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Abstract 

In this study, we explore the impact of COVID-19 pandemic on the default risk of loan 

portfolios of the Greek banking system, using cutting edge machine learning technologies, like 

deep learning. Our analysis is based on loan level monthly data, spanning a 42-month period, 

collected through the ECB AnaCredit database. Our dataset contains more than three million 

records, including both the pre- and post-pandemic periods. We develop a series of credit rating 

models implementing state of the art machine learning algorithms. Through an extensive 

validation process, we explore the best machine learning technique to build a behavioral credit 

scoring model and subsequently we investigate the estimated sensitivities of various features 

on predicting default risk. To select the best candidate model, we perform comparisons of the 

classification accuracy of the proposed methods, in 2-months out-of-time period. Our empirical 

results indicate that the Deep Neural Networks (DNN) have a superior predictive performance, 

signalling better generalization capacity against Random Forests, Extreme Gradient Boosting 

(XGBoost), and logistic regression. The proposed DNN model can accurately simulate the non-

linearities caused by the pandemic outbreak on the evolution of default rates for Greek 

corporate customers. Under this multivariate setup we apply interpretability algorithms to 

isolate the impact of COVID-19 on the probability of default, controlling for the rest of the 

features of the DNN. Our results indicate that the impact of the pandemic peaks in the first year, 

and then it slowly decreases, though without reaching yet the pre COVID-19 levels. 

Furthermore, our empirical results also suggest different behavioral patterns between Stage 1 

and Stage 2 loans, and that default rate sensitivities vary significantly across sectors. The 

current empirical work can facilitate a more in-depth analysis of AnaCredit database, by 

providing robust statistical tools for a more effective and responsive micro and macro 

supervision of credit risk.  
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1. Introduction  

The coronavirus (COVID-19) pandemic caused a structural break for all sectors 

of the global economy. Countermeasures, like countries’ lockdowns, taken to contain 

the virus and save lives, hampered the economies from functioning properly and caused 

recession. From the perspective of financial institutions, credit portfolios were highly 

affected because of the volatility in the companies’ balance sheets. The government 

support measures introduced to mitigate the impact of the pandemic had only short-

term relief effects on the viability of Corporate and SMEs. Financial institutions had to 

increase their efforts for active management of their loan portfolios, via offering short 

term forbearances to increase short term liquidity of their customers. The unique 

features of the pandemic have led financial institutions and banking supervisors to 

move more quickly to enhance their data analytics into their credit-decision engines. 

From a central bank perspective, new approaches to credit-risk monitoring of the 

banking system, which attempt to combine the whole spectrum of information collected 

by banks like obligor and instrument level analysis, are necessary. The shift towards 

more robust data analytics is expected to come in the post-pandemic era, enabling a 

real-time monitoring and effective mining of supervisory data, as well as automating 

the feeding of results into the decision-making process. Hence, the need of advance 

statistical modelling techniques, able to capture the full nexus of default risk, is 

becoming even more crucial in the current economic environment for understanding 

the financial system dynamics and be able to make informed decisions. 

In this new era, the utilization of big data that is available to central banks is the 

cornerstone for boosting their digital transformation. AnaCredit is an important 

initiative introduced in the aftermath of global financial crisis by European Central 

Bank to support the macroprudential and microprudential activities of the central banks 

in the Eurozone. This data source provides detailed loan-level information, on a 

monthly basis, for the corporate sector, so enabling a comprehensive analysis of the 

credit risk undertaken by the banking system. Particularly, the riskiness in the loan 

books of Eurozone Banks is fully captured through the numerous features it contains, 

enabling disaggregated analysis by various dimensions, like sector, bank, staging, 

geography, and obligor. On the flip side, big financial datasets usually pose significant 

statistical challenges because they are characterized by increased noise, heavy-tailed 
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distributions, nonlinear patterns, and temporal dependencies. These attributes in 

financial variables patterns became more intense after the COVID-19 shock.   

To address the above-mentioned challenges, the enrichment of statistical 

techniques is important to accommodate for the increased availability of data, and to 

facilitate the extraction of any possible information they convey. Conventional 

econometric methods usually fail to efficiently capture the information contained in the 

full spectrum of these large datasets, as multicollinearity1 is usually present in the 

independent variables and the interactions to be captured are of nonlinear nature. 

Machine learning algorithms are employed nowadays to tackle the issue of variable 

selection and of modelling the underlying complicated temporal dependencies. Deep 

learning algorithms have remarkably increased the capabilities of data analytics in 

performing pattern recognition and classification. Their structure offers the capacity to 

adapt in the dataset via continuous learning algorithms, and recognize new and evolving 

patterns, both in time series and cross-sectional datasets. In addition, deep learning 

effectively deals with high dimensional data that exhibit nonlinear behaviour. Thus, 

their complicated and non-parametric structure could lead to improved predictive 

performance in financial modelling.  

Motivated by the impact of the pandemic in the loan portfolios and the high 

dimensionality and granularity of the information collected through the AnaCredit 

database, we analyse a corporate credit loans big dataset, using bleeding edge machine 

learning techniques and deep learning neural networks. The purpose of this study is to 

develop a behavioural scoring model that aims at evaluating the risk of existing 

customers based primarily on their recent transactional data, including repayment 

performance and delinquencies. Such models have (as business practice) no more than 

one 1 year of forecasting horizon, as they pursue to solve a classification problem in 

the short term to gauge banks’/lenders’ decisions, but definitely not for longer.  For the 

longer term, and for identifying economic structures or long-term economic 

relationships, conventional econometrics is fit for purpose. Hence, this study focuses 

on explaining the main behavioural determinants or triggers for an obligor to default, 

 

1 Techniques like regularization (e.g., LASSO) may be used to discard some features, though, this leads 

to the information they convey to be discarded as well. 
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and on assessing whether this relationship was affected by the COVID-19 pandemic. 

The novelty of our approach lies in the following areas: 

i. We use advanced machine learning techniques, like Deep Neural Network (DNN) 

and Extreme Gradient Boosting, for the development of behavioral credit scoring, 

while benchmarking their performance with traditional econometric methods.  

ii. We make use of the big and high dimensional AnaCredit dataset. To the best of our 

knowledge, this is the first study to apply machine learning to AnaCredit for 

modelling credit risk.  

iii. We provide a thorough out-of-time evaluation of the proposed novel approaches 

and benchmark our results against multiple statistical methods to provide evidence 

of DNNs superior performance. 

iv. We perform an extensive interpretability analysis, increasing transparency on the 

functionality of the proposed DNN, so removing its black box nature. 

v. We disentangle the impact of COVID-19 in default risk across various dimensions. 

