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Abstract 
In this paper we exploit properties of the likelihood function of the stochastic volatility model to show that it 
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1 Introduction

Despite numerous advances in filtering and simulation inference in the stochastic volatility model

(Jacquier, Polson and Rossi, 1994) is far from being standard. The reason is that MCMC and simula-

tion techniques can behave unpredictably in certain data sets because of non-convergence, significant

autocorrelation and / or tuning of certain parameters of the simulation. For different approaches see

Chib, Nardari, and Shephard (2002), Danielsson (1994), de Jong and Shephard (1995), Kim, Shephard

and Chib (1998), Knight, Satchell and Yu (2002), and Pitt and Shephard (1999). Excellent reviews

are subsumed in Shephard (1996), Chib et al (2002) and Kim et al (1998). For alternative techniques

based on the Hessian matrix of the log-posterior and Laplace approximations, see McCausland (2012)

and Richard and Wang (2007).

In this paper we use a response surface methodology to obtain key components of the likelihood

function in terms of the structural parameters of the stochastic volatility model. This is possible

because the key components are expectations (with respect to a multivariate normal distribution)

which are smooth and behave almost as linear functions of squared returns. The parameters of these

functions depend on the structural parameters and this gives rise to the question of approximating

them themselves. It turns out that simple functions of the structural parameters can be used to provide

highly accurate approximations to order 10−9 or better.

Response surface methodology was used primarily in connection to optimization in “black box”

systems; see the classic paper of Box and Wilson (1951). Since then there have been quite a few

applications in statistics; see Box, Hunter and Hunter (1978), Box and Draper (1987), Myers and

Montgomery (1995) Khuri and Cornell (1996), Hood and Welch (1993), inter alia. The idea is that

the output of a complex system or model can be approximated in terms of the underlying parameters

or variables and, in turn, use interpolation to predict the output of the model on other values of the

parameters or variables using interpolation.

Somewhat surprisingly we show that statistical inference in models with leverage or multivariate

stochastic variance models does not require more approximations and the response surface techniques

developed for the univariate case will suffice even in high-dimensional stochastic variance models.

Clearly this opens up the way for routine implementations of highly accurate estimation and inference

in this class of models requiring only interpolation or straightforward table look-up. Even this can be

avoided since there are simple relationships between the structural parameters, the key components of

the likelihood and certain coefficients related to the approximation of the latter.
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2 Model and approximation

Consider the stochastic volatility (SV) model

yt = exp
(
1
2ht

)
ut, (1)

ht = α+ ρht−1 + εt, t = 1, ..., T, (2)

where ut ∼ iidN (0, 1) and εt ∼ iidN
(
0, σ2

)
, t = 1, ..., T . For the initial condition we assume h0 = α

1−ρ .

The likelihood function in terms of the parameters θ = [α, ρ, σ]′ is

L(θ; yT ) = (2π)−Tσ−T
T∏

t=1

exp

{
−ht

2
− y2t exp(−ht)

2
− (ht − α− ρht−1)

2

2σ2

}
dhT , (3)

where generically yT = [y1, ..., yT ]
′. Using the last term and well known formulae for an AR(1) process

we have:

hT ∼ NT (µ(θ), V (θ)) . (4)

Define the function ft(h) = exp
[
− 1

2

{
h+ y2t exp(−h)

}]
, for some t = 1, ..., T . Then it follows

logL(θ; yT ) = −T

2
log(2π) +

T∑
t=1

logE
[
ft(ht)|y(t−1)

]
,

where y(t−1) denotes the past history of yt. The essence of the approximation proposed in the paper is

to adopt different conditioning as a means to arrive at a convenient expression that can be automated

in terms of computations. We propose, specifically, to work with the following expression:

logL(θ; yT ) = −T

2
log(2π) +

T∑
t=1

logEft(ht), (5)

where the expectation is taken with respect to the joint distribution of hT in (4). The log of the

expectation of f(h), which arises also in Sandmann and Koopman (1998) and Kim et al. (1998) and

are related to the density of a logχ2
1 variable. The expression has a particularly simple form for the

plausible range of the parameters and can be approximated extremely accurately with a linear or

quadratic function of y2t . These points are illustrated, for typical parameter values, in Figure 1. Figure
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1a reports typical functions ft(h) as a function of h for various values of y2t . In Figure 1b reported are

typical functions logEft(h) as a function of y2t and various configurations of the structural parameters.

Notice that in Figure 1b the range of y2t extends from zero to one which is more extended compared

to the plausible values of squared returns.

This implies that for given parameters θ the log of the expectations in (5) can be approximated

accurately by

logEf(ht) = dθ1 + dθ2y
2
t + dθ3y

4
t + wθ = z′tdθ + wθ, (6)

where z′t = [1, y2t , y
4
t ] , dθ = [dθ1, dθ2, dθ3]

′, wθ denotes the approximation error and the subscript

θ emphasizes the dependence of the approximating coefficients and approximation error on the true

parameters. Although this result is useful in its own right it turns out that the parameters in dθ can

be also approximated extremely accurately by a simple function of θ, viz.,

dθ ≈ θ′γ1 + exp(θ)′γ2, (7)

where γ1 and γ2 are parameters. To show the validity of this relationship we construct a grid G ={
θ̄g, g = 1, ..., N

}
for the parameters of the stochastic volatility process in [−1, 1]× [−0.9, 0.9]× [0, 0.5].

For each parameter in θ we use n equally spaced points so that the size of the grid is N = n3. Suppose

Θ is the N × 3 matrix consisting of all values of the parameters in the grid G, and define the N × 6

matrix C = [Θ
... exp(Θ)]. Then we can write (7) as

D = Cγ + v, (8)

where D is the N ×3 matrix consisting of the values of dθ for θ ∈ G and v denotes the error of approx-

imation. The equations in (8) are in the form of multivariate regression with the same “regressors”.

To understand the construction we can describe it in three steps:

(i) For any parameter θ ∈ G, we can obtain a corresponding value of dθ from D, using (8).

(ii) Given the coefficients dθ we use (6) to obtain the log expectations logEf(ht), t = 1, ..., T .

(iii) The expectations are substituted in (5) and the log likelihood is approximated.

The natural question is in what sense this approximation is accurate since functions ft(h) depend

4



Figure 1: Typical functions Eft(h) and logEft(h)

In this Figure, we report typical functions Eft(h) and logEft(h) for various values of y2
t as a function of h.
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on the data through squared returns y2t . As we remarked these functions can be approximated in the

worst case by quadratic functions as in (6) over the range of values y2t ∈ Q = [0, 0.25]. Specifically:

(a) we will use 1,000 equally spaced values in the interval Q to fit (6) and obtain the coefficients dθ

for any fixed θ ∈ G. Since the functions in (6) are nearly linear it has been found that even 100 values

can be used without distorting the accuracy of the approximation.

(b) The expectations in the left hand side of (6) are obtained using simulation from the T -variate

normal distribution in (4). The number of draws is fixed to 10,000 but accurate results were obtained

using as few as 1,000 draws.

(c) Next, (6) is estimated to obtain coefficients dθ. Finally,

(d) we use (8) to estimate the response surface between θ and dθ and obtain the approximating

coefficients γ.

