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Abstract 

CPI inflation is subject to structural changes and exogeneous shocks that can have a 

significant impact to its dynamic evolution. The observed interaction between the intrinsic 

side of inflation dynamics and the disturbances fuels a rich spectrum of behaviors. To 

accommodate the complex outcome of interactions, we propose a methodological strategy 

combining the non-parametric Recurrence Quantification Analysis (RQA), the GPH 

fractional integration coefficient 𝑑 and the Phillips-curve based framework. The empirical 

findings demonstrate the nonlinear contribution of inflation inertia to the headline inflation 

dynamics, mainly over the last eight quarters of the sample alongside the occurrence of 

price shocks. 
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1. Introduction 

The objective of monetary policy is to maintain low and stable rate of inflation and 

mitigate the impact of severe macroeconomic fluctuations. In the aftermath of instability 

events, there has been a remarkable tendency to argue that aggregate behavior in real 

economic systems arises from no simple interconnectedness between their components 

producing destabilizing feedbacks. Evolution of such systems is intrinsically difficult to 

predict, and the inherent complexity allows multiple factors to affect policy variables. 

Under conditions of increasing uncertainty controlling or even influence economic 

outcomes emerges as a difficult endeavor. The multiplicity of determinants of inflation in 

the short-run and the evolution of inflation expectations over time revealed relative 

weaknesses of macroeconomics models. This paper aims at adding to the literature of 

inflation determinants and price stability by applying a mixed methodological approach for 

mapping inflation dynamics and exploring the heterogeneous dimensions of price 

instability. 

Since 1960 the US CPI inflation was subject to multiple changes either structural or 

exogeneous affecting its dynamic evolution. The interaction between intrinsic structure and 

disturbances gave birth to a complex spectrum of dynamics. To accommodate the complex 

outcome of interactions, our approach combines the non-parametric Recurrence 

Quantification Analysis (RQA), the GPH fractional integration coefficient 𝑑 and the 

Phillips-curve based framework. The RQA can provide an accurate description of the 

dynamic imprint of shocks into inflation. At the same time, inflation persistence is 

investigated through the fractional integration coefficient 𝑑. However, this quantification 

of dynamics cannot fully reveal the driving forces of inflation. To address this point, the 

most common structured approach for studying inflation is adopted. We augment the 

standard Phillips curve model, composed of lagged inflation and domestic output gap, with 

nonlinear lagged inflation, output growth, oil and food prices. The same model is also 

estimated using rolling regressions over a twenty-year window, to account for the varying 

role of explanatory variables over time. 

The outline of the paper is as follows. Section 2 presents the RQA measures and 

application results, section 3 reports findings regarding the coefficient of fractional 
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integration 𝑑, while in section 4 several Phillips curve specifications are analyzed and 

estimated. Section 5 concludes the paper. 

2  Recurrence quantification analysis 

Real world processes are highly complex, noisy and non-stationary. Available data 

are, therefore, not normally distributed. Nevertheless, most linear and classical methods in 

statistics and time series analysis are built on normality and stationarity hypotheses. New 

concepts derived from nonlinear dynamics and complex systems try to overcome such 

limitations. Recurrence analysis is a powerful multipurpose approach for studying short 

and non-stationary variables, employing the fundamental property of recurrence in 

dynamical systems (Marwan et al., 2007; Kyrtsou and Vorlow, 2005; Karagianni and 

Kyrtsou and Karagianni, 2011). Recurrence plots (RPs) and recurrence quantification 

analysis (RQA) are tools which have been developed for the visualization and 

quantification of recurrences in dynamical systems by looking at their phase space 

representation (Webber and Zbilut, 1994; Marwan, 2008). 

The RQA builds on the computation of the recurrence matrix, 𝑹, providing a 

quantitative assessment for the presence of intermittent and regime-shifting behavior. First, 

the phase space trajectory for a time series 𝑥𝑡 is reconstructed giving 𝑥𝑡⃗⃗  ⃗ =

(𝑥𝑡, 𝑥𝑡+𝜏, … , 𝑥𝑡+(𝑚−1)𝜏), where τ is the time delay and m the embedding dimension. Then, 

recurrent points are identified, when the distance between the delayed vectors ‖𝑥𝑖⃗⃗  ⃗ − 𝑥𝑗⃗⃗  ⃗‖ is 

less than the predefined threshold 𝜀 

𝑹𝑖,𝑗 = Θ(𝜀 − ‖𝑥𝑖⃗⃗  ⃗ − 𝑥𝑗⃗⃗  ⃗‖) 

‖. ‖ is a norm. In our analysis, the Euclidean distance is used. If the states of the 

system at times 𝑖 and 𝑗 are similar, then 𝑹𝑖,𝑗 = 1 and zero otherwise. An essential property 

of the RP is that for fully deterministic systems, the attractor will be revisited by the 

trajectory sometime in the future. Thereby, short line segments parallel to the main 

diagonal will be detected. 

If the process is 𝑖. 𝑖. 𝑑 (Figure 1a), then the distribution of points in the RP looks 

erratic. Figure 1b displays the RP of a simulated AR(4) time series. Its autocorrelation 
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structure leads to rectangular clusters of recurrent points in the RP. Horizontal lines denote 

intermittent states, i.e. states that do not change or change very slowly. In Figure 1c we can 

visualize the persistence of a noisy Mackey-Glass process, where the intensity of 

nonlinearity c is set to 10. Obviously, the series presents a rich structure with many laminar 

states distributed along the diagonal line. 

 

(a) 

 

(b) 

 

(c) 

Figure 1: RPs of well-known systems (white noise (a), AR(p) (b), Noisy Mackey Glass (c)) 

The analysis in this section as well as in section 3 focuses on the dynamics of the US 

headline and core inflation (excluding food and energy prices) as a proxy of underlying 

inflation. The original price series in monthly frequency are available from January 1960 

to March 2022. Inflation 𝜋𝑡  corresponds to the monthly change of the CPI calculated as 
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𝜋𝑡 = 𝑙𝑛(
𝐶𝑃𝐼𝑡

𝐶𝑃𝐼𝑡−1
). We use month-over-month changes to achieve a precise representation of 

dynamics and a more prescient inflation print. 