The remainder of this study is structured as follows: In section 2, we focus on the 

related literature review on credit risk models and relevant studies regarding COVID -

19 impact on banks’ loan portfolios. Section 3 describes the data collection and 

processing steps implemented. In section 4, we provide technical details regarding the 

estimation process of the developed models. In section 5, we outline the results of the 

validation process and compare the forecasting accuracy across the different models 

implemented. In section 6, we employ interpretability algorithms for Machine 

Learning, and provide significant insights regarding the COVID-19 impact and feature 

sensitivities captured by DNN. Finally, in the concluding section 7, we summarize the 

performance of the proposed methodologies and discuss future potential research.   

 

2. Literature review 

During the last decades a large number of approaches has been used to address 

the problem of modelling the credit quality of a company. However, it was only recently 

that more accurate and robust systems, which make use of novel statistical techniques 

from the field of machine and deep learning, have been employed to drive expert 

decisions.  
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Linear regression models (Avery, et al., 2004), Probit models (Mizen and 

Tsoukas, 2012) and Hazard Rate models (Chava and Jarrow, 2004 & Shumway, 2001) 

have been extensively employed in credit risk modelling, nevertheless, their core 

weakness stem from their inability to capture non-linear dynamics, which are prevalent 

in financial ratio data (Petr and Gurný, 2013). Furthermore, more advanced modelling 

techniques have also been performed to tackle the weaknesses of traditional credit 

scoring models, though, not fit for purpose for analysing big data. Galindo and Tamayo 

(2000) test CART decision-tree models on mortgage-loan data to detect defaults. Yeh 

et al. (2012) applied Random Forests (Breiman, 2001) in credit corporate rating 

determination, Zhao et al. (2015) employed feed forward neural networks in the same 

domain, whereas Petropoulos et al (2016) made use of Student’s-t hidden Markov 

models. Finally, Huang et al. (2004) employ support vector machines (SVM – Vapnik 

1998) to the credit risk estimation in an attempt to provide a model with better 

explanatory power.  

A number of recent studies have employed Machine and Deep Learning methods 

in the field of credit risk evaluation models. Addo et al. (2018) focus on credit risk 

scoring by examining the impact of the choice of different machine learning and deep 

learning models in the identification of defaults of enterprises. They also study the 

stability of these models relative to a subset of features selected by the models. They 

observe that the tree-based models are more stable than the models based on multilayer 

artificial neural networks. Petropoulos et al. (2019) combine dimension reduction 

algorithms along with different machine learning techniques and deep neural networks 

measuring credit risk on a 10-year loan dataset of Greek banks. Their results are 

benchmarked against other traditional methods, like logistic regression and 

discriminant analysis methods, yielding significantly superior performance.  

Feng et al. (2021), developed an ensemble deep-learning model for credit risk 

evaluation to deal with imbalanced credit data, showing its relevant over-performance 

when compared to other models.  Wang et al (2020), provide a comparative assessment 

of credit risk models of different Machine Learning techniques on bank loan data. 

Hamori et al (2018) analyse default payment data, and compare the prediction accuracy 

and classification ability of different machine learning methods and various neural-

network methods, with a different activation function. Their results indicate that the 
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classification ability of boosting is superior to other machine-learning methods, 

including neural networks.  

The issue of COVID-19 impact on the credit quality of loan portfolios has not yet 

been investigated in depth in literature. Most of the studies focus on sovereign risk 

assessment, as Augustin et al (2022), which found a positive and significant sensitivity 

of sovereign default risk to the intensity of the virus spread for fiscally constrained 

governments. Other studies, focus on bank risk directly, such as Aldasoro et al (2020), 

which detected differentiations in the virus impact (measured in CDS spreads) based 

on nationality and the level of risk that each bank had when entering the crisis.  

In our study, we leverage on the recent application of Deep Learning methods on 

credit risk evaluation, trying to approach the effects of the COVID pandemic on the 

performance of bank loan portfolios assessed on a granular (loan by loan) level. The 

granularity of the dataset allows us to detect various behavioural impacts and isolate 

the impact from the COVID-19 outbreak on the corporate portfolios of Greek banks. 

 

3. Data collection processing and variable selection 

AnaCredit (Analytical Credit datasets) is a dataset with granular information on 

individual bank loans in the euro area, including Greece, which is provided by the banks 

via a standardised set of templates. The dataset used in our analysis comprises of loan 

level information on a monthly basis on Corporate and SME loans taken from the 

AnaCredit database for all Greek significant and less significant institutions.  

The adopted definition of a default event in this dataset is in line with IFRS 9. 

Specifically, a default event is considered if the instrument becomes credit impaired in 

accordance with IFRS 9 (i.e., Stage 3), with a six-months observation period. At each 

monthly snapshot, all performing loans (i.e., Stage 1 or Stage 2) are considered, and at 

the end of the 6-month observation period they are classified as either performing or 

non-performing according to their IFRS 9 stage. The dependent variable in our dataset 

is a binary indicator (0 or 1), with the value of one flagging a default event (i.e., the 

instrument is categorized as non-performing at the end of the 6-month observation 

period).  
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The available dataset covers a period of 3.5 years, from September 2018 to 

February 2022. The final dataset contains more than 3 million of performing 

instruments, sufficiently covering both the period before and after the COVID-19 

outbreak.  

Figure 1 shows the number of performing instruments included in each snapshot 

and the corresponding Default Rate (DR). Before the outbreak of the COVID-19 

pandemic the Default Rates had a continuously decreasing trend because of the 

improved financial conditions prevailing in Greece, reaching levels below 2%. COVID 

-19 pandemic impacted the credit quality of the loans and a new stock of defaults 

emerged. The Default Rates elevated again and approached the level of 4%. The latest 

observations shows that the COVID-19 impact in Default Rates is constantly fading, 

indicating that loan portfolios are shaking off the COVID-19 impact.  

[Figure 1] 

To perform the modelling and prediction methodology five different set of 

dependent variables were used.  

The first set contains indicators related to basic macroeconomic variables. 

Specifically, the Gross Domestic Product (GDP) changes, the unemployment rate level, 

and the House Price Index were used.  

The second set of independent variables used are related to obligors’ information. 

For each obligor the Global NPE ratio is calculated as the ratio of stage 3 exposures 

over total exposure in the Greek banking system. In addition, for each obligors the level 

of the aggregated loans received from Greek institutions as well as the overall level of 

the company’s turnover are determined. From these two metrics three independent 

variables are derived. Firstly, a four-cluster segmentation is used, and all companies are 

classified in one of the 4 turnover clusters. It has to be mentioned that the level of a 

company’s turnover provides an estimation about its size. Secondly, with respect to the 

aggregated loan level information, the 6-month change is measured in order to capture 

whether a company increases significantly its exposure to the Greek banking system or 

not. Thirdly, the ratio of turnover over aggregated loan volume is computed to capture 

the level of the obligor’s leverage.  