From steps (a) through (d) we can obtain all the necessary elements that build up a response

surface between the structural parameters θ and the log expectation in (5). In Figure 2 we report a

histogram of the median absolute residuals wθ from (6) for T = 1, 500 when 30 points are used for

each parameter in the grid G for a total of 27,000 cases. All coefficients of determination (R2) are in

excess of 0.99 and as can be seen from Figure 2 the errors of approximation are 10−9 or better, for

example 10−11 and 10−12 in certain cases.
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We should remark that since our approximation is over values y2t ∈ Q there is still some dependence

of the entire approximation upon the sample size, T . The response surface methodology has to be

implemented for given values of T . We omit the details to save space but a Fortran program is

available to perform the computation. In Figure 3 we report response curves of the dθ coefficients

versus the structural parameters α and ρ for an intermediate value of σ = 0.242. In Figure 4 shown

are the entire response surfaces in terms of the structural parameters α and ρ for σ = 0.242.

3 Results

Results from artificial data, in the form of marginal posterior distributions of the structural parameters

are reported in Figure 5. The data were generated from a model with α = −0.1, ρ = 0.9 and σ = 0.1

with sample size T = 1, 500. MCMC was implemented using a Gibbs sampler with 110,000 passes

the first 10,000 of which are omitted to mitigate the impact of start-up effects and are thinned every

other 10th draw to mitigate autocorrelation. The updates for the posterior conditional distribution

ht|ht−1, ht+1, y
T are implemented using a rejection sampler for log-concave densities. Response surface

Monte Carlo has been implemented using the same configuration for an adaptive Metropolis-Hastings

algorithm that samples in the space of θ = [α, ρ, σ]
′. The computation of logEft(h) is performed

using the configurations described in steps (i)-(iii) and (a)-(d) in section 2. The marginal posteriors

are surprisingly close but (after thinning) the Metropolis-Hastings algorithm using response surface

behaves much better in terms of autocorrelation functions (acf), see Figure 5d. The maximum acf

provides the point-wise maximum of acf across all structural parameters.

4 Leverage

The stochastic volatility model with leverage effect (SVL) is given by (1) and (2) under the alternative

assumption that

 ut

εt

 ∼ iidN (0,Σ) , Σ =

 1 ϕ

ϕ 1

 , (9)
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Figure 2: Errors of approximation

In Figure 2 we report a histogram of the median absolute residuals wθ from (6) for T = 1, 500 when 30 points are used for each
parameter in the grid G for a total of 27,000 cases. All coefficients of determination (R2) are in excess of 0.99 and as can be
seen from Figure 2 the errors of approximation are 10−9 or better, for example 10−11 and 10−12 in certain cases.
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Figure 3: Response curves of dθ coefficients versus α and ρ (σ = 0.242)

In this Figure we report response curves of the dθ coefficients versus the structural parameters α and ρ for an intermediate
value of σ = 0.242.
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In this Figure we present the entire response surfaces in terms of the structural parameters α and ρ for σ = 0.242.
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Figure 5: Marginal posterior distributions (artificial data)

Results from artificial data, in the form of marginal posterior distributions of the structural parameters are reported in this
Figure. The data were generated from a model with α = −0.1, ρ = 0.9 and σ = 0.1 with sample size T = 1, 500. MCMC
was implemented using a Gibbs sampler with 110,000 passes the first 10,000 of which are omitted to mitigate the impact of
start-up effects and are thinned every other 10th draw to mitigate autocorrelation. The updates for the posterior conditional
distribution ht|ht−1, ht+1, y

T are implemented using a rejection sampler for log-concave densities. Response surface Monte
Carlo has been implemented using the same configuration for an adaptive Metropolis-Hastings algorithm that samples in the
space of θ = [α, ρ, σ]′. The computation of logEft(h) is performed using the configurations described in steps (i)-(iii) and (a)-(d)
in section 2.
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where ϕ is the correlation coefficient between asset return and its volatility. It follows from standard

properties of the bivariate normal distribution that

εt = ϕσut + σ
√
1− ϕ2ξt, (10)

where ξt ∼ iidN(0, 1). The state equation (2) can be written as (Malik and Pitt, 2011)

ht = α+ ρht−1 + ϕσyt−1 exp(− 1
2ht−1) + σ

√
1− ϕ2ξt, (11)

and the new model is given by equations (1) and (11). If we define the parameter vector θ = [α, ρ, σ, ϕ]
′

the likelihood function of the model is

L(θ; yT ) =
(
2πσ

√
1− ϕ2

)−T

exp

(
− 1

2

T∑
t=1

Qt

)
dhT , (12)

where Qt = ht + y2t exp(− 1
2ht)+

1
σ2(1−ϕ2) [ht −α− ρht−1 −ϕσyt−1 exp(− 1

2ht−1)]
2, t = 1, ..., T . Clearly

the log likelihood in (12) can be written as

logL(θ; yT ) = −T
2 log(2πσ

√
1− ϕ2) +

T∑
t=1

logE exp[− 1
2f(ht)], (13)

where, as before, ft(h) = exp[h + y2t exp(− 1
2h)] and the expectation is taken with respect to the

process in (11). The global approximation of the expectations in (13) requires taking account of the

dependence of these expectations on the two variables yt−1 and ht−1. Conditioning on them both yt

and ht can be simulated from (1) and (11). Therefore the correct way to express the function f is

really ft(h; yt−1, ht−1) = exp[h + y2t exp(− 1
2h)] and the expectation in (13) is taken with respect to

(yt, ht)|yt−1, ht−1, t = 1, ..., T . Compared to the simple SV model there are two differences. First, the

expectation has to be approximated over yt−1 and ht−1, rather than over y2t−1 alone. Second, in the SV

model with leverage the expectations in (13) has to be approximated term-by-term for all t = 1, ..., T .

In the SV model the term-by-term evaluation can be avoided at the cost of drawing from a T -variate

normal distribution. Using 50,000 Monte Carlo simulations and 50 points for a grid on yt−1 and ht−1,

surface plots of the log expectation are provided in Figure 6. From the figure it is clear that the log

expectation is roughly linear, indeed the values of R2 are very close to 1.

The reader will, of course, wonder how can it be possible to have a quadratic surface in the case of

SV model but nearly a hyperplane in the SVL model. The reason is that the range of ht−1 has been

11



Figure 6: Values of logE exp[− 1
2f(ht; yt−1, ht−1)] for selected parameter values

Using 50,000 Monte Carlo simulations and 50 points for a grid on yt−1 and ht−1, surface plots of the log expectation are
provided in this Figure. From the figure it is clear that the log expectation is roughly linear, indeed the values of R2 are very
close to 1.
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Figure 7: Values of logE exp
[
− 1

2f(ht; yt−1, ht−1)
]

for selected parameter values, ht−1 ∈ (−20, 20).

Response surfaces when the the grid for ht−1 is extended over the interval (−12, 12).
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restricted to “reasonable” or suitable values. If we extend the grid for ht−1 over the interval (−12, 12)

we have a different situation as shown in Figure 7.

Despite the fact that the surfaces are apparently nonlinear the values of R2 from a linear approximation

are above 0.97 indicating that the approximation by hyperplanes is quite good. The approximation

error can of course be improved considerably in this case by using more elaborate approximation

methods. For each θ ∈ G we have an “intermediate” configuration Cθ = {y−1, h−1, Eθ} where Eθ

denotes the log expectation evaluated over a grid of values S = {y−1, h−1} whose dimension is p2× 1,

and Eθ is also p2×1, defined by Eθ = vec(Eθ), where Eθ =
[
logE exp

{
− 1

2f(ht; ym, hn)
}
, m, n = 1, ..., p

]
is the p × p matrix that is used to construct figures like 6 and 7. Since the configuration Cθ depends
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on the parameter vector we have, for each parameter, a whole p × p matrix that corresponds to the

surface generated by the log expectation over the grid of values {y−1, h−1}.

