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ABSTRACT 

Building on a proper selection of macroeconomic variables for constructing a Gross Domestic 

Product (GDP) forecasting multivariate model (Kazanas, 2017), this paper evaluates whether 

alternative Bayesian model specifications can provide greater forecasting accuracy compared 

to a standard Vector Error Correction model (VECM). To that end, two Bayesian Vector 

Autoregression models (BVARs) are estimated, a BVAR using Litterman’s prior (1979) and a 

BVAR with time-varying parameters (TVP-BVAR). Two forecasting evaluation exercises are 

then carried out, a 28-quarters ahead forecast and a recursive 4-quarters ahead forecast. The 

BVAR outperformed the other models in the first, whereas the TVP-VAR was the best-

performing model in the second, highlighting the importance of having adjusting mechanisms, 

such as time-varying coefficients in a model. 
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1. Introduction 

Macro-econometrics according to Stock and Watson (2001), serve a quadruple 

purpose: Data description, forecasting, structural inference, and policy analysis. To that 

end, several types of models, from single-equation to large models with hundreds of 

equations have been used, like Klein’s LINK model in 1980 (Klein, 1976) and more 

recently, Dynamic Stochastic General Equilibrium (DSGE) models (Christiano et al., 

2018). 

Lucas and other new classical economists were especially critical of the use of 

large-scale macro-econometric models to evaluate policy impacts when they were 

purportedly sensitive to policy changes (Lucas, 1976). Given that the optimal decision 

rules vary systematically with changes in the structure of series relevant to the decision 

maker, it follows that any policy change will systematically alter the structure of 

econometric models.  

Sim’s (1980) framework of Vector Autoregressive models (VARs) came as an 

answer to this critique. VARs are n-equation, n-variable linear models in which each 

variable is in turn explained by its own lagged values, plus past values of the remaining 

n - 1 variables. This simple framework provides a systematic way to capture rich 

dynamics in multiple time series, while at the same time, the statistical toolkit that came 

with VARs is easy to use and interpret. As Sims (1980) and others argued in a series of 

influential early papers, VARs held out the promise of providing a coherent and 

credible approach to data description, forecasting, structural inference, and policy 

analysis. 

Alternative to VARs, which are estimated equation by equation using OLS, are 

the Bayesian VARS (BVARs), initially proposed by Sims (1980) and Doan, Sims, and 

Litterman (1984), which through Bayesian shrinkage sought to further improve the 

forecasting performance of the multivariate econometric models available at the time. 

The BVARs’ superiority in forecasting is well established as the literature is rich in 

Bayesian multivariate models that outperform either standard frequentist or DSGE 

models, for example, see Gupta and Mabundi (2010).  

To estimate a BVAR, the formulation of priors is necessary, with the most 

popular one being the so-called Minnesota prior (Litterman, 1979). However, since its 

introduction several more advanced priors have been proposed, such as the one by Sims 
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and Zha (1998), or the GLP prior (Giannone et al. 2015). Furthermore, advances in 

Bayesian statistics and computational capabilities have enabled the use of more 

complex BVARs, such as the Time-Varying Parameter VARs (TVP-VARs) with the 

most prominent work on such models being that of Cogley and Sargent (2002;2005), 

Primiceri (2005), and more recently Carriero (2015). 

This advantage of inputting a researcher’s belief or knowledge as a BVAR prior 

has an extra argument in favor of Bayesian specifications, when it comes to specifically 

forecasting Greek macroeconomic variables. This is because as the time series usually 

used in estimating Greek macroeconomic models’ coefficients start at the year 2000, a 

significant portion of the sample is comprised of observations that occurred during the 

economic crisis. This may lead to obtaining coefficients that do not accurately reflect 

the data generating process of the economy over the long run, and hence it makes sense 

to limit the parameter space that OLS would have to “search” for coefficient estimation 

by imposing priors consistent with general macroeconomic stylized facts. Despite that, 

the application of BVARs in forecasting Greek macroeconomic activity is rather 

limited, with the most prominent work being that of Louzis about macroeconomic and 

credit variables forecasting using BVARs (2017) and Greek GDP nowcasting (2018). 