The final dataset also contains a set of behaviour variables, including, the IFRS 9 

stage status, whether the instrument is forborne or renegotiated, and if any legal actions 
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is taken by the bank. These variables were transformed to binary indicators (0 or 1) and 

coupled with their 6 months history (i.e., lags) were included in the final dataset. 

Furthermore, the economic sector (e.g., Constructions, Real Estate, Accommodation, 

etc.) is transformed to binary indicators (0 or 1) and is also considered in the analysis. 

The available granularity of the dataset permits a more thorough analysis of sectoral 

sensitivities during the COVID-19 pandemic. 

In addition, another set of indicators employed are related to instrument specific 

information, such as duration of the loan, interest rate level, institution granting the 

relevant instrument, payment frequency of the instrument, instrument type (e.g., 

overdraft), and purpose (e.g., working capital, commercial real estate purchase etc.).  

Finally, two variables related to COVID-19 pandemic are calculated.  In March 

2020, the Greek Prime Minister announced that a nationwide lockdown will come into 

force for first time to restrict the spread of the coronavirus disease.  This date is 

considered as the starting date of COVID-19 in Greece, from a financial perspective. 

For each snapshot we estimate the number of months elapsed since the COVID-19 

outbreak. In addition, we assume that most of the financial support measures taken in 

Greece started concurrently with the outbreak and ended in December 2020. An 

additional variable that is considered in the final dataset indicates whether at the date 

of examination there are financial support measures in place or not.  

The combination of the aforementioned sets of independent variables, after 

excluding the ones causing multicollinearity issues using variance inflation factor, led 

to a final set of 92 independent variables (shown analytically in the Appendix 1), with 

more than 3 million entries, so classifying the available dataset to the “big data” 

category. The so-obtained dataset was split into two parts:  

• An in-sample train dataset that includes the data between March 2019 – June 

2021, which was used for model development (Train Set). 

• An out-of-time dataset that includes the data between July-August 2021 

(marked in green in Figure 1), which was employed for validation purpose and testing 

of the generalization capacity across all candidate models (Test Set). 
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4. Model development 

Due to the extended number of predictors and the large-scale dataset employed, 

we apply methodologies from the general domain of Machine Learning techniques. Big 

data often entail dimensionality issues, increased noise, convergence issues, and other 

significant statistical challenges, which cannot be addressed based on traditional 

statistical techniques.  Thus, we investigate the predictive performance of a group of 

state-of-the-art machine learning techniques in the classification problem of future 

obligor default. These techniques are benchmarked against traditional statistical 

techniques employed in small scale probability of default modelling (i.e., Logistic 

regression (Logit)). 

Five techniques are employed in this work, namely Random Forests, Extreme 

Gradient Boosting, Deep Neural Network, Shallow Neural Network, and Logistic 

Regression. 

Random Forests (RFs) (Breiman, 2000) are frequently used in many machine 

learning applications across various fields of the academic community, and it is a 

popular method for modelling classification problems. RFs combine bootstrap 

aggregation and random features’ subspace selection to generate a forest of trees. Their 

structure follows a divide-and-conquer approach used to capture non-linearity in the 

data and perform pattern recognition. Its core principle is that a combined group of 

“weak learners” can form a “strong predictor” model. In more detail, RFs combine 

many binary regression decision trees that are selected by bootstrapping samples of the 

modelled explanatory variables and the corresponding classifier variable. The final 

prediction is made using the majority voting in case of classification problem, or by 

averaging the predictions from all the individual trees in case of regression problems. 

The final set of random forest variables is selected using a variable importance index, 

which reflects the “importance” of a variable based on its contribution to classification 

accuracy. This is estimating by looking at how much the prediction error increases 

when omitting a considered variable. Our implementation of RFs was performed based 

on Python’s sklearn package. We performed a grid search procedure over a 5-fold 

cross-validation to select a series of entailed hyper parameters, including: the number 

of decision trees in the forest, the maximum number of features considered to split a 

node, whether bootstrap samples should be used when building trees, the maximum 

depth of the tree, the minimum number of samples required to split an internal node, 
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the minimum number of observations required to be at a leaf node, and the function to 

measure the quality of a split. The final model includes 300 decision trees in the forest, 

up to 7 features considered to split a node, at least 50 observations at each leaf node, 

while the Gini metric was used to measure the quality of the splits.  

The extreme Gradient Boosting (XGBoost) is a boosting tree algorithm (Chen et. 

al. 2016) that is an enhancement over tree bagging methodologies, such as Random 

Forests. Gradient Boosting trees model is proposed by Friedman (1999) and has the 

advantage of reducing both variance and bias. It reduces variance because multiple 

models are used (bagging), whereas it additionally reduces bias in training the 

subsequent model by telling it what errors the previous models made (boosting). In 

gradient boosting each subsequent model is trained using the residuals (the difference 

between the predicted and true values) of previous models. Extreme Gradient Boosting 

(XGBoost) is an advanced implementation of gradient boosting algorithm, offering 

increased efficiency, accuracy, and scalability over simple bagging algorithms. It 

supports fitting various kinds of objective functions, including regression, 

classification, and ranking. XGBoost offers increased flexibility, since optimization is 

performed on an extended set of hyper-parameters, while it fully supports continuous 

training. 

We implemented XGBoost by utilizing the XGBoost package for Python. We 

performed a 5-fold cross validation grid-search procedure to fine-tune and optimise our 

model. A series of entailed hyper parameters were included in the tuning procedure, 

such as the maximum number of trees generated, the maximum depth of trees, the 

learning rate, the L1 regularization (Lasso Regression) parameter on the weight (to 

avoid overfitting issues), the size of sub-sampling for building the classification trees, 

and the variables considered in each split. The objective function used for the current 

problem was regression with squared loss, while the Mean Squared Error (MSE) was 

used to evaluate the performance of the cross-validated model. The final model has a 

max depth of 10 per each tree, a learning rate of 0.01, which determines a relatively 

small step size at each optimization iteration. There are 500 trees in our ensemble. The 

fraction of columns to be randomly sampled for each tree was set at 0.3, and the fraction 

of observations to be sampled for each tree was at 1. The alpha hyper-parameter (i.e., 

L1 regularization on the weights) was also set to 1 to reduce overfitting tendencies. 
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Furthermore, we implemented a Deep Neural Network (DNN) (LeCun et al., 

2015; Heaton, 2018). to address the issue of corporate default forecast. Deep learning 

has been an active field of research in the recent years, as it has achieved significant 

breakthroughs in the fields of computer vision and language understanding. DNN have 

been extremely successful in tasks such as diverse time-series modelling, machine 

translation (Cho et al., 2014; Tu et al., 2016), machine summarization (See et al., 2017) 

and recommendation engines (Quadrana et al., 2017). However, their application in the 

field of finance is rather limited, so that our paper constitutes one of the first works. 