Define the final configuration as Fn,p = (B, {Eθ, θ ∈ B}) where as in the previous section n denotes

the number of points in the grid over the parameter space Θ. In practice Fn,p can be defined as a matrix

whose dimension is n4p2 × 7 where 7 stands for the four parameters (α, ρ, σ, ϕ), the two variables in

state space (yt−1 and ht−1) and the final column contains the values of Eθ. Matrix or set Fn,p contains

all information we need to develop a global approximation to logE exp
{
− 1

2f(ht; ym, hn)
}

across the

state space S , and the parameter space Θ, independently of the specific data or the sample size.

Given matrix Fn,p which is computed only once independently of the specific data or the sample size

we can approximate the log expectation logE exp
{
− 1

2f(ht; yt−1, ht−1

}
accurately using a variety of

techniques, for example B-spline interpolation or simple table-look up. Although the initial set up

cost of constructing the matrix Fn,p is non-negligible (i) this is done only once for all possible SVL

models and (ii) programming the construction of the matrix is quite simple in high-level languages like

WinGauss, R or Matlab.

As an empirical application we use daily observations for the Dow-Jones industrial average over the

period 1/2/1998 through 5/18/2012, a total of 3,577 observations. We use a SVL model with the slight

difference that (2) is expressed in the “identified” form: ht = α(1−ρ)+ρht−1+εt. MCMC and MCMC

with the aid of the Response Surface are implemented using 150,000 draws the first 50,000 of which are

omitted and we thin every other 10th draw. Results are also presented using another method that we

call “Response Quadrature”. Since the (log) likelihood can be expressed in (13) as a function of the four

parameters in θ with the aid of the Response Surface methodology, marginal posteriors densities and

moments can be computed using trivariate and quadrivariate numerical integration techniques (Genz

and Malik, 1980, NAG subroutine D01FCF). The following priors have been used: α ∼ N(0, 102), ϕ ∼

U(−1, 1), σ ∼ IG(10−3, 10−3) and ρ ∼ N(0, 1) truncated to the interval (−1, 1). The results reported

in Figure 8 are acceptably close and indicate that volatility is highly persistent and leverage is quite

important empirically. The heading “MMALA” will be explained later.

The use of efficient (adaptive or non-adaptive) multivariate integration techniques in connection with

Response Surface methods opens up the possibility of routine and accurate implementations of “exact”

Bayesian inference in models with high-dimensional latent variables. In models where Monte Carlo

maximum likelihood is possible it is usually also possible to write the likelihood in terms of functions

that depend on conditional “sufficient statistics” such as y2t−1 in SV or (yt−1, ht−1) in the SVL. The
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Figure 8: Marginal posterior densities of SVL, Dow-Jones data

In the empirical application we use daily observations for the Dow-Jones industrial average over the period 1/2/1998 through
5/18/2012, a total of 3,577 observations. We see a SVL model with the slight difference that (2) is expressed in the “identified”
form: ht = α(1 − ρ) + ρht−1 + εt. MCMC and MCMC with the aid of the Response Surface are implemented using 150,000
draws the first 50,000 of which are omitted and we thin every other 10th draw. Results are also presented using another method
that we call “Response Quadrature”. Since the (log) likelihood can be expressed in (13) as a function of the four parameters
in θ with the aid of the Response Surface methodology, marginal posteriors densities and moments can be computed using
trivariate and quadrivariate numerical integration techniques (Genz and Malik, 1980, NAG subroutine D01FCF). The following
priors have been used: α ∼ N(0, 102), ϕ ∼ U(−1, 1), σ ∼ IG(10−3, 10−3) and ρ ∼ N(0, 1) truncated to the interval (−1, 1).
The heading “MMALA” will be explained later.
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reader may wonder why implementations based on Response Surface methods are better or preferable

compared to Monte Carlo - based methods for a specific model (such as SV or SVL) that depend on

the data, for example SVpack (Kim et al., 1998).

First, Response Surface methods will be much faster by orders of magnitude (either in their MCMC

or numerical integration variant).

Second, posterior sensitivity to prior assumptions can be accomplished routinely over a wide and

fine grid of prior hyperparameters. This is an essential part of Bayesian communication in most

applications.

Third, the marginal likelihood can be computed easily using the Laplace approximation.

Fourth, the approximation in terms of the parameters can be avoided and only the approximation

with respect to conditional “sufficient statistics” can be used and MCMC or numerical integration may

be used without increasing significantly the computational costs.

Fifth, the important issue is that the high-dimensional latent variable is integrated out of the

likelihood using conditional sufficiency (as in Figures 1b and 6) and the resulting function is analyzed

using either MCMC or adaptive integration since it is usually low dimensional. The situation we end

up with is quite similar to a probit model whose log likelihood is

logL(θ; yn, xn)
.
=
∑
i∈I1

log Φ(x′
iθ) +

∑
i∈I0

log Φ(−x′
iθ),

where Im = {i : yi = m ∈ {0, 1}}, Φ is the standard normal distribution function and xi is a k × 1

vector of explanatory variables. Since the likelihood is available in simple form, it is not necessary to

use response surface methodologies to interpolate the parameters in terms of simpler functions.

Sixth, there is another MCMC technique that can be used in connection with response surface

methodologies when the likelihood is expressed in terms of the structural parameters and the high-

dimensional latent variable is integrated out (as for example in Figures 1b and 6). This is the method

of Riemannian manifold MCMC of Girolami and Calderhead (2011) and especially their Manifold

Metropolis Adjusted Langevin Algorithm or MMALA. For a SV model, as the authors explain in

section 8.2 of their paper, drawing from p(hT |θ, yT ) requires the inversion of a sparse tridiagonal

matrix which can be done in O(T ) per iteration -instead of the prohibitive O(T 3) for general matrices.

Expressions similar to our ft(h) in (5) naturally arise also in the authors’ definition of the gradient

of the log posterior with respect to the latent hT (see p. 21). But even this O(T ) operation can be
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Table 1: Relative numerical efficiencies

method ρ φ α σ
MCMC 0.017 0.035 0.072 0.130

RS-MCMC 0.510 0.412 0.279 0.458
MMALA 0.290 0.401 0.256 0.410

RS-MMALA 0.325 0.520 0.300 0.433

completely avoided using a response surface as in Figure 1b which requires interpolation or table look -

up in one dimension, an operation that is massively fast especially when the latent variables are highly

correlated. MMALA can be applied to the posterior p(θ|yT ) after integrating out the latent variables

using the response surface technology. For the SV model this is not even necessary since there is a

simple (LS) relation between the structural parameters θ and the response-surface coefficients.

The results of applying MMALA to the SVL model for the Dow-Jones are also shown in Figure 8.

But the impressive fact is perhaps that adaptive quadrature performs just as well. Relative numerical

efficiencies (RNE, Geweke, 1992) are reported in Table 1.

With the exception of MCMC all algorithms perform well with some evidence that Response Surface

(RS) - based techniques perform better. After skipping every other 10th draw the autocorrelation

coefficients of all methods (with the exception of MCMC) up to lag 20 were trivial.

