

188. Charalambakis, C. E., “On Corporate Financial Distress Prediction: What Can we Learn 

From Private Firms in a Small Open Economy?, November 2014. 

189. Pagratis, S., E., Karakatsani and E. Louri, “Bank Leverage and Return on Equity Targeting: 

Intrinsic Procyclicality of Short-Term Choices”, November 2014. 

190. Evgenidis, A. and C., Siriopoulos, “What are the International Channels Through Which a 

US Policy Shock is Transmitted to the World Economies? Evidence from a Time Varying 

Favar”, January 2015. 

191. Louzis, D. P., and A.T., Vouldis, “Profitability in the Greek Banking System: a Dual 

Investigation of Net Interest and Non-Interest Income”, February 2015. 

192. Papaspyrou, S.T, “EMU 2.0 - Drawing Lessons From the Crisis - a New Framework For 

Stability and Growth”, March 2014. 

193. Litina, A and T, Palivos, “Corruption and Tax Evasion: Reflections on Greek Tragedy”, 

June 2015. 

194. Balfoussia, H. and H.D. Gibson, “Financial Conditions and Economic Activity: The 

Potential Impact of the Targeted Longer-Term Refinancing Operations (TLTROS)”, July 

2015. 

195. Louzis, P. D., “Steady-State Priors and Bayesian Variable Selection in VAR Forecasting”, 

July 2015. 

196. Zografakis, S. and A., Sarris, “The Distributional Consequences of the Stabilization and 

Adjustment Policies in Greece During the Crisis, with the Use of A Multisectoral 

Computable General Equilibrium Model”, August 2015.  

197. Papageorgiou, D. and E. Vourvachaki, “The Macroeconomic Impact of Structural Reforms 

in Product and Labour Markets: Trade-Offs and Complementarities”, October 2015. 

198. Louri, H., and P. M. Migiakis, “Determinants of Euro-Area Bank Lending Margins: 

Financial Fragmentation and ECB Policies”, October 2015. 

199. Gibson, D. H, S.G. Hall, and G. S. Tavlas, “The effectiveness of the ECB’s asset purchase 

programs of 2009 to 2012”, November 2015.  

200. Balfoussia, H and D. Malliaropulos, “Credit-less recoveries: the role of investment-savings 

imbalances”, November 2015. 

201. Kalyvitis, S., “Who Exports High-Quality Products? Some Empirical Regularities from 

Greek Exporting Firms”, December 2015. 

202. Papadopoulos, S., P. Stavroulias and T. Sager, “Systemic Early Warning Systems for EU15 

Based on the 2008 Crisis”, January 2016. 

203. Papadopoulos, G., S. Papadopoulos and T. Sager, “Credit Risk Stress Testing for EU15 

Banks: a Model Combination Approach”, January 2016. 

204. Louzis, P. D., “Macroeconomic Forecasting and Structural Changes in Steady States”, 

March 2016. 

205. Christodoulakis, N. and C. Axioglou, “Underinvestment and Unemployment: the Double 

Hazard in the Euro Area”, April 2016. 



36 

206. Bardaka, C. I., “Structural and Cyclical Factors of Greece’s Current Account Balances: A 

Note”, May 2016. 

207. Lothian, J. R., and G. S. Tavlas, “How Friedman and Schwartz Became Monetarists”, May 

2016. 

208. Balfoussia, H. and H. D. Gibson, “Firm Investment and Financial Conditions in the Euro 

Area: Evidence from Firm-Level Data”, June 2016. 

209. Samantas, G.I., “On the Optimality of Bank Competition Policy”, July 2016.  

210. Malliaropulos, D., and P.M. Migiakis, “The Re-Pricing of Sovereign Risks Following the 

Global Financial Crisis”, July 2016. 

211. Asimakopoulos, I., P.K. Avramidis, D. Malliaropulos, N. G. Travlos, “Moral Hazard and 

Strategic Default: Evidence from Greek Corporate Loans”, July 2016. 

212. Tavlas, S.G., “New Perspectives on the Great Depression: a Review Essay”, September 

2016. 

213. Papapetrou, E. and P. Tsalaporta, “Inter-Industry Wage Differentials in Greece: 

Rent-Sharing and Unobserved Heterogeneity Hypotheses”, November 2016. 

214. Gibson, D.H, S.G. Hall, and G.S. Tavlas, “Self-Fulfilling Dynamics: the 

Interactions of Sovereign Spreads, Sovereign Ratings and Bank Ratings during the 

Euro Financial Crisis”, November 2016. 

215. Baumann, U. and M. Vasardani, “The Slowdown in US Productivity Growth - 

What Explains it and Will it Persist?”, November 2016. 

216. Tsionas. G.M., “Alternative Bayesian Compression in Vector Autoregressions and 

Related Models”, November 2016. 


	WorkingPaper 216.pdf
	Page 1

	WorkingPaper 217.pdf
	Page 1