The RPs of both inflation series are plotted in Figure 2. Their dense structure captures 

the strong autocorrelation pattern, subject to regime changes and rare events. The first 

significant transition occurs around the observation 240 (red frame) at the beginning of the 

Volcker era. In the next regime (green frame), headline inflation is more volatile than core 

inflation which exhibits dominant persistence with fewer and less intense changes (thin 

vertical and horizontal white bands).  

 

(a) 

 

(b) 

Figure 2: RPs of US headline (a) and core inflation (b) 

Although the visual inspection leads to a useful taxonomy of dynamics, patterns in 

the data cannot be quantified with the single use of RPs. For this purpose, the RQA was 

developed to provide a rich set of dynamic measures. In the aim to capture and quantify 

irregularity within the RP of the inflation time series, we employ the invariant measure of 

entropy (ENT). ENT refers to the Shannon entropy of the distribution of the diagonal lines 

in the RP. More specifically, 

ENT = − ∑ p(l)

N

l=lmin

ln p(l) 

where 𝑝(𝑙) = 𝑃(𝑙)/𝑁𝑙, 𝑃(𝑙) is the histogram of recurrences, while 𝑁𝑙 is the sum of 

diagonal lines. ENT converges to zero within periodic windows, because of the occurrence 
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of lines with identical length. For uncorrelated random sequences ENT is low, whereas 

nonlinear processes with large diversity in diagonal line lengths (irregular patterns) exhibit 

higher ENT values. In general, rising ENT is interpreted as high uncertainty that can be 

either stochastic or complex. In economics, high ENT signifies that agents need more 

information (set of variables) so as to be able to form accurately their expectations. 

The ENT measure is calculated over a 20-year window with a 1-month time step. For 

the applications of RQA in macroeconomic variables Kyrtsou and Vorlow (2005) suggest 

the use of unreconstructed data. Thus, the time delay (τ) and embedding dimension (m) 

are set to one. Regarding the threshold ε selection, 10% of the standard deviation 

(ε=10%×σ) seems to be an appropriate choice. However, this percentage may vary 

according to the nature of time series and the research question.  

 

Figure 3: mean-std inflation plane. The scatterplot represents the relationship (depicted by the least-

square line in red) between mean inflation (y axis) and its standard deviation (x axis). 

In a next step, we explore inflation dynamics by visualizing different dimensions of 

inherent uncertainty quantified by ENT together with well-known statistical measures. 

Figure 3 reports the mean-standard deviation (std) plane for inflation. Both the 1st and the 

2nd moment statistics are computed over a 20-year window sliding one time-step ahead. As 
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we can see, a positive association arises. High mean inflation values tend to be more 

volatile. In the same vein, Figures 4-6 present in 2D-planes the dynamic relationship 

between the ENT values and the distributional characteristics of headline inflation. 

 

Figure 4: ENT-std inflation plane. The scatterplot represents the relationship (depicted by the least-

square line in red) between ENT of inflation (y axis) and standard deviation of inflation (x axis). 

From the visualized relationship in Figure 4, between ENT and the standard deviation 

of inflation, we can conclude that less (more) entropic behavior appears during windows 

of high (low) standard deviation. This interesting pattern highlights that the intensity of 

complexity is inversely associated with inflation gap (deviation from mean). In other 

words, factors affecting intrinsically inflation induce smoother gaps. The occurrence of 

exogenous shocks, leading to jumps in inflation, breaks the density of recurrences in the 

RP and lowers ENT. It turns out that different bands of inflation variability can tell a 

different story. 
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Figure 5: ENT-mean inflation plane. The scatterplot represents the relationship (depicted by the 

least-square line in red) between ENT of inflation (y axis) and mean inflation (x axis). 

 

Figure 6: ENT-skewness inflation plane. The scatterplot represents the relationship (depicted by 

the least-square line in red) between ENT of inflation (y axis) and skewness of inflation (x axis). 
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The aforementioned trade-off between ENT and inflation gap is also confirmed, 

when we look at the level of inflation. In Figure 5, extreme low and high mean inflation 

rates are associated with lower entropy values. Nevertheless, when it comes to the 

distributional asymmetry of inflation, depicted in Figure 6, richer dynamics emerge at the 

right tail. ENT tends to increase more for positively skewed inflation values than for 

negative ones. The importance of endogenous dynamics, during regimes of rising inflation, 

was pointed out by Szybisz and Szybisz (2017). 

In Figure 7, we plot the ENT of headline inflation for different values of ε (ε=wσ), 

by varying w from 0.10 to 1. Thereby, eleven ENT time series are produced. The 

incorporation of progressively increasing noise in the calculation of ENT induces an 

appealing clustering. For low levels of σ (<30%), ENT remains stable until 1990 and then 

it falls. For medium values of σ (<60%), a second band is formed. A steady rise of ENT is 

observed until the end of 1999, followed by a reversal which is interrupted by a pick around 

2015 and a new entropic tendency after 2020. Allowing more σ in the computation of ENT 

just affects the sensitivity of estimates and underlines the apparent self-similar structure. 

 

Figure 7: Dynamic ENT estimates (y axis) for headline inflation in a 20-year sliding window (x 

axis) 
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The revival of inflation dynamics in the last couple of years could be a cause of 

concern, if we take the significant heterogeneity in the CPI composition into account. Is a 

persistent volatile component able to drive the overall inflation dynamics and if yes, under 

which conditions and to what extent? Possible answers could be found in the evolution of 

structural dynamics of inflation. Plotting the ENT estimates of core inflation in Figure 8 

reveals a more aggressive entropic behavior from 2008 onwards. The detected diversity of 

dynamics between headline and core inflation underpins the argument that price is a 

multilayer mechanism. As a result, exogenous shocks are transmitted heterogeneously into 

the various building blocks of inflation. 