In terms of parallel computing, the response surface methodology can be used to fit several stochas-

tic volatility models at once. This may be useful to obtain starting values for the model in the next

section or, alternatively, in order to perform sequential analysis using batches of increasing size for

the same data set. This is useful when the predictive likelihood is sought or different batches have to

be analyzed using separate stochastic volatility models. In future research this will most likely be the

case with “tall data”, an area that is rapidly evolving but is still focusing on i.i.d. data (Bardenet,

Doucet and Holmes, 2015). Given the response surface coefficients, the analysis of a stochastic volatil-

ity model with 2,500 observations and 150,000 MCMC iterations takes less than two minutes on a

modern desktop running g77 Fortran and it is trivial on mainframe computers.
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5 Multivariate Stochastic Volatility

“There is variation in the variation in the correlation for some pairs of series” (Lopes et

al, 2011)

5.1 Background

Multivariate Stochastic Volatility (MSV) models have developed rapidly in recent years to account for

possible co-movement in return covariances. The general model is

yt ∼ Nk(0,Σt), (14)

where yt denotes now a k × 1 vector of returns. Many models have been proposed in the literature to

account for the temporal evolution of the covariance matrix Σt. One model places a factor structure, as

Σt = βtHtβ
′
t+Ψt where βt is a k×m matrix and Ht,Ψt are diagonal. See Harvey, Ruiz and Shephard

(1994), Pitt and Shephard (1999) and and Philipov & Glickman (2006a,b). The other possibility is the

Dynamic Conditional Correlation model of Engle (2002). The third model, called Cholesky Stochastic

Volatility (CSV) is due to Lopes, McCulloch and Tsay (2011) and seems quite promising. In this model

it is assumed that

Σt = AtHtA
′
t, (15)

where Ht = diag(exp(ht1), ..., exp(htk)) and A−1
t is a lower triangular matrix with ones on the main

diagonal and elements −ϕt,ij otherwise. Clearly, the Cholesky factor of Σt is AtH
1/2
t , and

A−1
t yt ∼ Nk(0,Ht). (16)

It turns out from standard properties of the conditional distributions of the multivariate normal that

yt1 ∼ N (0, exp(ht1)) , (17)

ytm ∼ N

m−1∑
j=1

ϕt,jmytj , exp(htm)

 , m = 2, ..., k. (18)
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Collect the latent variables in the vector λt = (hti, ϕt,ij) whose dimension is d × 1 where d = k(k+1)
2 .

The temporal evolution of Σt in (15) can be modeled through:

λt = µ+ δ � λt−1 + εt, (19)

where εt ∼ Nd(0,Ω), where Ω = diag(ω(p×1)) is diagonal and δ, µ are p × 1. We also use the more

convenient notation

hti = δh0 + δh1ht−1,i + εht, i = 1, ..., k, (20)

cti = δc0 + δc1ct−1,i + εct, i = 1, ..., k(k−1)
2 , (21)

where ct =
[
cti, i = 1, ..., k(k−1)

2

]
and ct = vec(ϕt,jm, j,m = 2, ..., k).

How can it be possible to apply the RS technology in this instance? As a matter of fact, Bayesian

inference in the CSV model can be performed easily using tools developed for the univariate SV model.

This is, indeed, evident from (17) and (18) in which we have linear autoregressive models with uni-

variate SV, independent across the return series. The only change that is required in connection with

(1) is to consider the slightly more general model:

yt = β + exp
(
1
2ht

)
, (22)

that is to introduce a constant term in the model. We can now tell the reader that in fact a constant

has been present from the beginning, a fact that also applies to Figure 8. The purpose of the constant

term is to accommodate the non-zero conditional means in (18), viz.,

β =

m−1∑
j=1

ϕt,jmytj .

Since the mean is a “conditionally sufficient” statistic for the posterior conditional distributions the

ϕt sub-vector of λt can be subsumed in β in the course of MCMC. To be more precise, MCMC using

the RS technology can be implemented easily as described in the Appendix.
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5.2 Empirical application

As an empirical application of MSV we consider ten major currencies against the US dollar over the

period July 3 1996 to May 21 2012. The currencies are Canadian dollar, Euro, Japanese yen, British

pound, Swiss franc, Australian dollar, Hong-Kong dollar, New Zealand dollar, South Korean won and

Mexican peso.The data is daily and we considered only the data for which complete observations are

available. The data was converted to log differences and a vector autoregression of order 1 (favored by

the Schwarz criterion) has been applied to obtain the residuals that constitute the data that we will

use here.

In Figure 9 we report the temporal variances in logs (panel a), the temporal covariances (in panel

b) and finally in panel c the percentage of total variance explained by the first few factors (principal

components). Clearly there is a lot of time-varying volatility as well as co-movement which is also of

time-varying character. The first two or three principal components account for a significant part of

variability in the data. For this computation we have used 77 consecutive blocks each one containing

50 daily observations. We have experimented by varying the length from 10 to 200 to ensure that

Figure 9 does not look qualitatively different.

What is probably impressive in Figure 9 is that along with the temporal variation in volatility and

covariances there is also variation in the explanatory power of the factors - basically the first factor

alone. As a second example in Figure 10 we provide results for all stocks of FTSE 100, minute data,

23-29/10/2009; the same as used in Plataniotis and Dellaportas (2012)1.

In panel (b) we report only 50 out of the 5,050 correlations for visual clarity. In this case as well,

correlations vary considerably over time and so does the explanatory power of the first few factors

which is, perhaps surprisingly, large. So are the intra-day correlations of returns. The temporal

variation in the “explanatory power” can be given an alternative interpretation. If X(T×k) denotes the

matrix of returns then the k × k sample cross-product matrix X′X contains useful information about

the tails of the joint distribution. Using results from an important but relatively unnoticed paper of

Meerschaert and Scheffler (1999) we can show that 2logT
logλi

a.s.→ αi, i = 1, ..., k, where λi is an eigenvalue

of X′X and αi is the so-called tail index in the direction of the ith time series, provided E||X||2 < ∞ so

that the classical central limit theorem applies and the eigenvalues are distinct. From that perspective

the temporal variation in “explanatory power” can be interpreted as temporal variation in the tails
1The author is grateful to Petros Dellaportas and Tassos Plataniotis for providing their data.
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Figure 9: Temporal variation in log variances, correlations and explanation by factors, ten currencies

In this Figure we report the temporal variances in logs (panel a), the temporal covariances (in panel b) and finally in panel c
the percentage of total variance explained by the first few factors (principal components). Clearly there is a lot of time-varying
volatility as well as co-movement which is also of time-varying character. The first two or three principal components account
for a significant part of variability in the data. For this computation we have used 77 consecutive blocks each one containing
50 daily observations. We have experimented by varying the length from 10 to 200 to ensure that Figure 9 does not look
qualitatively different.
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Figure 10: Temporal variation in log variances, correlations and explanation by factors, FTSE100

In this Figure we present marginal posterior densities results for all stocks of FTSE 100, minute data, 23-29/10/2009, the same
as used in Plataniotis and Dellaportas (2012).
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Figure 11: Median autocorrelation functions (acf) of the time-invariant parameters

In this Figure we report the autocorrelation functions (acf) of the time-invariant parameters, viz. the median (across all
time-invariant parameters) acf.
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of the joint distribution. It is, of course, well known that SV, GARCH and models that allow for

leptokurtosis are related in a number of ways and models with fat tails can be considered grosso modo

as approximate unconditional distributions of SV or GARCH models (de Vries, 1991).