Deep Neural Networks are characterised by the multiple internal layers employed 

between the input values and the predicted result, and differ from Shallow Neural 

Networks, which have one layer (Figure 2). Constructing a DNN without nonlinear 

activation functions is impossible, as without these functions the deep architecture 

collapses to an equivalent shallow one.  

[Figure 2] 

Since DNNs require a huge number of trainable parameters, it is key that 

appropriate techniques be employed to prevent them from overfitting. Indeed, it is now 

widely understood that one of the main reasons behind the explosive success and 

popularity of DNNs is the availability of simple, effective, and efficient regularization 

techniques, developed in the last few years. Dropout has been the first, and, expectably 

enough, the most popular regularization technique for DNNs (Srivastava et al., 2014). 

In essence, it consists in randomly dropping different units of the network on each 

iteration of the training algorithm. This way, only the parameters related to a subset of 

the network units are trained on each iteration. This contains the associated network 

overfitting tendency, and it does so in a way that ensures that all network parameters 

are effectively trained.  

We employ Dropout DNNs with Sigmoid activation function to train and deploy 

feed forward deep neural networks. More precisely, we employ TensorFlow package 

and the Keras API (Application Programming Interface) for Python. We postulated 

deep networks that are up to four hidden layers deep and comprise various numbers of 

neurons. Model selection using cross-validation was performed by maximizing the 

Accuracy metric. The trained model was compiled based on the Adam optimizer, which 

is considered the best among the adaptive optimizers. Binary Cross-Entropy loss was 
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used as the Loss Function of the model, comparing the predicted probabilities with the 

actual class output.  

Dropout is implemented between layers, by randomly selecting the nodes to be 

dropped-out with a given probability (10%). Due to its size, the dataset cannot be 

processed all at once, so the data is split into smaller batches (we set the batch size to 

500 observations). Training occurs over epochs, and it refers to the maximum number 

of passes through the entire training set. Epoch is set to 500, that is, the training data is 

used up to 500 times). The model configuration includes an early stop option, which 

stops the training when there is no increase in Accuracy for 10 sequential epochs. 

As already mentioned, the final model was selected by maximizing the Accuracy 

metric. Figure 3 provides a visualization of the training process. They show that the 

loss is decreasing while the accuracy is increasing in each epoch, in both the train (blue 

lines) and test samples (green lines). It is noted that the training did not reach the 

maximum number of Epochs, due to early stopping. 

[Figure 3] 

The structure of the developed DNN model is shown in Figure 4. Specifically, 

there are 92 features that are fed into the model (input layer). The first hidden layer has 

256 nodes (neurons/hidden units/outputs), the second layer has 128 nodes, the third 

layer has 64 nodes, and the forth hidden layer has 32 nodes. The output layer has one 

node.  There is dropout (deactivation of nodes) between each layer, and the sigmoid 

activation function is used in each layer. 

[Figure 4] 

 A Shallow Neural Networks was also developed, with the same specifications to 

the Deep Neural Network, described above. However, the Shallow Neural Network 

employees one hidden layer, compared to the four hidden layers of the Deep Neural 

Network.  

We benchmark the abovementioned techniques versus traditional statistical 

techniques employed in probability of default modelling, i.e., Logistic regression 

(Logit). Logistic regression is an approach broadly employed for building corporate 

rating systems and retail scorecards, due to its parsimonious structure. It was first used 

by Ohlson (1980) to predict corporate bankruptcy based on publicly available financial 
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data. Logistic regression models determine the relative importance of each independent 

variable in the classification outcome using the fitting dataset.  

We developed a simple logistic regression model, without any AR or time-

varying model parameters, and we implemented this approach in Python using the 

statsmodel module. The final Logit model include 21 features, which are presented in 

Appendix 4. Before estimating the logit model, we performed univariate feature 

selection (dropping 37 variables with low predictive power, i.e., low correlation with 

target variable), and then dropped collinear variables based on correlation cut-off 

threshold of 70% (18 variables). The correlation matrix before and after the filtering is 

shown in Figure 5.  

[Figure 5] 

 

5. Model performance evaluation  

We performed a thorough validation procedure to assess the robustness of the 

above-mentioned models, in terms of in-sample (Train sample) as well as out-of-time 

(Test sample) performance.  We employed a series of metrics that are broadly used, by 

both researchers and practitioners, to quantitatively measure the performance of a credit 

scoring model (Hossin and Sulaiman, 2015). We used various metrics to assess the 

discrimination power, the classification accuracy, and the predictive ability of the 

models. These measures are used to draw a full spectrum conclusion on the 

performance of each model relative to the others.  

In more detail, we assess the discriminatory power of the evaluated models using 

the Area Under the Receiver Operating Characteristics (AUROC) metric (equivalent to 

the Gini metric), and the K-S metric. The results, for both Test and Train samples, are 

presented in table 1, where it is clearly noted that the Deep Neural Network (DNN) 

outperforms all other models.  

[Table 1] 

The ROC curves (and the corresponding AUROC metrics) are presented in 

Appendix 2, for all models and all samples. The ROC curve is created by plotting the 

true positive rate against the false positive rate at various threshold settings. As such, 

they illustrate the obtained trade-offs between sensitivity and specificity, as any 
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increase in sensitivity will be accompanied by a decrease in specificity. The closer the 

curve follows the left-hand border and then the top border of the ROC space, the more 

accurate the modelling approach. The area under the ROC curve is calculated and the 

AUROC metric is produced.  

Table 2 presents a series of additional tests that were performed to measure the 

classification accuracy of the models, including the Accuracy, Precision, Recall, and 

ROC-AUC (Receiver Operating Characteristics - Area Under the Curve) metrics, in a 

binary set-up using appropriate cut-off scores for the predictions. The classification 

tables, for both Train and Test samples, are presented in Appendix 3. 

[Table 2] 

Based on the above results, DNN exhibit the best performance across all metrics, 

in both samples. With respect to the recall metric, it is intuitively the ability of the model 

to find all the positive observations (i.e., the defaulted obligors in our case). Since there 

is a much higher financial risk when insolvent customers are not identified, rather than 

when solvent customers are wrongly classified as insolvent, the proper identification of 

insolvent obligors is a desired characteristic of a scoring model. Thus, we consider that 

recall is an important metric in our case. It is also noted, that XGBoost performs second.  

Finally, the predictive accuracy of the models was assessed based on the Mean 

Absolute Error (MAE), the Mean Squared Error (MSE), and the Root Mean Squared 

Error (RMSE) metrics. The results are presented in Table 3 for both Test and Training 

samples, indicating again the superior performance of DNN. 