 

Figure 8: Dynamic ENT estimates (y axis) for core inflation in a 20-year sliding window (x axis) 

3. Fractional integration coefficient d 

In the presence of long-memory, a change of a variable is more likely to be followed 

by another change in the same direction. This momentum-type behavior defines 

persistence. Persistence in economics is the equivalent of inertia in physics (Fuhrer, 2010). 

When the sequence of changes is rather contrarian, so as a positive move tends to be 

followed by a negative one, then the process is characterized as anti-persistent. 
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Let’s assume that a time series 𝑥 =  {𝑥1, . . . . . , 𝑥𝑇} with mean , follows an autoregressive 

fractionally integrated moving average process ARFIMA(p,d,q) 

(B)(1-B)d(xt-)=(B)t 

with t~ i.i.d(0,2
) 

B is the backward-shift operator, (B)=1-1B-……-pBp, (B)=1-1B-……-qBq, and 

(1-B)d is the fractional-differencing operator defined as 

(1 − 𝐵)𝑑 =  
( )
( ) ( )



= +−

−

0k

k

1kd

Bdk
 

(.) is the gamma function. The parameter 𝑑 is allowed to take any real value. 

The stochastic process x is both stationary and invertible if all roots of (𝐵) and 

(𝐵) lie outside the unit circle and 𝑑<0.5 (Granger and Joyeux, 1980). Under the 

assumptions that −1/2 < 𝑑 < 1/2 and 𝑑 0, Hosking (1981) shows that the correlation 

function of an ARFIMA is proportional to j2d-1 as j→, delivering hyperbolically decaying 

autocorrelations. The process exhibits long memory if 0 < 𝑑 < 1/2, short memory for 𝑑 =

0 and intermediate memory when 𝑑 < 0. In the case that 0.5 ≤ 𝑑 < 1 the process is non-

stationary and possesses infinite variance but remains mean reverting. A widely-used 

method to estimate 𝑑 and perform hypothesis testing, is suggested by Geweke and Porter-

Hudak (1983) (GPH) built on the spectral regression 

log{I(jT)}=c – d log{4sin2(jT)}+uj,  j=1,……..,n 

𝐼(𝑗𝑇) is the periodogram value at frequency j depending on the sample size T. The slope 

coefficient of the OLS regression is a good estimate of 𝑑. 𝑣 = 𝑔(𝑇) << 𝑇 is the number 

of Fourier frequencies considered in the spectral regression. One of the main advantages 

of the GPH estimator is that it can detect effectively persistence without the need of making 

any assumption about the underlying process of inflation. Regarding the choice of 

bandwidth, we use the settings from the Kumar and Okimoto (2007) application in US 

inflation data who suggest adopting the bandwidth Τ0.8. To shed light on the sensitivity of 
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the persistence estimates to time, we calculate the 𝑑 over a 20-year rolling window updated 

by 1-year increments. 

 The regime dependent behavior observed in Figures 7 and 8 is repeated in the 

evolution of US inflation persistence displayed in Figure 9. Starting by the headline 

inflation (solid blue line), the results indicate a persistent but still mean-reverting behavior 

of 𝑑 ∈ [0.5,1) until approximately 1999. In the post-1999 subperiod of the sample, lower 

𝑑 values [0,0.5) are detected implying the presence of long-memory except for some short-

memory segments (𝑑 = 0). In general, the 𝑑 coefficient values for core inflation (dashed 

red line) lag those for headline inflation. Since March 2021, the noticeable synchronization 

between the 𝑑 estimates show that both inflation measures share similar levels of 

persistence. 

 

Figure 9: Dynamic 𝑑 estimates (y axis) for headline and core inflation in a 20-year sliding window 

(x axis) 

4. The nature of inertia in Phillips curve  

To investigate the drivers of inflation dynamics, we first consider a variant of the 

Phillips curve that incorporates the domestic slack and backward-looking inflation 



 

14 
 

expectations augmented with output growth and supply shocks. According to economic 

theory, when inflation is persistent a rather significant sacrifice ratio is required to reduce 

its level. This inertia can be modelled by included lagged inflation terms. An interesting 

alternative to account for inflation inertia together with exogeneous shocks is the triangle 

model of Gordon (1982) that we augment with demand dynamics proxied by the real GDP 

growth. As Gordon (2011) explains, the omission of supply variables makes the slack 

coefficient of the Phillips curve to be biased towards zero. Additionally, Tauber and Van 

Zandweghe (2020) support that the inclusion of output growth enriches the standard 

Phillips curve with dynamics caused by rising household consumption and habit formation. 

The effect of rigidities in consumer spending due to habit formation is also discussed in 

Fuhrer (2000). Milani (2009) reports that habit formation in consumption can help 

matching the observed inflation persistence. The significant role of consumption dynamics 

as the main driver of output dynamics in big-size economies has been recently pointed out 

by Kyrtsou & Mikropoulou (2022). All US variables used in this section are taken in 

quarterly basis and span from 1960.q1 to 2022.q1. 

The first Philips curve specification is deployed as follows:  

πt=𝛿1𝜋𝑡−1+𝛾1𝑔𝑎𝑝𝑡+𝜅1y
t
+ 𝜆1𝑜𝑖𝑙𝑡+εt     model 1 

εt is an i.i.d stochastic disturbance with zero mean and finite absolute moments with 

variance 𝜎𝜀
2, πt refers to the quarter-over-quarter CPI inflation calculated as the first 

logarithmic differences of prices. πt-1 is the lagged CPI inflation and captures the apparent 

inertia in inflation. gapt is the output gap measured by the log deviation between real GDP 

and the Congressional Budget Office’s estimate of potential GDP. yt is the output growth, 

a measure of real activity dynamics. oilt represents the supply shocks and it is proxied by 

the spot price of the West Texas Intermediate (WTI) blend of crude oil transformed in 

logarithmic returns. 