Against this background we sought out to use a set of macroeconomic variables, 

suitable for use in a multivariate model to generate GDP forecasts, as specified in 

Kazanas (2017), to estimate alternative specifications of BVARs and examine the 

accuracy gains in GDP forecasting using the standard frequentist Vector Error 

Correction Model (VECM) estimated in Kazanas (2017) as a benchmark. To do so, we 

opted to use two alternative models: A BVAR estimated using the Minnesota prior 

under the notion of limiting the parameter space to obtain a more parsimonious model 

as explained earlier, and a TVP-VAR to allow the coefficients to change throughout the 

sample, thus generating forecasts based on the most recent state of the business cycle. 

The forecasting exercise comprises of two types of pseudo out-of-sample forecasts: The 

first one is a four-quarter rolling window and the second one is a forecast of all the out-

of-sample observations, which are then evaluated. 

The remaining of the paper is organized as follows: In section II the data used in 

estimating the three models (the benchmark VECM, the BVAR, and the TVP-VAR) 

are presented, in section III we concisely present the models and their estimation 
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techniques, while in section IV we present the forecasting exercise results and lastly in 

section V we discuss the conclusions and policy implications. 

 

2. The data 

The variable selection for the Greek GDP forecasting follows Kazanas (2017), 

where a VECM is constructed including data for real GDP (Y), unemployment rate (U), 

GDP deflator (P), 10-year government bond yield (GB), and exports as a percentage of 

GDP (XY). The data sample ranges from 2000Q1 to 2022Q4. All data are adjusted for 

seasonality and sourced from Eurostat’s national accounts (Eurostat database code: 

na10), labor market survey (Eurostat database code: labor), and interest rates (Eurostat 

database code: irt) databases. 

For each variable, the ADF unit root test (Dickey and Fuller, 1981) was 

conducted, as stationarity is a prerequisite, especially in estimating a standard VECM 

or a VAR model. All variables have a unit root in levels but are stationary if they are 

transformed into log differences. 

Table 1: ADF test p-values 

 Y U P GB XY 

Levels 0.5357 0.1718 0.9976 0.1124 0.1308 

Log 

differences 
0.0000 0.0273 0.0000 0.0000 0.0000 

 

In Figures 1 and 2 we can see the long-run evolution of the series over time. It is 

evident that the variables have increased volatility from 2009 to 2015, which reflects 

the impact of the economic crisis. Furthermore, real GDP, unemployment rate, GDP 

deflator, and exports (% GDP) display increased volatility after the second quarter of 

2020, which reflects the impact of the pandemic and the corresponding lockdown and 

the following recovery of economic activity. 
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Figure 1: Macroeconomic variables in levels 
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Figure 2: Macroeconomic variables in log differences 
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3. Models presentation and estimation 

 

The three models mentioned earlier are estimated using the abovementioned 

variables in log differences. The models are estimated over sixteen years (2000:Q1 to 

2015:Q4), whereas the remaining sample (2016:Q1 to 2022:Q4) is to be used for 

evaluating their forecasting performance. The VECM and the BVAR model are 
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estimated using EViews 10, while the TVP-VAR is estimated using the BEAR Toolbox 

4.2 (Dieppe et al. 2016). 

 

The VECM benchmark model 

Based on the works of Granger (1981), Engle and Granger (1987), Vector error 

correction models are essentially restricted VARs, which contain a set of variables both 

in differences and in levels. The differences of the variables included in the model 

represent the short-run interrelations of the variables, whereas the linear combination 

of the levels of the variables, commonly referred to as the cointegrating vector (or 

vectors, as more than one linear combination of a set of variables can be included), 

represents the long-run dynamics of the variables. Mathematically, a representative 

VECM model can be written as follows: 

𝛥𝑦𝑡 = 𝑚 +  ∑ 𝐵𝑖𝛥𝑦𝑡−𝑖 + 𝐴𝑦𝑡−1 + 𝜀𝑡
𝑝−1
𝑖=1     (1) 

𝜀𝑡~𝑁(0, 𝛴) 

 

Where y is the vector containing the variables (in our case y’= [ y u p gb xy ] 1), 𝑚 

is the vector containing the constants of the equations system, 𝐵𝑖 is the matrix that 

contains the coefficients that describe the short-run impact of the variables’ lag 𝑖 and 𝐴 

is the matrix that contains the coefficients that describe the long-run relationship 

between the variables. The model can also be expanded to include exogenous variables. 