[Table 3] 

Deep Neural Network (DNN) outperforms all other models, along all measures, 

in both Test and Train samples. This performance consistency implies a much stronger 

generalization capacity compared to other state-of-the-art models, which renders our 

approach much more attractive to researchers and practitioners working in real-world 

financial institutions.  

Another essential aspect of each classification system lies in the creation of a way 

to represent the classification results to a rating system, which can be employed for 

credit risk monitoring purposes in the core banking operations. Calibration of a credit 

rating system is a mapping process under which each score value is matched to rating 

grade, which is then associated with a probability of default. For this purpose, we 
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replicate the credit rating system calibration process for all models in scope, by using 

the sklearn.calibration library in Python. 

The calibration curves (also known as reliability diagrams) compare how well the 

probabilistic predictions of a binary classifier are calibrated. Calibration curves plot the 

true frequency of the positive label against its predicted probability, for binned 

predictions. The x axis represents the average predicted probability in each bin. The y 

axis is the fraction of positives, i.e., the proportion of samples whose class is the positive 

class (in each bin). A perfect model would be represented by a diagonal line, where the 

predicted probability would be the true frequency for each bin. Thus, the calibration 

curves plot the estimated probability of default, versus the actual default rate per bin. 

Each bin can be seen as a rating grade, which is defined based on each model output 

(i.e., range of score).  

The calibration curves produced for each model, both for Train and Test samples 

are shown in Figure 6. The calibration of the DNN model is superior compared to the 

other models, as the DNN calibration curve (red line) is closer to a perfectly calibrated 

model (blue dotted line), in both samples. The rest of the models show significant 

weaknesses with respect to calibration. Particularly, SNN and LR models produce a 

poor calibration, as their calibration curves (purple and brown lines, respectively) are 

far from the perfectly calibrated model. 

[Figure 6] 

The predictive accuracy (per bin) of each calibration was also assessed based on 

the Mean Squared Error, in order to have a quantitative assessment of the calibration 

that can be produced by each model. Once again, DNN produce the lowest MSE in both 

samples as inferred from Table 4.  

[Table 4] 

 

6. Interpretability  

The major criticism of Machine Learning algorithms is related to their lack of 

transparency. There was always present a trade-off between model complexity and 

model performance. Although those models have a wide range of applications and they 

are able to handle with big data, and recognize artificial trends and patterns, the lack of 
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interpretability renders them sometimes powerless as they are considered black boxes. 

As interpretability is of paramount importance, some of the model-agnostic approaches 

are presented in the following subsections. The goal is to apply both global and local 

interpretability algorithms to provide more clarity on the functionality of the DNN.  

6.1 Local surrogate (LIME) 

Local surrogate models (Ribeiro et al., 2016) are easily interpretable models (e.g., 

Linear Regression) that are used to provide transparency on individual predictions of a 

complex black-box model. To explain the prediction of a specific instance (point x), a 

new dataset consisting of perturbed samples (around the point x) is generated. Then, 

this new dataset is used in the “black-box” model and the relevant predictions are 

estimated. The same new dummy dataset is used but now using a simpler and easily 

interpretable model, such as a linear regression. The interpretable model for a specific 

instance is the model that produces predictions closer to the predictions estimated by 

the “black-box” model.  

We use LIME library in python to perform the aforementioned local 

interpretation. For a series of instances, we produce the relevant instance explanation, 

some of which are presented in Figures 7-9. 

[Figures 7-9] 

Locally, the Global NPE ratio feature, which is defined as the ratio of stage 3 

exposures over total exposure in the Greek banking system, is the most important 

feature in the selected cases. Other features that appeared to be locally important are 

the information of IFR9 stage, and the COVID-19 variable. In the abovementioned 

presented examples, information about the sector of the obligor and the creditor 

institution, appears to be an important feature. 

Having obtained a first flavour of the hidden dynamics with respect to the features 

of the Deep Neural Network, using local interpretation of the model, we proceed by 

providing some extra clarity using Global Model Agnostic techniques.  

6.2 Shapley Value (SHAP) 

In the Shapley Value approach (Fryer et al., 2021), the contribution of each 

feature is measured by adding and removing the specific feature from all subsets of the 

rest of the features. To compute the contribution of a feature i, a model is trained with 
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the feature i present, and another model is trained with the feature excluded. Then, 

predictions from the two models are compared on the current input. The differences are 

computed for all possible features subsets. The Shapley value is the average marginal 

contribution of a feature value across all possible set of features.  

To retrieve the Shapley values for models under investigation we have used 

SHAP package in python. Since Shapley value estimations are considered very time 

expensive, various random samples from the train dataset have been selected and the 

respective available graphs have been produced. To produce the SHAP feature 

importance graphs, the absolute Shapley values are estimated. Figure 10 provides a 

global interpretation, since values used in the feature importance graph are the result of 

the aggregation of the SHAP values for individual instances across the entire selected 

sample population. Then, the features are ordered from the highest to the lowest effect 

on the prediction, ignoring whether the feature affects the prediction in a positive or 

negative way.  

[Figure 10] 

An alternative and more information-enriched option to present the results of the 

Shapley values analysis is the Beeswarm plot (Figure 11). Along with the feature 

importance information (ranking) the x-axis value of the dot is determined by the 

Shapley value and shows whether the effect of that value is associated with a higher or 

lower prediction. Colour is used to display whether the original value of the feature is 

high (red dots) or low (blue dots). Combining the colour information with x-axis point, 

we can infer the relationship between the level of the feature and the level of the 

prediction. For instance, a Stage 2 loan is more prone to default comparing to a Stage 

1 loan, according to the DNN. Stage 2 classification, which by itself signals increased 

credit risk, appears to be the most important factor (contribution of around 15%) in 

explaining default. Said that, the remaining features account for the remaining 85% of 

the total contribution, revealing the additional factors that do matter for predicting a 

firm’s default. 

[Figure 11] 

In addition, loans disbursed in the past carry lower probabilities to default 

comparing to new disbursements. We observe that from a credit risk perspective, 

portfolios of large banks (Banks 1-4, refer to SIs) behave better comparing to smaller 
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institutions. It is also evident that loans with higher level of interest rate across all 

institutions are more prone to a potential default. Furthermore, the Deep Neural 

Network model identifies the relationship of a potential credit event with respect to the 

level of the company’s leverage, through the turnover over loan variable. Specifically, 

the greater the leverage (blue dots) the greater the possibility an instrument to migrate 

to stage 3 in the following 6 months. 

COVID-19 variable is present to all models investigated, including the Deep 

Neural Network model. We proceed with performing a series of partial dependency 

plots in the following section to shed light on the Deep Neural Network “black-box” 

with respect to the COVID-19. 