The empirical results of the previous session demonstrated that the inherent structure 

of US inflation matters a lot, and any persistent evolution of prices is not alike. Dynamics 

may persist but it is the multiplicity of sources that determines the degree of inflation 

complexity and induces dissimilar inflationary regimes. Fuhrer (2010) highlights that 
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inertial inflation has a twofold interpretation. It can be due to i) the persistence of real 

activity and supply shocks in the standard framework of a Phillips curve, and ii) the 

intrinsic persistence imprinted in lagged inflation terms. In the latter case, the price-setting 

mechanism causes inertia which is independent of the driving process. Mathematically 

speaking, inflation is governed by endogenous dynamics that are able to propagate initially 

temporary shocks and further fuel instability by introducing second-round effects. The 

amplifier is the lagged inflation in the Phillips curve equation. 

To accommodate complex forms of inflation persistence, the backward-looking 

dynamics of model 1 are expressed in terms of nonlinear and linear components. We name 

this combination as inertia factor (𝐼𝐹). 

πt=𝛼2
πt-i

1+πt-i
c +𝛿2πt-1⏟        
IF

+𝛾2𝑔𝑎𝑝𝑡+𝜅2y
t
+ 𝜆2𝑜𝑖𝑙𝑡+εt    model 2 

where 𝑖 is the number of lags of the nonlinear inflation term. The optimal 𝑖 is selected based 

on the best information criterion BIC. In real applications setting c=2 describes 

appropriately data dynamics, because of the high level of noise (Kyrtsou and Terraza, 

2002). If 𝛿 is positive, then 𝐼𝐹 presents the properties of a nonlinear autoregressive process. 

In this case, the sum α+δ designates the intensity of persistence. If 𝛿 is negative, then 𝐼𝐹 

takes the form of a Mackey-Glass process able to generate feedback dynamics (Kyrtsou 

and Terraza, 2003). The sign of α-δ indicates the nature of feedback. Positive feedback 

dynamics dominate if α-δ>0, inducing high irregularity in the data generating mechanism. 

When α-δ>0, negative feedback dynamics determine the autocorrelation structure. 

Kyrtsou and Vorlow (2005) argue that a noisy Mackey Glass process, under specific 

parametrization, can present qualitative resemblance with the US CPI inflation. However, 

we have to keep in mind that data aggregation may significantly affect the identification of 

feedback structures. 

According to Ball and Mazumder (2011) the most common supply shocks are 

changes in food and energy prices. Thereby, in the third and fourth Phillips curve 

specification we further augment models 1 and 2 with an additional supply component, i.e. 

food prices.  
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πt=𝛿3𝜋𝑡−1+𝛾3𝑔𝑎𝑝𝑡+𝜅3y
t
+ 𝜆3𝑜𝑖𝑙𝑡+φ

3
𝑓𝑜𝑜𝑑𝑡+εt    model 3 

πt=𝛼4
πt-i

1+πt-i
c +𝛿4πt-1⏟        
IF

+𝛾4𝑔𝑎𝑝𝑡+𝜅4y
t
+ 𝜆4𝑜𝑖𝑙𝑡+φ

4
𝑓𝑜𝑜𝑑𝑡+εt   model 4 

food𝑡 is a measure of food inflation calculated as the log difference of the food component 

of the Personal Consumption Expenditure. 

Besides supply shocks, Cogley and Sbordone (2008) and Malikane and Mokoka 

(2012) suggest an alternative source of inflation inertia. It is shown that underlying 

inflation drives much of the headline inflation persistence. This effect is taken into account 

in a fifth model with the joint presence of underlying inflation (
𝜋𝑡−𝑖
∗

1+π*t-i
c ) and headline inflation 

(πt-1) in the inertia factor. 

πt=𝛼4
𝜋𝑡−𝑖
∗

1+π*t-i
c +𝛿4πt-1⏟          
IF

+𝛾4𝑔𝑎𝑝𝑡+𝜅4y
t
+ 𝜆4𝑜𝑖𝑙𝑡+φ

4
𝑓𝑜𝑜𝑑𝑡+εt   model 5 

Models 2, 4 and 5 recognize that inflation can exhibit significant and nonlinear 

persistence even in the absence of supply shocks. According to Gordon (2011), this 

condition constitutes an important challenge for policy makers to control inflation by 

altering public expectations directly.  

To consider the effect of improved anchoring we split the data into two subsamples 

i.e. 1961q1-1998q4 and 1999q1-2022q1. The date 1999q1 seems to be a tipping point 

around which the anchoring process was completed (Mishkin, 2007; Jørgensen and 

Lansing, 2022). Besides introducing supply shocks proxies, we perform a Durbin–Wu–

Hausman (Durbin, 1954; Hausman, 1978; Wu, 1973), test for endogeneity so as to ensure 

the consistency of the estimates. The set of instruments in the GMM estimation comprises 

a constant and four lags for inflation, output gap, output growth and supply shocks. To 

address possible serial correlation issues, we use Heteroskedasticity and Autocorrelation 

Consistent (HAC) estimates of the covariance matrix (Newey and West, 1987) with a 

Bartlett kernel and an automatic Newey-West bandwidth selection (Newey and West, 

1994). The probability value of the respective J-statistics is also reported for each model 
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together with the residual diagnostics. Regarding the nonlinear rule of thumb in 𝐼𝐹, the 

selected optimal lag is 𝑖=3. 