For selected algorithms we report first the autocorrelation functions (acf) of the time-invariant

parameters in Figure 11. For a meaningful summary we report the median (across all time-invariant

parameters) acf. The definition of the various algorithms is provided in the Appendix.

From the Figure it is evident that Seq2 is the most detrimental in terms of exploring the posterior

distribution followed by Gr1 which performed acceptably well in exchange rates but not so in FTSE100.

MMALA and RS perfom rather well. RS-MCMC performs better in the exchange rate data but RS-
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MMALA is slightly better in the FTSE100 data. More information about the numerical performance of

the different algorithms is obtained by looking at relative numerical efficiency (RNE). We monitor RNE

for all parameters (latent or not)2 and we report histograms in Figure 11 for the exchange rate data

(left column) and the FTSE100 data (right column). Evidently, all algorithms are far from showing

perfect performance (which corresponds to a value of one) but their behavior is not destructive in

terms of exploring the posterior distribution. Seq2 and Gr1 perform worst again, as expected from

their construction and the evidence in Figures 11 and 12.

Marginal posterior densities of constant terms and autoregressive parameters for volatility and cor-

relations using the exchange rate data are reported in Figures 13 and 14. All results are based on

RS-MMALA which seems to perform best in this application.

In Figures 15 and 16 shown are the marginal posterior densities of ten stocks from the FTSE100 for

visual clarity. Certain marginal posterior distributions of constant terms and autoregressive parameters

are clearly bimodal in many cases for both the stochastic variances and the correlations. This is, of

course, due to the prior which “shrinks” the coefficients towards zero with high probability. The effect

of the prior is “gentle” in the sense that the posteriors although concentrated around zero in certain

cases, they do not have sharp point masses at zero.3 The effect for both the exchange rate and the

FTSE100 data is that many correlations are clearly non-zero and most of them show persistence. The

persistence in the FTSE100 data is however clearly less than persistence in the exchange rate data but

persistence in correlations is evidently more disparate and can be both positive and negative. Relative

to Lopes et al. (2010) where most posterior densities are unimodal the datasets examined herein are

less “informative” in the sense that prior information about “shrinkage” towards zero has a noticeable

effect on the posteriors. Results not reported here show that marginal posterior densities of ωjs are

unimodal and strongly reject the notion that they can be close zero. This is partly due to the value of

c̄ = 10−6 in (24). Higher values of this parameter however produced marginal posteriors which were

bimodal but away from zero suggesting, again, that stochastic volatility and stochastic correlations are

important features of the data that cannot be dispensed. This is a first indication that MSV models

perform better than multivariate GARCH models and should be preferred in the light of the data.
2We exclude the latent model indicators.
3That would change if the priors contained a point mass at zero instead of a normal component in (23).
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Figure 12: Relative numerical efficiency

In this Figure we report RNE (relative numerical efficiency) for the exchange rate and FTSE100 data sets. RNE refers to median
across all parameters excluding the latent indicators.
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Figure 13: Marginal posterior densities of δh, exchange rate data

In this Figure we report marginal posterior densities for constant and autoregressive terms of volatility using the exchange rate
data set.
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Figure 14: Marginal posterior densities of δc, exchange rate data

In this Figure we report marginal posterior densities for autoregressive parameters of correlations using the exchange rate data
set.
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Figure 15: Marginal posterior densities of δh, FTSE100 data

In this Figure we report marginal posterior densities for constant terms (upper panel) and autoregressive parameters (lower
panel) for the multivariate stochastic volatility process using the FTSE100 data set.
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Figure 16: Marginal posterior densities of δc, FTSE100 data

In this Figure we report marginal posterior densities for constant terms (upper panel) and autoregressive parameters (lower
panel) for the correlation part of the multivariate stochastic volatility process using the FTSE100 data set.
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Formal comparisons with multivariate GARCH models can be made using marginal likelihoods and

Bayes factors. We use a multivariate GARCH model along the lines of the Engle and Kroner (1995)

and BEKK formulation. In (15) we assume:

Σt = A0A
′
0 +A1yt−1y

′
t−1A

′
1 +B1Σt−1B

′
1, (23)

where A0 is lower triangular, A1, B1 are k×k matrices which are left unrestricted and Σ0 is treated as

parameter. Moreover, in relation to (15) At = A is a lower triangular matrix whose elements are treated

as fixed parameters. A straightforward generic MCMC procedure is used to provide inferences for the

model: Updates are component-wise and use uniform proposals whose bounds are adapted during

the “burn-in” phase to achieve acceptance rates close to 25% using starting values from maximum

likelihood estimation. Given posterior samples (obtained using 1,5 million iterations, a burn-in of

length half a million and thinning every other tenth draw) the marginal likelihood is computed using

the Laplace approximation of DiCiccio et al. (1997). Computation of the marginal likelihood for the

MSV is facilitated by (17) and (18) along with step (i) and the accurate approximations in (6).

Since the choice of priors is critical in marginal likelihood computations we proceed as follows.

Suppose p(θ) is the prior of the MSV model and p(β) is the prior of the GARCH, where β is the vector

of parameters in the GARCH model. The prior p(θ) has been explained in (23) and (24) and we retain

it as is since it is costly to change it at this stage. Suppose the prior of β is a mixture-of-normals of

the form: β ∼
∑G

g=1 pgξg, where ξg ∼ N
(
β̄g, V̄g

)
. Since prior simulation is feasible for both models

consider a vector of summary statistics S(ỹn;λ) that can be computed from the MSV and GARCH

models respectively where ỹn denotes in both cases a matrix of simulated data whose dimensions match

those in the data, and λ denotes the parameters. Suppose V̄g = C̄gC̄
′
g, g = 1, ..., G and collect the

parameters Π̄G = [β̄′
g, vech(C̄g)

′, g = 1, ..., G]′ where vech is the vectorization operator which excludes

the zero elements of C̄g. Given synthetic data ỹn from the MSV model the prior parameters of the

GARCH are obtained as follows:

Π̄G = argmin :
Rn×Θ

||S(ỹn; θ)− S(ỹn; Π̄G)||Ωp(θ)p(ỹn; θ)dỹn dθ, (24)

where the norm ||x||Ω = x′Ω−1x is used. For the summary statistics we use an extension of those

developed by Ruiz (1994) for GMM estimation of univariate stochastic volatility models. In (25) we

minimize the expected weighted distance of the summary statistics between MSV and GARCH where
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the expectation is taken with respect to the prior of MSV parameters as well as the synthetic data. To

solve this problem we have to decide the value of G and impose identification (avoid artificial multiple

minima) by assuming p1 ≥ ... ≥ pG. Then we follow the procedure below to compute the value of the

objective function for a given Π̄G.

Computation of Objective Function

(i) Draw parameters θ(p) ∈ Θ from the prior, p(θ), p = 1, ..., P .

(ii) Draw nS synthetic data from p(yn; θ), viz. the MSV model,
{
ỹn,(s), s = 1, ..., nS

}
(iii) Compute d(θ(p); Π̄G) = n−1

S

∑nS

s=1 ||S(ỹn,(s); θ(p))− S(ỹn,(s); Π̄G)||Ω.

(iv) Compute dP,nS
(Π̄G) = P−1

∑P
p=1 d(θ(p); Π̄G).