 

6.3 Partial Dependency Plot 

Partial dependence plots (PDPs) are used to visualize the relationship between 

the dependent variable and a set of independent variables (features). Through a partial 

dependence plot the behaviour pattern between the target variable and a feature can be 

revealed regardless if this relationship is linear, monotonic or more complex. Assuming 

that 𝑋𝑠 is the set of independent variables and 𝑋𝑐 its compliment, then partial 

dependence plot (Goldstein et al., 2015) at a point 𝑥𝑠 is defined as:  

𝑝𝑑𝑝𝑋𝑠
(𝑥𝑠) ≝ 𝐸𝑋𝐶 [𝑓(𝑥𝑠, 𝑋𝐶)]             (1) 

The partial function provides the average marginal effect on the prediction for a 

given value of features s. We present in Figure 12 the partial dependency plots for the 

feature related to COVID-19 across all models under investigation. The COVID-19 

feature counts the number of months elapsed since the pandemic outbreak.  

[Figure 12] 

Apart from Logistic Regression model, which is not able to capture non-linear 

relationships, the other models recognise an inverse smile pattern between the average 

marginal effect on the probability of default and months since the start of the pandemic. 

Excluding the Logistic Regression from Figure 12, the previously mentioned nonlinear 

pattern is even more evident in Figure 13. 

[Figure 13] 
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The increase of default events due to the COVID-19 outbreak is being captured 

by all models. All models, excluding shallow DNN, exhibit a less sensitive relationship 

in the beginning of the period, presumably due to the introduction of support measures 

taken in Greece (e.g., moratoria). In the long end of Figure 13, the impact of COVID-

19 shock started fading, reflecting the reopening of economy and the end of lockdown. 

It is evident that any effects from COVID-19 are still present, retaining default 

probabilities to higher levels than before the pandemic.  

As DNN exhibit superior performance against the rest of the candidate models, 

we continue the PDP analysis focusing only on DNN. The default probabilities 

estimated through the DNN model are presented along with the actual default rates with 

respect to the months elapsed since COVID-19 outbreak in Figure 14. It evident that 

DNN models can capture the actual default rate pattern. 

[Figure 14] 

European Commission highlighted in the technical note to the Eurogroup 

“Sectoral Impact of the COVID-19 crisis” that the pandemic impact varied dramatically 

across sectors of the economy. Using the following PDP that show the expected target 

response (i.e., prediction of default probabilities) broken down by sector, as a function 

of the number of months elapsed since the COVID-19 outbreak, we observe in Figure 

15 that the average marginal effect on the default probabilities differentiates 

significantly across sectors. In Greece, accommodation and entertainment sectors were 

severely affected in the first year of pandemic, while energy sector remained less 

vulnerable in the whole period. Transportation and storage sector appears stickier 

comparing to other sectors in Greece, mainly due to the mix of companies included in 

our dataset (e.g., shipping, including seagoing, is reported under this sector).   

[Figure 15] 

As expected, stage 2 loans are more sensitive to the deterioration of the credit risk 

environment. This is illustrated in Figure 16, in which it can be observed that the 

increase in default rates is more pronounced.  In tandem, the default rate of stage 2 loans 

remained rather stable in the first months, reaching their maximum level a few months 

later comparing to stage 1 loans. This presumable being explained by the fact that 

moratoria provided by Greek banks targeted to stage 2 loans and offered a short-term 

delay in the increase in the default rates. 
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[Figure 16] 

Useful insights are provided by the fitted DNN also for other features of 

AnaCredit that are considered important from a credit risk perspective. As shown in 

Figures 17-19, it is evident that the proposed DNN model can capture the non-linear 

relationship between these variables and the default rate. Specifically, for the duration 

of the instruments there is abrupt increase in the default rates during the first 5 years 

(60 months on book). With respect to the feature turnover over loan, a leverage 

indicator, a convex relationship is observed that asymptotically flattens above 50%. 

Finally, for Global NPE ratio an increasing monotonic behavioural pattern is observed.  

[Figures 17-19] 

 

7. Conclusion 

To tackle the issue of pattern detection in large loan level datasets we employ 

machine learning algorithms that reduce dimensionality in the data and increase 

accuracy in predicting the future behaviour of corporate loans. Our analysis is based on 

the Greek AnaCredit dataset, spanning a 42-month period of the Greek economy. The 

purpose of the analysis is to perform credit quality classification and quantification of 

Probability of Default during the COVID-19 pandemic. To achieve this, we develop 

five behavioural credit scoring models, for which we perform extensive comparisons 

of the classification and forecasting accuracy using an out-of-time sample of 2 months 

period. 

 Our empirical results indicate that DNNs provide better performance in terms of 

classification accuracy and credit rating system calibration across all metrics, compared 

to widely employed techniques in credit risk modelling such as Random Forests, 

XGBoost, and Logistic Regression. In addition, the inclusion of macro, financial, and 

transactional-behavioural variables captures both the systemic and idiosyncratic 

behaviour in obligors’ credit quality, thus, both discriminatory and calibration testing 

exhibit stability in performance.  Our analysis provides strong evidence for the model’s 

increased stability, as the high-performance levels observed in the in-sample dataset are 

retained when evaluation is performed using out-of-sample datasets. The performance 

consistency identified implies a much stronger generalization capacity compared to the 

state-of-the-art models, which renders DNNs much more attractive to researchers and 
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practitioners working in real-world financial institutions. Deep Neural Networks appear 

to capture the whole nexus of information that lies in the AnaCredit dataset, and thus, 

outperform all candidate statistical models assessed in this paper.  

To provide a more concise view of the impact of COVID-19 in the corporate and 

SME default risk, we make use of the fitted DNN. Using partial dependence plots on 

the proposed DNN we provide evidence on the sectoral sensitivities with respect to the 

probability of default. Accommodation and entertainment sectors suffer a more intense 

impact during the first year of pandemic, while energy sector remain less vulnerable 

throughout the sample period. With respect to credit quality, stage 2 loans exhibit higher 

sensitivity, with a sharp increase in default rates that peak a few months later than stage 

1 loans. Furthermore, our empirical results indicate that the moratoria offered a short-

term delay in the increase of the default rates due to the pandemic. The removal of 

lockdowns and the reopening of the economy have eased the COVID-19 effect, as 

probabilities of default have steadily started to decrease without yet reaching the pre-

pandemic levels.  