Table 1 reports the estimates of the five models, as well as the summary statistics of 

the inflation series. All J-statistics are not statistically significant at 5% level, implying 

rejection of endogeneity hypothesis. Additionally, the fact that the explanatory variables 

remain uncorrelated with the error term, in the various augmented Phillips curve 

specifications, mitigates the possibility of obtaining biased OLS estimates and spurious 

residual structure. As we can see, in the first column of Table 1 inflation exhibits strong 

linear and non-linear autocorrelation. It is moderately leptokurtic but highly right-skewed 

over the first subsample. Situation reverses in the second subsample. Kurtosis increases 

abruptly, while skewness reaches a large negative value. The time varying non-normal 

behavior of headline inflation can be visualized in Figure 10. After a pick around 2000, the 

kurtosis (red line) stabilizes until the beginning of the 2007-2009 financial crisis. 

Regarding core inflation, after the outburst in 2000, its kurtosis (green line) evolves almost 

steadily until 2020 where an abrupt jump takes place again. 

 

Figure 10: Rolling skewness and kurtosis of headline inflation. For comparison purposes, we jointly 

plot the skewness of core inflation and the correlation between headline inflation and oil. For all 

measures, the initial window 1960.q1-1979.q4 (20 years) is sliding by one observation ahead. 
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The divergence in terms of kurtosis between core (green line) and headline inflation 

(red line) comes to highlight the detected decoupling of the dynamic ENT estimates in 

section 2. In the aftermath of the 2007-2009 financial crisis, when headline inflation 

becomes highly leptokurtic, the correlation (black dotted line) between headline inflation 

and oil intensifies significantly. From 2020 to 2021, the tail-behavior of both inflation 

series desynchronizes and then reverses until the end of the sample. 

The obtained Log-Likelihood estimates and residual diagnostics in Table 1 indicate 

that models 4 and 5 present the best fit. The 𝛿 coefficient is statistically significant and 

positive in all specifications implying that 𝐼𝐹 exhibits the properties of a nonlinear 

autoregressive process. Regarding the best 4th and 5th Phillips curve specifications, we also 

include the results of regressions on a third sample 2009.q4-2022.q1 covering the post-

recession era. 
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Figure 11: Rolling α and δ coefficients of the Mackey-Glass terms in the 4th backward-looking 

Phillips curve model, estimated by OLS. For comparison reasons, the same model is re-estimated 

without supply shocks. For both models, the initial window 1960.q1-1979.q4 (20 years) is rolled 

forward by two quarters at a time. 

The role of different variables in the Phillips curve specifications augmented with 

supply shocks can also appear unstable through time (Mikolajun and Lodge, 2016). 

Initial Window 

model 4→ 

model 4→ 
without 

supply 

 



 

19 
 

Thereby, parameter instability constitutes an important feature of the Phillips curve. 

According to Forbes (2019), this may occur because of global economic events, changes 

in the labor market and the credibility of central banks. To account for the impact of 

structural instability on inflation persistence, we estimate time-varying coefficients for 

models 4 and 5 in rolling regression. As Albuquerque and Baumann (2017) point out this 

approach leads to lower Root Mean Square Error. 

Figure 11 displays the statistically significant time-varying coefficients of the 

backward-looking component of the 4th Phillips curve equation. To investigate the degree 

of contribution of supply shocks, we re-estimate the model excluding oil and food variables 

and we plot the new 𝛼 and 𝛿 coefficients (red lines). As we can see in Figure 11, during 

the 2007-2009 financial crisis the 𝛼 coefficient (solid line, both colors) imposes on 𝛿 

(dotted thin line, both colors). They keep on declining until 2020.q1, and then they go up 

suddenly. Interestingly, when the model 4 takes the effect of supply shocks into account, 

the distance between 𝛼 and 𝛿 (blue lines) is smaller than the respective distance (red lines) 

in the version of model 4 without supply. The observed sensitivity of 𝐼𝐹 demonstrates the 

importance of the contribution of supply shocks to inflationary dynamics. 
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Figure 12: Sensitivity of inflation to output gap partialled on the regressors of models 4 and 5 
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Jørgensen and Lansing (2022) report three channels that justify diminishing inflation 

persistence over time. The improved anchoring can i) make inflation less sensitive to its 

lagged values, ii) reduce the sensitivity of inflation to reply to output gap movements and 

iii) make inflation more resilient to supply shocks. The aforementioned findings provide 

evidence about the first channel until 2020.q1. The second channel implies a flatter Phillips 

curve. This is what we observe in Figure 12. The curve is steeper with a positive and 

statistically significant slope over the first subperiod, followed by a clear downward trend. 

The flattening is more pronounced on the third subsample 2009.q4-2022.q1. This also 

comes in line with Costain et al., (2022) who show that in US data the slope of the Phillips 

curve is significantly higher between 1980-2000 than during the period of 2000-2019. 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 13: Sensitivity of inflation to oil (a,b) and food (c,d) partialled on the regressors of model 4 

Regarding the effect of supply shocks, the rising sensitivity of inflation to oil and 

food factors over time (Figure 13) together with their impact on the intensity of inflation 
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persistence (Figure 11) seem to contradict the third channel. Stock and Watson (2010) and 

Stock (2011) relate the detected decline in the slope coefficient in the backward-looking 

Phillips curve regressions to the improved anchoring of expected inflation. Occhino (2019) 

shows that a flatter Phillips curve can be caused either by a structural change unrelated to 

policy or by the conduct of monetary policy. 

Figure 14 visualizes the evolution of the inertia factor in model 5 i.e. the statistically 

significant 𝛼 and 𝛿 coefficents. The findings unveil three distinct behaviors: i) until 2004, 

𝛿 is higher than 𝛼 but both converge over time, ii) 2004-2007 is a period of stability, iii) 

since 2007 their relationship reverts, and they keep on deviating steadily after 2009. During 

the last eight quarters of the dataset 𝛼 and 𝛿 exhibit a coupling behavior. The 𝛼 coefficient 

(dotted blue line) increases abruptly from 2020 onwards, implying a meaningful evolution 

of the lagged core inflation. 