VECMs are very useful in modeling non-stationary time-series without having to 

exclude their long-run behavior, but, like their unrestricted counterparts (VARs), they 

suffer from the “curse of dimensionality”, as the addition of a variable significantly 

increases the number of coefficients to be estimated. 

The estimation of this model follows the Johansen procedure (Johansen, 1995). 

A VAR is estimated in levels (including a constant and a trend) and by incorporating 

the lag length criteria it is found that two lags are optimal. The existence of a 

cointegrating relation between the variables must be confirmed in order to use a VECM 

specification rather than a simple VAR in differences. The max eigenvalue 

cointegration test is therefore used, which indicates the existence of two cointegrating 

 
1Lowercase letters denote the natural logarithms of the variables in question.  
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vectors at the 5% level2. Hence a VECM is estimated, with 1 lag per variable and 2 

cointegrating vectors. 

Table 2: Maximum Eigenvalue Cointegration Test 

Hypothesized 

Number of Cointegrating 

equations 

Eigenvalue 

Max-

Eigenvalue 

statistic 

5% Critical 

value 
P-value 

None * 0.567460 51.96106 38.33101 0.0008 

At most 1 * 0.450144 37.08209 32.11832 0.0114 

At most 2 0.296067 21.76650 25.82321 0.1571 

At most 3 0.255644 18.30464 19.38704 0.0713 

At most 4 0.123745 8.190059 12.51798 0.2366 

* Denotes rejection of the hypothesis at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 

The BVAR model 

Under the Bayesian approach to econometrics, the estimated coefficients of a 

model are not an attempt to estimate their true value, but instead, they are perceived as 

a summary of the posterior distribution, which in its turn is proportional to the 

likelihood function times the prior distribution. Priors represent any knowledge the 

researcher has beforehand about the coefficients. Following this technique results in the 

coefficients being essentially a matrix-weighted average between the imposed priors 

and a regular OLS estimation (Ouliaris et al, 2016), which leads the variables to behave 

as if they were random walks (Del Negro and Schorfheide, 2010): 

 

𝑏̂ = [𝑉−1 + 𝛴𝑒
−1 ⊗ (𝛸′𝛸)]−1[𝑉−1𝑏̅ + (𝛴𝑒

−1 ⊗ 𝑋′)𝑌]               (2) 

where 𝑏̂  is the matrix of the estimated VAR coefficients, 𝑉 is the variance matrix of 

the prior distribution of the model’s coefficients, 𝛴𝑒
  is the variance-covariance matrix 

of the model’s residuals and 𝑏̅ is a diagonal matrix containing the prior means of each 

variable’s own first lag coefficients. X and Y are the variables included in the model. 

 
2In Kazanas (2017) the existence of the second cointegrating vector is rejected as the hypothesis of at 

most 1 cointegrating vector is marginally accepted with a P-value of 0.0505, but since then a major 

benchmark revision of the Greek macroeconomic data has occurred causing the maximum eigenvalue 

cointegration test to indicate the existence of a second cointegrating vector. 
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The error variance-covariance matrix 𝛴𝑒 necessary for the coefficient estimation 

is either estimated by fitting an AR(1) model on every variable and getting the error 

variances, by estimating an AR(1) and a VAR to obtain the diagonal elements of the 

variance-covariance matrix, or by estimating all variances-covariances as implied by a 

full VAR (an option not commonly used, as it can lead to a singular matrix). Under the 

Minnesota prior, the researcher is required to specify a set of hyperparameters in order 

to formulate the priors to obtain the model’s coefficients: μ1, λ1, λ2, and λ3. 

μ1 is used as the prior mean of the coefficients in the matrix 𝑏̅ and it usually takes 

the value of 0 (if the variables of the model are stationary) or 1 (if the variables of the 

model have a unit root). λ1, λ2 and λ3 are used to formulate diagonal elements of the V 

matrix (with non-diagonal elements being set to 0). More specifically, each diagonal 

element of the V matrix for the j-th variable in the i-th equation at lag k is formulated 

as follows: 

(
𝜆1

𝑘𝜆3
)

2

 for 𝑖 = 𝑗,                                                (3) 

(
𝜆1𝜆2𝜎𝑖

𝑘𝜆3𝜎𝑗
)

2

for 𝑖 ≠ 𝑗                                               (4) 

where 𝜎𝑖 , 𝜎𝑗 are the square roots of the corresponding elements of the 𝛴𝑒 matrix. 