      This study provides evidence that DNNs can be the base for building the next 

generation of supervisory tools for monitoring and modelling credit risk in the short 

run. Our proposed approach is a fully-fledged automated system that can be used by 

financial experts in central banks for quantifying credit risk, make projections in the 

short run, and potentially drive decision making. Said that, we recognize that one caveat 

of our analysis is that we have not assessed the out of time performance of our models 

for a longer period (i.e., done only for two snapshots), and this is something to be done 

in the future once data are available. Furthermore, our model could be further 

complemented by financial ratios as explanatory variables in predicting default, once 

these become available to us. Though, we would like to note that building a financial 

rating system, which makes full use of financial ratios, is different from a behavioural 

scoring model. Finally, as a future research step we intend to embed re-enforcement 

learning algorithms, which increase the capabilities of the DNN behavioural credit 

scoring to adapt more quickly to new patterns introduced in loan level data. 
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Tables and Figures 

Figures 

Figure 1: Greek banking system instrument level Default Rate evolution 

 

Figure 1 presents the evolution of the default rate along with the respective performing 

exposures through the period examined. DR is calculated as: DRt = 

DefaultFlowst,t+6/PerformingExposurest, where t denotes the respective month-end. 

 

Figure 2: Shallow and Deep Neural Networks  

 

Figure 2 illustrates the structure of a non-deep/shallow vs. a deep neural network. 
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Figure 3: DNN - visualization of the training process  

 

Figure 3 presents how loss and accuracy metrics, both in the training and the validation 

samples, evolve as the number of epochs increase. One Epoch is when the entire dataset 

is passed through the neural network once. 
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Figure 4: DNN model structure  

        

Figure 4 depicts the structure of the DNN which contain one input layer, one output 

layer and 4 hidden layers. 
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Figure 5: Correlation Matrix (for Logit development) 

 

Figure 5 exhibits the correlation coefficients of the regressors to be used in the Logit 

model. The panel to the left includes all features assessed, while the panel to the right 

exclude collinear variables. 
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Figure 6: Calibration Curves 

 

Figure 6 presents the calibration curves for the models developed, both for the test (out-

of-time) and for the train samples. The close the line for each model to the diagonal 

line, the better the performance of the model. 

 

Figure 7: Explanation Graph (Deep Neural Network) – Instance #1 

 

Figure 7 presents for an instance selected under LIME: the predicted value of the model 

(left part), the sensitivities of its features in deriving the respective predicted value 

(middle part), and the feature values (i.e., instance attributes) at the right part. 

 

Figure 8: Explanation Graph (Deep Neural Network) – Instance #2 
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Figure 8 shows for an instance selected under LIME: the predicted value of the model 

(left part), the sensitivities of its features in deriving the respective predicted value 

(middle part), and the feature values (i.e., instance attributes) at the right part. 

 

Figure 9: Explanation Graph (Deep Neural Network) – Instance #3 

 

Figure 9 exhibits for an instance selected under LIME: the predicted value of the model 

(left part), the sensitivities of its features in deriving the respective predicted value 

(middle part), and the feature values (i.e., instance attributes) at the right part. 
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Figure 10: Feature Importance Graph (Deep Neural Network) 

 

Figure 10 presents SHAP feature importance values, which reflect the magnitude (in 

absolute terms) of the most important explanatory variables in determining the target 

variable. 
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Figure 11: Beeswarm Graph (Deep Neural Network) 

 

Figure 11 exhibits the Beeswarm plot, in which the x-axis value of the dot is determined 

by the Shapley value and shows whether the effect of that value is associated with a 

higher or lower prediction. Red dots indicate whether the original value of the feature 

is high, while blue dots indicate whether the original value of the feature is low.   
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Figure 12: PDP for COVID-19 feature (All models) 

 

Figure 12 displays how the impact of the COVID-19 feature affect the probability of 

default across all models developed. Specifically, y-axis presents the marginal impact 

on the probability of default, while x-axis presents the number of months elapsed since 

the COVID-19 outbreak. 

 

Figure 13: PDP for COVID-19 feature (excluding Logistic Regression)  

 

Figure 13 shows how the impact of the COVID-19 feature affect the probability of 

default across all models developed, apart from logistic regression. Specifically, y-axis 

presents the marginal impact on the probability of default, while x-axis present the 

number of months elapsed since the COVID-19 outbreak. 

 

Figure 14: Estimated DNN PDs vs. actual Default Rates (by COVID-19 months) 
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Figure 14 presents the evolution of the default probabilities estimated through the DNN 

model and of the actual default rates, with respect to the months elapsed since COVID-

19 outbreak. Specifically, y-axis presents the probability of default, while x-axis present 

the number of months elapsed since the COVID-19 outbreak. 
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Figure 15: DNN – PDP – Sector Differentiation in Greece (by COVID-19 

months) 

 

Figure 15 shows how the impact of the COVID-19 feature affects differently the 

probability of default for corporations that belong to different sectors, based on the 

DNN models. Specifically, y-axis presents the marginal impact on the probability of 

default, while x-axis present the number of months elapsed since the COVID-19 

outbreak. 
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Figure 16: DNN – PDP – Stage 1 vs. Stage 2 (by COVID-19 months) 

 

Figure 16 illustrates how the impact of the COVID-19 feature affects differently the 

probability of default for corporations that belong to Stage 1 vs Stage 2, based on the 

DNN models. Specifically, y-axis presents the marginal impact on the probability of 

default, while x-axis present the number of months elapsed since the COVID-19 

outbreak. 
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Figure 17: DNN – PDP – Duration  

 

Figure 17 exhibits how the impact of the loan "Duration” affects the probability of 

default, based on the DNN models. Specifically, y-axis presents the marginal impact 

on the probability of default, while x-axis present the number of months elapsed since 

loan origination. 
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Figure 18: DNN – PDP – Turnover Over Loan 

 

 

Figure 18 shows how the impact of the “Turnover over Loan Ratio” affects the 

probability of default, based on the DNN models. Specifically, y-axis presents the 

marginal impact on the probability of default, while x-axis present the values of the 

“Turnover over Loan Ratio”. 
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Figure 19: DNN – PDP – Global NPE 

 

Figure 18 presents how the impact of the “Global NPE ratio” affects the probability of 

default, based on the DNN models. Specifically, y-axis presents the marginal impact 

on the probability of default, while x-axis present the values of the “Global NPE ratio”. 
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Tables 

Table 1: Model Discrimination (per sample) 

Test Sample 

Model 

Discrimination 

Metric 

Model 

RF XGB DNN SNN LR 

KS  0.620 0.673  0.686  0.618  0.265  

AUROC: 0.885 0.914 0.918 0.875 0.652 

 

Train Sample 

Model 

Discrimination 

Metric 

Model 

RF XGB DNN SNN LR 

KS 0.582   0.680  0.781  0.576  0.150  

AUROC: 0.870 0.918 0.961 0.865 0.600 

Table 1 illustrates the model discrimination metrics along the 5 models developed, both 

for the test (out-of-time) and for the train samples. 