Given the value of the objective function dP,nS
(Π̄G) it can be minimized with respect to Π̄G using

standard numerical procedures4. To minimize computational costs the matrix Ω is selected as the

covariance matrix of GMM applied to the actual data using as moment conditions those corresponding

to the summary statistics. The reason is that in the course of simulations the GMM covariance matrix

becomes numerically singular and regularization was found to affect significantly the final results. We

use P = nS = 1, 000. Several other numerical issues arise as G increases beyond one or two and we

decided it is best to approximate a solution in the following alternative way:

Alternative Approximate Solution

(a) Use steps (i) and (ii) above.

(b) For each θ(p) and each ỹn,(s) use ML to fit the GARCH model obtaining the pa-

rameters Π
(p,s)
n .

(c) For each p, track Π̂
(p)
n = n−1

S

∑nS

s=1 Π
(p,s)
n , p = 1, ..., P .

(d) Regress {Π̂(p)
n , p = 1, ..., P} on covariates {W (p), p = 1, ..., P} and obtain the coeffi-

cients bn,(P,S).

Drafting Ω, the values of sample size and dimensionality of the data to the exchange rate series, we

found that the two algorithms give different results so we decided to keep both for prior elicitation in the

GARCH model. Specifically the first algorithm gives results that do not change significantly beyond

G = 5 groups provided we use the structured covariance matrices V̄g. The probabilities pg, g > G tend

to zero so we have some indication that this algorithm performs well and gives acceptable results. In

step (b) of the alternative algorithm a standard implementation of conjugate-gradients is iterated to
4The procedure is superficially similar to indirect inference as developed by Gourieroux et al (1993). However the

objective here is to calibrate a common prior that makes sense under both GARCH and SV models.
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convergence within 10−6. As we mention below we have found that various shortcuts do not work well;

for example it is not possible to use less stringent convergence criteria (like 0.01) although it is quite

encouraging that we can use one iteration of the Gauss-Newton method away from the first successful

convergence of conjugate-gradient algorithm for a particular data set (given the same parameter values

of the SV process).

The choice of the matrix of regressors in
{
W (p), p = 1, ..., P

}
is motivated by considerations of parsi-

mony, ease of use, fit but also the stationarity conditions that must be satisfied by the GARCH param-

eters. Stationarity is imposed numerically by rejecting parameter draws for which n−1
S

∑nS

s=1 ||y
(p)
n −

y
(p)
0 || > δ where the constant δ = 10 and the Euclidean norm is used. We opt for linear and quadratic

functions of θ(p) in W (p). The algorithms use the same underlying sequence of standard (normal and

uniform) random numbers to ensure that the objective functions and the mapping from θ to Π are

sufficiently smooth.

In Figure 17 we present average volatility and the Bayes factors in favor of the MSV model and

against the multivariate GARCH for the exchange rate data. By average volatility we mean the simple

average across all ten currencies of individual squared deviations from the median. For better visual

presentation we plot every other 10th time period. The (predictive) Bayes factors are computed using

predictive likelihoods, see Geweke (1999) and Geweke and Amisano (2008).

From the Bayes factors in panel (a) it is evident that they provide strong support for the MSV model

against the multivariate GARCH particularly during episodes of high volatility. This shows that in

all likelihood the multivariate GARCH leaves much to be desired. In panel (b) we compare the log

Bayes factors of the two methods. The line corresponds to 45◦. The Bayes factors are not the same

although they are of the same order of magnitude. Their relationship is more complicated than the one

predicted by straight lines or simple functions and probably indicates that the two methods provide

different benchmark priors for the GARCH model5. Part of the problem is that (i) we have used a data-

based selection for Ω and (ii) we allowed only Gauss-Newton iteration away from a given parameter

vector in method 2. We have not tested the performance of Bayes factors in large-scale multivariate

models where these assumptions are removed but we have done so extensively in univariate models

and models with k = 5 as we explain below. As a general conclusion when we abstract from (ii) log

Bayes factors differ by less than 1.5 which is well within the range in Figure 17b although non-trivial

in itself. Regarding (i) the choice of Ω does not seem extremely important: Using regularization to
5The initial variances of GARCH are treated as parameters.
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Figure 17: Bayes factors in favor of MSV against GARCH

In this Figure we present average volatility and the Bayes factors in favor of the MSV model and against the multivariate
GARCH for the exchange rate data. By average volatility we mean the simple average across all ten currencies of individual
squared deviations from the median. For better visual presentation we plot every other 10th time period. The (predictive)
Bayes factors are computed using predictive likelihoods, see Geweke (1999) and Geweke and Amisano (2008).
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obtain Ω as the covariance of GMM moment conditions the Bayes factors differ by less than 1.2 on the

average provided the regularization parameter is sufficiently small; in practice less than about 10% of

the smallest (numerically non-zero) eigenvalue of the original covariance matrix. Some relevant results

are summarized in Table 2.

In Table 2 we report the difference in log Bayes factors (or percentage difference in Bayes factors)

from different numerical approaches to the problem. The numbers are average differences and standard

errors appear in parentheses. To minimize computational costs we have focused on models with k = 1

and k = 5 time series and ny = nθ = 100. The Bayes factors are based on marginal likelihoods for

the full sample using n = 1, 500 observations and individual stochastic variance processes for each

of the k time series whose autoregressive parameters are 0.9, the standard deviations are 0.1 and

the constant terms are 0.3(1 − ρ). In Table 2 tol refers to the tolerance in the conjugate-gradients

algorithm and 1gauss.newton is the algorithm that uses one Gauss-Newton iteration away from the

first successful application of the conjugate-gradients algorithm iterated to full convergence which

is taken as tol = 10−6. Moreover, fixed.init means that the initial conditions for Σ0 are taken

to be fixed and equal to the sample covariance matrix. Data sets for which convergence takes too

long (more than 100 iterations) are discarded and new data are generated. Generally the differences

in Bayes factors are substantial when shortcuts are used but significantly less so when one Gauss-

Newton iteration is used when the initial conditions are treated either as fixed or as parameters in the

optimization. Therefore it seems reasonable to proceed using one Gauss-Newton iteration with fixed

initial covariance matrix.

It would be a welcome addition to future research to examine the performance of more parsimonious

multivariate GARCH specifications as alternatives to the full BEKK, for example Σt = A0A
′
0 +A1 �

yt−1y
′
t−1 + B1 � Σt−1 where A1 = γγ′ and B1 = δδ′ for certain vectors γ and δ which are likely to

be useful in large-scale MSV models although we do not expect them to be accurate approximations

unless the number of lags is significantly increased given the evidence in Monfardini (1997).

In the univariate case, let us consider typical sampling distributions of estimates β̂ and γ̂ in the

GARCH model:

ht = α+ βht−1 + γy2t−1,

under the various specifications of numerical algorithms in Table 2. For 1gauss.newton the initial
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Table 2: Difference in log Bayes factors for different numerical methods

numerical method difference in log Bayes factors
k = 1

tol = 0.1 25.72 (4.45)
tol = 0.01 27.12 (4.50)

fixed.init, tol = 0.1 47.91 (15.12)
fixed.init, tol = 0.01 44.05 (16.31)

1gauss.newton 7.23 (5.17)
fixed.init, 1gauss.newton 5.12 (4.81)

k = 5
tol = 0.1 89.67(22.15)
tol = 0.01 95.12(24.17)

fixed.init, tol = 0.1 82.11(31.12)
fixed.init, tol = 0.01 88.01(33.2)

1gauss.newton 12.15(4.33)
fixed.init, 1gauss.newton 10.50(4.02)

variance is treated as a parameter. In Figure 18 we present typical sampling distributions of estimates

β̂ and γ̂ using 10,000 replications when the true generating process is a univariate stochastic variance

model of the form ht = 0.06 + 0.8ht−1 + 0.1ξt, h0 = 0.3 and sample size 1, 500. Overall there are

significant differences among the various approximations and (perhaps consistent with the evidence in

Table 2) 1gauss.newton performs quite well taking into account the persistence of conditional variances

from the SV process.