 

Figure 14: Rolling coefficients α and δ in the 5th backward-looking Phillips curve model, estimated 

by OLS. The initial window 1960.q1-1979.q4 (20 years) is rolled forward by two quarters at a time. 

The estimates and results in Tables 1 & 2 show that from 2009.q4 to 2022.q1 the 

headline inflation remains highly leptokurtic, skewed and nonlinear. Accepting the null 

hypothesis of i.i.d for the residual term of model 5 (insignificant autocorrelation and normal 

moment statistics) in the 3rd subsample together with the rejection of nonlinearity in mean 
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(Tsay, 1986) and variance (McLeod–Li, 1983; Engle, 1982), demonstrate the effectiveness 

of the 5th Phillips curve specification to capture persistent inflation patterns. 

5. Conclusion 

The horizon that central banks generally choose to bring back inflation depends on 

the nature, the size and the persistence of shocks. Inflation persistence describes the time 

that it takes for a shock to dissipate, or it is just inherited from the driving process i.e. the 

output gap. It may be also attributed to high and nonlinear intrinsic inflation which is 

independent of the driving process, and it can propagate temporary shocks into the future. 

In the same vein, the response of economic policy to such shocks can boost inflation inertia. 

In any of the above scenarios the conclusion seems to be common. A good knowledge 

about the causes and characteristics of inflation inertia can provide the necessary 

information background for an effective and precise monetary policy. 

In the presence of intrinsic structure, the complexity of the inflation process 

increases. The implementation of our methodological strategy revealed the progressive 

influence of underlying inflation on the overall inflation dynamics. Although idiosyncratic 

factors remain statistically significant, the noticeable contribution of the lagged underlying 

inflation after 2020 indicates the built-up of a systematic mechanism that nonlinearly 

affects headline inflation. The combination of empirical findings about rising complexity, 

persistence, and intrinsic inertia over this period, reflects the fact that exogeneous shocks, 

such as commodity price increases alongside supply disruptions, started having indirect 

effects on inflation. According to Almuzara and Sbordone (2022), sometime in 2021 the 

trend component dominated inflation dynamics. Indeed, inflation persistence tends to 

become an inherent characteristic of the economy feeding more inflationary pressures that 

can weaken the credibility of the central bank and cause the de-anchoring of the long-term 

inflation expectations. Under these circumstances, the vigorous policy actions adopted by 

the central bank and the strong commitment to reduce inflation are moves in the right 

direction. 
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Table 1: Phillips curve specifications and estimates 

* denotes statistical significance at the 5% level. 

Table 2: Tests for nonlinearity in mean and variance over the subsample 2009q4-2022q1 

Tests  Inflation Residuals of model 4 Residuals of model 5 

Engle (p=5) 
Bootstrap 0.000* 0.860 0.130 

Asymptotic 0.019* 0.882 0.160 

McLeod–Li (L=4) 
Bootstrap 0.000* 0.750 0.130 

Asymptotic 0.021* 0.832 0.160 

Tsay (k=5) 
Bootstrap 0.040* 0.070** 0.120 

Asymptotic 0.060** 0.097** 0.133 
Numbers refer to p-values based on bootstrapped (1000 replications) as well as asymptotic distributions. 

*,** denote statistical significance at the 5% and 10% level respectively. 

For comparison, results on headline inflation during the same period are reported. 

Coefficient 

Inflation model 1 model 2 model 3 model 4 model 5 

1960q1-

1998q4 

1999q1-

2022q1 

2009q4-

2022q1 

1960q1-

1998q4 

1999q1-

2022q1 

1960q1-

1998q4 

1999q1-

2022q1 

1960q1-

1998q4 

1999q1-

2022q1 

1960q1-

1998q4 

1999q1-

2022q1 

2009q4-

2022q1 

1960q1-

1998q4 

1999q1-

2022q1 

2009q4-

2022q1 

α   - - 0.385* 0.288* - - 0.356* 0.236* 0.232* 0.252* 0.482* 0.365* 

δ 0.890* 0.556* 0.564* 0.439* 0.776* 0.419* 0.526* 0.355* 0.528* 0.627* 0.274* 0.472* 

γ 0.012 -0.053* 0.045* -0.037* 0.0008 -0.034* 0.036* -0.025* -0.011 0.035* -0.004 0.0003 

κ 0.103* 0.064* 0.071* 0.033 0.059** 0.053* 0.048** 0.031 0.052* 0.025 0.015 0.047* 

λ 0.015* 0.025* 0.0139* 0.027* 0.0139* 0.025* 0.013* 0.026* 0.022* 0.014* 0.027* 0.022* 

φ - - - - 0.129* 0.149* 0.071* 0.113* 0.079* 0.084* 0.102* 0.081* 

α+δ - - 0.949* 0.727* - - 0.882* 0.591* 0.760* 0.879* 0.756* 0.837* 

Log 

likelihood 
644.03 381.1 660.36 391.85 651.23 389.63 663.01 397.58 226.91 654.53 400.46 227.83 

prob J-

statistics 
0.644 0.542 0.775 0.424 0.940 0.530 0.864 0.603 0.877 0.959 0.872 0.843 