 

Table 2: Model Performance (per sample) 

Test Sample 

Model Performance 

Metric 

Model 

RF XGB DNN SNN LR 

Accuracy: 0.926  0.946  0.947  0.941  0.939  

Precision:  0.119  0.160  0.168  0.123  0.025  

Recall:  0.560  0.605  0.611  0.425  0.074  

ROC-AUC:   0.746 0.778 0.781 0.687 0.514 

 

Train Sample 

Model Performance 

Metric 

Model 

RF XGB DNN SNN LR 

Accuracy: 0.922  0.925  0.926  0.908  0.801  

Precision:  0.184  0.225  0.227  0.163  0.044  

Recall:  0.511  0.676  0.852  0.55  0.292  

ROC-AUC:   0.723 0.804 0.884 0.734 0.554 

Table 2 presents the model performance metrics, both for the test (out-of-time) and for 

the train samples, along the 5 models developed. 
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Table 3: Model Accuracy (per sample) 

Test Sample 

Model Predictive 

Accuracy Metric 

Model 

RF XGB DNN SNN LR 

Mean Absolute Error 3,58% 3,27% 2,43% 3,03% 3,13% 

Mean Squared Error 1,47% 1,35% 1,26% 1,51% 1,65% 

Root Mean Squared 

Error 
12,12% 11,62% 11,22% 12,30% 12,86% 

 

Train Sample 

Model Performance 

Metric 

Model 

RF XGB DNN SNN LR 

Mean Absolute Error 5,00% 4,85% 3,66% 5,07% 7,82% 

Mean Squared Error 2,44% 2,14% 1,67% 2,47% 3,44% 

Root Mean Squared 

Error 
15,61% 14,62% 12,91% 15,72% 18,54% 

Table 3 shows the model accuracy metrics, when assessing their predicted default 

probabilities, for the test (out-of-time) and for the train samples along the 5 models 

developed. 

 

Table 4: Model Calibration MSE 

Mean Squared Error 

Sample 
Model 

RF XGB DNN SNN LR 

Test 14,73% 0,72% 0,34% 20,20% 31,10% 

Train 1,51% 3,64% 0,71% 10,75% 21,52% 

Table 4 presents the MSE when assessing the calibration to a rating system for each 

one of the 5 models developed, both for the test (out-of-time) and for the train samples.  
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Appendix 1 - Variables Employed 

The variables used in this study are presented below.  

Set #1 Set #2 Set #5 

GDPQ Global_NPE_Ratio Covid_Months 

HPI GVolume_Change Govt_Support 

UN Turnover_Over_Loan   

  Bucket_1   

  Bucket_2   

  Bucket_3   

      

Set #3 

Stage_2_0 Legal_Status_3 Sector_Education 

Stage_2_1 Legal_Status_4 Sector_Electricity,_ 

Stage_2_2 Legal_Status_5 Sector_Financial_&_I 

Stage_2_3 Legal_Status_6 Sector_Human_Health_ 

Stage_2_4 Forbearance_Status_0 Sector_Information_& 

Stage_2_5 Forbearance_Status_1 Sector_Manufacturing 

Stage_2_6 Forbearance_Status_2 Sector_Mining_&_Quar 

Stage_3_1 Forbearance_Status_3 Sector_Other_Service 

Stage_3_2 Forbearance_Status_4 Sector_Professional, 

Stage_3_3 Forbearance_Status_5 Sector_Public_Admini 

Stage_3_4 Forbearance_Status_6 Sector_Real_Estate_A 

Stage_3_5 Sector_Accommodation Sector_Transportatio 

Stage_3_6 Sector_Administrativ Sector_Water_Supply 

Legal_Status_0 Sector_Agriculture,_ Sector_Wholesale_&_R 

Legal_Status_1 Sector_Arts,_Enterta   

Legal_Status_2 Sector_Construction   

      

Set #5 

Bank_01 Credit_card_debt Trade_receivables 

Bank_02 Credit_lines_other_t Working_capital_faci 

Bank_03 Debt_financing Zero-coupon_ 

Bank_04 Deposits_other_than_   

Bank_05 Exports   

Bank_06 Finance_leases   

Bank_07 Imports   

Bank_08 Loans_other_than_ove   

Bank_09 Monthly   

Bank_10 Other_than_monthly,_   

Bank_11 Overdrafts   

Duration Purposes_other_than_   

INTEREST_RATE Quarterly   

Annual Residential_real_est   

Commercial_real_esta Revolving_credit_oth   

Construction_investm Semi-annually   
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Appendix 2 - ROC Curves 

The performance of each model developed, both for the Test and for the Train sample, 

is shown below based on the ROC curve. Specifically, y-axis presents the True Positive 

Rate (i.e., predict correctly a defaulted obligor), while x-axis present the False Positive 

Rate (i.e., predict incorrectly a non-defaulted obligor as defaulted obligor). The more 

to the left and to the upper the ROC curve, the better the performance of the model.  

 

Random Forest 

  

 

XGBoost 
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Deep Neural Network 
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Shallow Neural Network 
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Logistic Regression 
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Appendix 3 - Classification tables  

Confusion matrixes for each model developed, both for the Test and for the Train 

samples, are shown below. Specifically, y-axis presents the True cases (i.e. 0 indicates 

non-defaulted, 1 indicates defaulted), while x-axis present the respective predictions 

(i.e. 0 indicates non-defaulted, 1 indicates defaulted). In the diagonal of the matrix, we 

can identify all the cases correctly predicted. That is, in the [True=0, Predicted=0] case 

obligors classified correctly as non-defaulted are shown, and in the [True=1, 

Predicted=1] case obligors classified correctly as defaulted are shown. On the other 

hand, in the non-diagonal elements the wrong predictions are shown. That is, in the 

[True=0, Predicted=1] case non-defaulted obligors are incorrectly classified as 

defaulted, and in the [True=1, Predicted=0] case defaulted obligors are incorrectly 

classified as non-defaulted. 

 

Random, Forest – Test Sample 
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Random Forest – Train Sample 
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XGBoost – Test Sample 

 

 

XGBoost – Train Sample 
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Deep Neural Network – Test Sample 

 

 

Deep Neural Network – Train Sample 
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Shallow Neural Network – Test Sample  

 

 

Shallow Neural Network – Train Sample 
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Logistic Regression – Test Sample 

 

 

Logistic Regression – Train Sample 
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Appendix 4 - Logistic Regression Model  

The variables used in this study to develop the logistic regression model are presented 

below. 

 

 LR – Selected Model Variables 

Stage_2_0 

Forbearance_Status_0 

Stage_3_1 

Stage_3_2 

Legal_Status_4 

Sector Wholesale & Retail Trade 

Sector_Manufacturing 

Sector_ Accommodation & Food Service 

Sector_ Public Administration and Defence 

Global_NPE_Ratio 

GVolume_Change 

Turnover_Over_Loan 

Duration 

Covid_Months 

Govt_Support 

Semi-annually 

Bucket_3 

Bucket_2 

Debt_financing 

Bank_05 

Bank_06 
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