Clearly, the form of certain sampling distributions is due to the fact that we need to impose non-

negativity constraints upon the GARCH parameters. Even if we iterate to convergence the conjugate-

gradient algorithm does not distinguish sharply between the different parameter values particularly

for β̂. The fact that even one iteration of the Gauss-Newton algorithm performs extremely well is

of course quite encouraging in this respect can probably be of further use in applications of indirect

inference and not just the elicitation of common priors for the GARCH and SV models.
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Figure 18: Sampling distributions of GARCH approximating parameters

In this Figure we present typical sampling distributions of estimates β̂ and γ̂ using 10,000 replications when the true generating
process is a univariate stochastic variance model of the form ht = 0.06 + 0.8ht−1 + 0.1ξt, h0 = 0.3 and sample size 1, 500.
Overall there are significant differences among the various approximations and (perhaps consistent with the evidence in Table
2) 1gauss.newton performs quite well taking into account the persistence of conditional variances from the SV process.
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6 An application to time-varying parameters stochastic volatil-

ity models

We compare with the model of Chan (2007) which is a stochastic volatility-in mean-model (SVM) with

time-varying parameters (TVP):

yt = τt + αte
ht + εyt , ε

y
t ∼ N(0, eht),

ht = µ+ βyt−1 + φ(ht−1 − µ) + εht , ε
h
t ∼ N(0, σ2),

γt = γt−1 + εγt , ε
γ
t ∼ N2(0,Ω),

γt ≡ [αt, τt]
′.

(25)

Matrix Ω is 2 × 2 and τt is a random-walk component in the mean level of yt. In this model, we

allow for the possibility of volatility feedback—volatility may impact the level of inflation. In addition,

we also allow past inflation to affect the current inflation volatility. Chan (2017) described a method

to apply MCMC in U.S. inflation. Chan’s (2017) method takes only 31 seconds to produce 10,000

draws. The response surface methodology depends on parameters

θ =
[
µ, β, φ, σ2, vech(Ω)

]
. (26)

This involves 6 parameters but in addition to ht we have the latent variable τt as well. We construct

a response surface using values of the parameters in θ randomly drawn M = 1, 000 times from the

appropriate bounds (roughly the same as the posterior means and posterior standard deviations in

Chan, 2017). Then we use an EM algorithm to estimate (25) and we save the estimated θ, say θ̂(j) for

j = 1, . . . ,M and the given sample size in Chan (2017) which is from 1948.Q1 to 2013.Q2, T = 262).

Relative to a full response surface methodology, here we take a shortcut as we use only M values of

the parameters and we do not use MCMC at all. Computations for all M points can be parallelized

easily and for the Chan (2017) data, timing was about 2 minutes on a standard desktop PC but under

10 seconds on a mainframe computer in which Chan’s (2017) MCMC took, nearly, 10 seconds as well

since MCMC cannot be parallelized. In Table xx we report Chan’s results as well as ours (denoted

RSM). Moreover, we denote

Ω =

 ω2
α ωατ

ωατ ω2
τ

 .
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Table 3: Posterior moments

Chan (2017) RSM
µ 0.121

(0.947)
0.120
(0.946)

β 0.003
(0.005)

0.003
(0.004)

φ 0.963
(0.021)

0.962
(0.022)

σ2 0.072
(0.020)

0.071
(0.021)

ω2
α 0.044

(0.039)
0.044
(0.041)

ωατ 0.011
(0.033)

0.011
(0.033)

ω2
τ 0.117

(0.057)
0.119
(0.055)

Notes: Posterior standard deviations in parentheses.

Additionally, we use the “Alternative Approximation” discussed in the previous section. In Table 3 we

report posterior means and posterior standard deviations using our RSM as well as the results taken

from Chan (2017). Posterior moments are quite similar to those of Chan (2017). In Table 4, we report

log marginal likelihood (LML) and numerical standard error (NSE). Althpough LMLs for different

models are nearly the same, as expected, NSEs are an order of magnitude lower than the NSEs of

Chan (2017). The reason’s is that use of MCMC in Chan (2017) produces highly autocorrelation

and inefficiency factors (IF) range between 4 and 164, our results i.i.d draws from the posterior so,

theoretically, the IF is 1. In practice, computed IFs ranged between 1.01 and 1.04.
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Table 4: Estimated log marginal likelihoods for the unobserved components model (UC), the UC-SVM model with
constant coefficients (UC-SVM-const), and the UC-SVM model with time-varying coefficients (UC-SVM).

Chan (2017) RSM
LML NSE LML NSE

UC-SVM –536.4 0.08 –536.5 0.005
UC-SVM-const. –550.5 0.08 –550.4 0.002

UC –550.4 0.03 –550.4 0.002

Notes: LML is log marginal likelihood and NSE is numerical standard error.

Conclusions

In this paper we have provided simple but highly accurate response surface methodologies to estimate

univariate and multivariate stochastic volatility models by either maximum likelihood or MCMC. The

approximation is based on properties of the likelihood function, namely the approximation of a certain

expectation with respect to a multivariate normal distribution. Results are presented in certain detail

and the new methods are applied to artificial data as well as ten exchange rates and all stocks of

FTSE100 using daily data.

APPENDIX. Technical details for multivariate stochastic volatil-

ity model

Given the F matrix from univariate SV response surface and parameters θ = [α′, ϕ′, ω′]′:

(i) Obtain the log likelihood in (17) and (18) for each m = 1, 2, ..., k. The total log likelihood is the

sum of the individual log likelihoods for each time series.

(ii) Apply any MCMC update scheme to obtain a new draw for θ.

It is clear from the empirical application and the discussions in Lopes et al (2011) that the major

burden in MCMC is drawing the latent variables in λt. Although this can be done in parallel it does
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not mean that overall autocorrelation of the chain is unaffected. In Lopes et al (2011) the problem is

that it is relatively time consuming to draw the hts from their posterior conditional distributions but

then the drawing of θ is quite easy. In the scheme described here we need an efficient way to draw θ

once the latent states have been integrated out; we note again that integration with respect to latent

states is very easy using the RS technique.

With k = 20 series in (14) we end up with p = 210 elements in (19). The total number of

parameters is 730. We think it is pointless to consider a general vector autoregression of the form

λt = α + Φλt−1 + εt since in this case Φ would contain 44,100 elements. With k = 50 series we have

3,825 parameters. This is not by itself prohibitive but it precludes MCMC updates from standard

distributions (like the normal, Wishart etc). So we have to device special schemes to perform the

computations. First of all we introduce “model selection priors” as in Lopes et al (2011). Suppose

θ = [α′, ϕ′, ω′]′ = [γ′, ω′]. For each element of γ we assume

γj
d
= Bσ̄ξ + (1− B)c̄ζ, B ∼ Bernoulli(p) (A.1)

with p = 1
2 , c = 10−3, σ̄ = 10, ζ ∼ N(0, 1) and ξ ∼ N(µ, 1), where µ = 1 if γj is of the ϕ-variety

and µ = 0 if it is of the α-variety. This places a random-walk prior on the elements of the Cholesky

matrix. For the elements of ω we deviate somewhat from Lopes et al (2011) and assume

ωj
d
= BU(0, ā) + (1− B)c̄ζ (A.2)

where ā = 10, ζ ∼ N(0, 1) and c̄ = 10−6. Since the Bs can be treated as latent indicators, (21)

and (22) can be accommodated easily in MCMC. Due to the presence of the common “selector” B

these priors are not independent. In order now to devise new computational tools for the analysis of

MSV-CSV models we notice that θ appears in the likelihood of (14), (17)-(19) in a sequential form.