  Residual Diagnostics 

Q(2) 0.758* 0.063* 0.012* -0.249* 0.087 -0.041 0.137 -0.188* 0.121* -0.045 0.132 -0.074 -0.120* 0.075 -0.098 

Q(4) 0.659* -0.082* 0.042* -0.018* -0.164 0.028 -0.110 -0.032* -0.090 0.014 -0.051 -0.138 0.028* -0.072 -0.108 

Q(6) 0.576* 0.046 0.106 0.113* 0.037 0.024 0.103 0.134* 0.007 0.050 0.078 0.183 0.071* -0.100 -0.018 

Q(8) 0.456* -0.015 0.190 -0.127* 0.114 -0.135 0.063 -0.160* 0.047 -0.161 0.038 -0.089 -0.158* 0.024 -0.022 

Q2(2) 0.745* 0.310* 0.000 0.202* 0.066* 0.080 0.128* 0.132* 0.088* 0.055 0.102* -0.081 0.229* 0.070* 0.165 

Q2(4) 0.613* 0.112* 0.000 0.176* -0.015* 0.096 -0.065* 0.144* 0.031* 0.160 -0.048* -0.037 0.139* -0.078* -0.021 

Q2(6) 0.466* 0.064* 0.000 0.119* 0.158* 0.037 0.083 0.155* 0.201* 0.058* 0.101* -0.003 0.199* 0.116* -0.041 

Q2(8) 0.234* -0.071* 0.000 0.065* 0.198* 0.071 0.031* 0.080* 0.158* 0.058 0.069* 0.119 0.004* 0.147* 0.068 

skewness 1.14 -1.11 -1.09 0.03 -0.002 -0.35 -0.53 -0.072 0.024 -0.33 -0.26 -0.09 -0.28 -0.08 0.10 

kurtosis 4.10 8.58 8.34 3.62 5.21 3.75 5.41 3.85 4.39 3.83 4.45 2.76 3.95 4.34 2.96 

Jarque-Bera 41.97* 139.74* 125.07 2.53 19.02* 6.73* 26.75* 4.86 7.51* 7.30* 9.31* 0.19 7.88* 7.10* 0.09 



 

24 
 

References 

Albuquerque, B., and Baumann, U., (2017): Will US Inflation Awake from the Dead? The Role of Slack 

and Non-Linearities in the Phillips Curve, European Central Bank Working Paper Series, No. 2001. 

Almuzara, M., and Sbordone, A., A., (2022): Inflation Persistence: How Much Is There and Where Is It 

Coming From?, Liberty Street Economics, Federal Reserve Bank of New York. 

Ball, L., and Mazumder, S., (2011): Inflation Dynamics and the Great Recession, Brookings Papers on 

Economic Activity, Economic Studies Program, The Brookings Institution, vol. 42(1), pp. 337-405. 

Cogley, T., and Sbordone, A., M., (2008): Trend inflation, indexation and inflation persistence in the 

New Keynesian Phillips Curve, American Economic Review, 98, pp. 2101–2126. 

Costain, J., Nakov, A., Petit, B., (2022): Flattening of the Phillips Curve with State-Dependent Prices 

and Wages, The Economic Journal, vol.132(642), pp. 546–581. 

Durbin, J., (1954): Errors in variables, Review of the International Statistical Institute, 22, pp. 23–32. 

Engle, R.F., (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of 

United Kingdom inflation, Econometrica, 50, pp. 987–1007. 

Forbes, K., J, (2019): Inflation dynamics: Dead, dormant, or determined abroad? Brookings Papers on 

Economic Activity, Fall, pp. 257-338. 

Fuhrer, J., (2000): Habit formation in consumption and its implications for monetary-policy models, 

American Economic Review, 90(3), pp. 367–390. 

Fuhrer, J., C., 2010: Inflation Persistence, Handbook of Monetary Economics, in: Benjamin M. Friedman 

& Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, vol. 3, chapter 9, pp. 423-486, 

Elsevier. 

Geweke, J., and Porter-Hudak, S., (1983): The estimation and application of long memory time series 

models, Journal of Time Series Analysis, 4(4), pp. 221–238. 

Gordon (1982). Inflation, flexible exchange rates, and the natural rate of unemployment. In M. N. Baily 

(ed.), Workers, Jobs, and Inflation. Washington: Brookings, pp. 89–158. 

Gordon, R., J., (2011): The history of the Phillips curve: Consensus and bifurcation, Economica, 78, pp. 

10–50. 

Hausman, J., A., (1978): Specification tests in econometrics, Econometrica, 46(6), pp. 1251–1271. 

Jorgensen, P., L., and Lansing, K., J., (2019): Anchored Inflation Expectations and the Slope of the 

Phillips Curve, Federal Reserve Bank of San Francisco Working Paper Series, 2019-27. 

Karagianni, S., and Kyrtsou, C., (2011): Analysing the Dynamics between U.S. Inflation and Dow Jones 

Index Using Non-Linear Methods, Studies in Nonlinear Dynamics & Econometrics, 15(2), pp. 0–15. 

Kumar. M., S., and Okimoto, T., (2007): Dynamics of Persistence in International Inflation Rates, 

Journal of Money, Credit and Banking, vol. 39(6), pp. 1457-1479. 



 

25 
 

Kyrtsou, C., and Mikropoulou, C., (2022): Analysis of output dynamics in the EU countries Essays in 

Economic Theory, in Special Issue in Honor of Professor Stella Karagianni, Gutenberg. 

Kyrtsou, C., and Terraza, M., (2002): Stochastic chaos or ARCH effects in stock series? A comparative 

study, International Review of Financial Analysis, Vol.11 (4), pp. 407-431. 

Kyrtsou, C., and Terraza, M., (2003): Is it Possible to Study Chaotic and ARCH Behaviour Jointly? 

Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange 

Returns Series, Computational Economics, 21(3), pp. 257–276. 

Kyrtsou, C., and Vorlow, C., E., (2005): Complex Dynamics in Macroeconomics: A Novel Approach. 

In Kyrtsou, C. and Vorlow, C. E., editors, New Trends in Macroeconomics, pp. 223–238. Springer-

Verlag, Berlin/Heidelberg. 

Malikane C., and Mokoka, T., (2012): Monetary policy credibility: A Phillips curve view, The Quarterly 

Review of Economics and Finance, 52, pp. 266-271. 