Indeed, by numbering the constant terms and autoregressive coefficients in a more obvious way we

have:

For the first time series,

yt1 ∼ N(0, exp(ht1)), ht1 = α1 + ρ1ht−1,1 + σ
1/2
1 ξt1.
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For the second and third series,

yt2 ∼ N(ϕt1 + ϕt2yt−1,1, exp(ht2)), ht2 = α2 + ρ2ht−1,2 + σ
1/2
2 ξt2,

yt3 ∼ N(ϕt3 + ϕt4yt−1,1 + ϕt5yt−1,2, exp(ht3)), ht3 = α3 + ρ3ht−1,3 + σ
1/2
3 ξt3, (A.3)

and finally,

ytk ∼ N(ϕt,k(M−k+1) + ϕt,k(M−k+2)yt−1,1 + ...+ ϕt,Myt−1,k, exp(htk)),

htk = αk + ρkht−1,k + σ
1/2
k ξtk,

where M = (k−1)(k+2)
2 is the total number of constant terms and autoregressive coefficients required

above, and ξti ∼ N(0, 1), i = 1, ..., k. The parameters θ̃1 = (α1, ρ1, σ1) of the first equation can be

obtained directly using the RS technique for univariate SV models. In the second equation we can do

the same with θ̃2 = (α2, ρ2, σ2) provided we set β = ϕt1 +ϕt2yt−1,1. Given the values of (φt1, φt2) this

can be done easily. In fact the same is true for all equations and for the last one we can apply the RS

technique with θ̃k = (αk, ρk, σk) conditional on the value of

β = ϕt,k(M−k+1) + ϕt,k(M−k+2)yt−1,1 + ...+ ϕt,Myt−1,k

which in the CSV model acts as a “conditional sufficient statistic”.

Clearly the problem reduces to updating the parameters (δi, ωi) of the processes

ϕti = δi1 + δi2ϕt−1,i + ω
1/2
i ζti, i = 1, ...., k

where ζti ∼ N(0, 1). Conditional on the ϕs, standard MCMC methods can be used to update the

parameters (δi, ωi) so the only remaining problem is how to draw the states (ϕti, i = 1, ...., k). Let

us illustrate the procedure for the second equation since the problem is similar for all equations. The

conditional posterior distribution of the latent state is
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p(ϕti|\ϕti) ∝ exp{− (ϕti − δi1 − δi2ϕt−1,i)
2 + (ϕt+1,i − δi1 − δi2ϕt,i)

2

2ω2
i

}ft(ϕti;βt, y
2
i,t−1),

for

βt ≡ ϕt1 + ϕt2yt−1,1, i = 1, 2

and

ft(ϕti;β, y
2
i,t−1) ≡ Eft(ϕti;β, y

2
i,t−1).

Here, \ϕti denotes conditioning on all other elements of state vectors and structural parameters. More

generally for equation i the latent states are

ϕt,(i) ≡ (ϕt,ν , ϕt,ν+1, ...., ϕν+i−1),

where ν ≡ i(i−1)
2 . For the second equation we need to draw latent states ϕt,(2) = (ϕt1, ϕt2), t = 1, ..., T

and for the ith equation we have to draw i states.

In this form the states (ϕti, t = 1, ..., T ) can be drawn sequentially by drawing from the first term

and using the second term as acceptance probability in a Metropolis-Hastings update. Evaluation

of the second term requires one interpolation or table look-up based on the value of β. Due to the

sequential drawings of the states it is highly unlikely that this algorithm will explore the posterior

distribution quickly and efficiently.

The posterior conditional for the entire state vector ϕi = (ϕti, t = 1, ..., T ) is

p(ϕi|\ϕi) ∝ exp{−
∑T

t=1(ϕti − δi1 − δi2ϕt−1,i)
2

2ω2
i

+

T∑
t=1

log ft(ϕti;βt, y
2
i,t−1)}, i = 1, 2.

This form can be used to implement MMALA using the gradient ∇ log p(ϕi|\ϕi) and the Hessian

∇2 log p(ϕi|\ϕi). An alternative is to find an approximation to the mode and the Hessian at the mode

and use a Metropolis-Hastings update using a multivariate Student-t with low degrees of freedom.

To conclude we have the following techniques to provide inferences in the context of the MSV

model:

(i) LMT, which is MCMC as proposed by Lopes, McCulloch and Tsay (2011).

(ii) Seq1, where latent states are drawn sequentially from their posterior conditional distributions
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p(ϕti|\ϕti) using a MH update with acceptance probability provided by ft(ϕti;β, y
2
i,t−1).

(iii) Seq2, as in (ii) with the difference that the MH update is implemented by drawing from a

normal distribution centered at the approximate mode and variance equal to the negative inverse

second derivative at the mode.

(iv) Gr1, when latent states are drawn group-wise from their posterior conditional distributions

p(ϕi|\ϕi), using an acceptance MH update and a multivariate Student-t (ν) proposal where ν = 10.

The proposal is centered at the approximate mode and the scale matrix is derived from the Hessian

at the mode.

(v) Gr2, as in (iv) with the difference that a simple random-walk MH update is used.

(vi) MMALA, which involves drawing the latent states using the Riemannian manifold approach

and requires the gradient and Hessian of p(λi|\λi) and all structural parameters.

(vii) RS-MCMC, which is MCMC using the response surface methodology and the updates we

described above.

(viii) RS-MMALA, which is MMALA as in (vi) using the response surface methodology instead of

relying on the (complete) gradient and Hessian of the log posterior.

In terms of implementation in LMT the major part is naming the coefficients correctly and keeping

track of them. Preliminary experiments with a data set of ten major currencies and all stocks in

FTSE100 (see next section) indicated no considerable differences between (Seq1, Seq2) and (Gr1, Gr2).

The comparison clearly favored the group updates by far, notwithstanding the fact that a random-walk

MH is used in Gr2. In RS-MCMC we need approximations to the mode of p(ϕi|\ϕi) and its Hessian

at the mode. The approximate mode is located using one Newton iteration from the current draw of

the states to minimize computational costs. Given the RS the Hessian is easy to compute numerically.

In another variant of RS-MCMC we use an adaptive component-wise random-walk MH using uniform

proposals for each component / parameter. The bounds of the uniform proposals are adapted during

the burn-in phase to target an acceptance rate between 20% and 30%. The two variants behaved

similarly so we retained only the first version.

It must be emphasizes that implementation of MMALA in the context of CSV requires exclusively

(i) code that implements MMALA in the univariate case and (ii) using this code sequentially for all
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time series. RS-MMALA also exploits the particularly convenient structure of CSV to provide quick

and efficient updates of the latent states by simple interpolations.
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