Marwan, N., (2008): A Historical Review of Recurrence Plots, European Physical Journal—Special 

Topics, 164, pp. 3-12. 

Marwan, N., Romano, M. C., Thiel, M., and Kurths, J., (2007): Recurrence plots for the analysis of 

complex systems, Physics Reports, 438(5-6), pp. 237–329. 

McLeod, A.I., Li, W.K., (1983): Diagnostic checking ARMA time series models using squared residuals 

autocorrelations, Journal of Time Series Analysis, 4, pp. 269–273. 

Mikolajun, I., and Lodge, D., (2016): Advanced Economy Inflation: The Role of Global Factors, 

European Central Bank Working Paper Series, No 1948. 

Milani, F., (2009): Adaptive Learning and Macroeconomic Inertia in the Euro Area, Journal of Common 

Market Studies, Vol. 47(3), pp. 579-599. 

Mishkin, F., S., (2007): Inflation Dynamics, International Finance, 10(3), pp. 317-334. 

Newey, W., K., and West, K., D., (1987): A Simple, Positive Semi-Definite, Heteroskedasticity and 

Autocorrelation Consistent Covariance Matrix, Econometrica, 55(3), 703–708. 

Newey, W., K., and West, K., D., (1994): Automatic Lag Selection in Covariance Matrix Estimation, 

Review of Economic Studies, 61, pp. 631–653. 

Occhino, F., (2019): The Flattening of the Phillips Curve: Policy Implications Depend on the Cause, 

Economic Commentary, Federal Reserve Bank of Cleveland, July. 

Stock, J., H., (2011): Comment on “Inflation Dynamics and the Great Recession,” by Laurence Ball and 

Sandeep Mazumder, Brookings Papers on Economic Activity, Spring, pp. 387–402. 

Stock, J., H., and Watson, M., W., (2010): Modeling inflation after the crisis. NBER Working Papers 

16488, National Bureau of Economic Research, Inc. 



 

26 
 

Szybisz, M., A., and Szybisz, L., (2017): Extended nonlinear feedback model for describing episodes of 

high inflation, Physica A, 465, pp. 91–108. 

Tauber, K., and Van Zandweghe, W., (2020): A Growth-Augmented Phillips Curve," Economic 

Commentary, Federal Reserve Bank of Cleveland, vol. 2020(16), pp.1-6. 

Tsay, R.S., (1986): Nonlinearity tests for time series, Biometrica, 73, pp. 461–466. 

Webber, C., L., and Zbilut, J., P., (1994): Dynamical assessment of physiological systems and states 

using recurrence plot strategies, Journal of Applied Physiology, 76(2), pp. 965–973. 

Wu, D-M., (1973): Alternative tests of independence between stochastic regressors and disturbances, 

Econometrica, 41(4), pp. 733–750. 

  



 

27 
 

BANK OF GREECE WORKING PAPERS 

294. Tsionas G. M., “Novel Techniques for Bayesian Inference in Univariate and Multivariate 

Stochastic Volatility Models”, February 2022. 

295. Consolo, A and F. Petroulakis “Did Covid-19 Induce a Reallocation Wave?, March 2022. 

296. Filis, G., S. Degiannakis and Z. Bragoudakis, “Forecasting Macroeconomic Indicators for 

Eurozone and Greece: Ηow Useful are the Oil Price Assumptions?”, April 2022. 

297. Milionis E. A., G. N. Galanopoulos, P. Hatzopoulos and A. Sagianou, “Forecasting Actuarial 

Time Series: A Practical Study of the Effect of Statistical Pre-Adjustments”, May 2022. 

298. Konstantinou Th. Panagiotis, A. Partheniou and A. Tagkalakis, “A Functional Classification 

Analysis of Government Spending Multipliers”, June 2022. 

299. Brissimis, N.S., and E.A. Georgiou, “The Effects of Federal Reserve’s Quantitative Easing and 

Balance Sheet Normalization Policies on Long-Term Interest Rates”, June 2022. 

300. Brissimis, N.S., and M-P Papafilis, “The Credit Channel of Monetary Transmission in the US: Is 

it a Bank Lending Channel, a Balance Sheet Channel, or Both, or Neither?, July 2022. 

301. Malliaropulos, D., and P. Migiakis, “A global monetary policy factor in sovereign bond yields”, 

July 2022. 

302. Gautier, E., C. Conitti, R.P. Faber, B. Fabo, L. Fadejeva, V. Jouvanceau, J-O Menz, T. Messner, 

P. Petroulas, P. Roldan-Blanco, F. Rumler, S. Santoro, E. Wieland, H. Zimmer, “ New Facts on 

Consumer Price Rigidity in The Euro Area”, August 2022. 

303. Vikelidou, K. and T. Tagkalakis, “Banking Union: State of Play and Proposals for the Way 

Forward”, August 2022. 

304. Kotidis, A., D. Malliaropulos and E. Papaioannou, “Public and private liquidity during crises 

times: evidence from emergency liquidity assistance (ELA) to Greek banks”, September 2022. 

305. Chrysanthakopoulos, C. and A. Tagkalakis, “The effects of fiscal institutions on fiscal 

adjustments”, October 2022. 

306. Mavrogiannis, C. and A. Tagkalakis,, “The short term effects of structural reforms and 

institutional improvements in OECD economies”, October 2022. 

307. Tavlas, S. G., “Milton Friedman and the road to monetarism: a review essay”, November 2022. 

308. Georgantas, G., Kasselaki, M. and Tagkalakis A., “The short-run effects of fiscal adjustment in 

OECD countries”, November 2022. 

309. Hall G. S., G. S. Tavlas and Y. Wang, “Drivers and spillover effects of inflation: the United 

States, the Euro Area, and the United Kingdom”, December 2022. 

310. Kyrkopoulou, E., A. Louka and K. Fabbe, “Money under the mattress: economic crisis and 

crime”, December 2022. 