This way λ1 determines how binding the restrictions are. The closer to zero the 

value of λ1 is, the more binding the restrictions are in the estimation of the coefficients. 

A value over 10 implies an uninformative prior. λ2 determines the cross-variable effects 

in the equations and is set between 0 and 1. The closer the value is to 1 the more lags 

of variable j impact variable i (for j≠i) in the BVAR. Finally, λ3 determines the decay 

rate of the own lags of a variable, excluding the first lag. As this hyper-parameter 

approaches zero, higher order lags decay at a slower rate. 

Having obtained the coefficients, the resulting functional form of the model is 

expressed as follows: 

𝛥𝑦𝑡 = 𝐵0 + 𝐵1𝛥𝑦𝑡−1 + 𝐵2𝛥𝑦𝑡−2+. . . +𝐵𝑝𝛥𝑦𝑡−𝑝 + 𝜀𝑡                   (5) 

𝜀𝑡~𝑁(0, 𝛴) 
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Where (as in the previous model) y is the vector containing the variables (in our 

case y’= [ y u p gb xy] 3), 𝛣0 is the vector containing the constants of the equations 

system, 𝐵𝑖 is the matrix that contains the coefficients and 𝜀𝑡 is the vector containing the 

error terms. 

To obtain the coefficients in our model, apart from μ1, which is set to zero as the 

model is estimated in log differences, which are stationary, the rest hyper-parameters 

through forecasting sensitivity checks as suggested by Canova (2007) (see Appendix). 

The resulting set of hyper-parameters is the following:𝜆1 = 7, 𝜆2 = 0.2, 𝜆3 = 0.1. 

Furthermore, to obtain an estimation of the variance-covariance matrix an AR (1) model 

is fitted through each variable to estimate the variances of the residuals, while the 

covariances (the diagonal elements of the matrix) are obtained from the equivalent 

matrix of the corresponding OLS VAR. The lag length of the model is set to 2, as 

suggested by the lag length criteria. 

 

The TVP-VAR 

The time-varying parameter VAR is a model that allows model coefficients to 

change over time. This is particularly useful in capturing nonlinear relationships in the 

data as any model with time-varying parameters can successfully represent any 

nonlinear functional form (Swamy, 1975 and Granger, 2008). Macroeconomic 

variables are known to impact differently each other across the business cycle or after 

structural changes, hence the TVP-VAR is an interesting approach to econometric 

modeling. The functional form of a TVP-VAR is expressed as: 

𝛥𝑦𝑡 = 𝐵0,𝑡 + 𝐵1,𝑡𝛥𝑦𝑡−1 + 𝐵2,𝑡𝛥𝑦𝑡−2+. . . +𝐵𝑝,𝑡𝛥𝑦𝑡−𝑝 + 𝜀𝑡          (6) 

Where 𝜀𝑡~𝑁(0, 𝛴𝑡) 

With 𝑦𝑡
4 being the matrix containing the variables and 𝐵𝑖,𝑡 being the matrix 

containing the time-varying coefficients.  Elements of the 𝐵𝑖,𝑡 matrices are assumed to 

follow a random walk process:  

𝛽𝑡 = 𝛽𝑡−1 + 𝑣𝑡                                                (7) 

 
3Lowercase letters denote the natural logarithms of the variables in question.  
4Lowercase letters denote the natural logarithms of the variables in question.  
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Where 𝑣𝑡~ 𝑁(0, 𝛺) 

Apart from time-varying parameters, TVP-VARs include stochastic volatility (hence 

the 𝛴𝑡). This approach makes the model heavily parametrized but is necessary to avoid 

bias in the coefficients across potential volatility clusters, falsely attributing variance 

shocks to coefficient variation (Sims, 2002). The formulation of the 𝛴𝑡 matrix is based 

on Cogley and Sargent (2005) in the BEAR toolbox. Under this approach the 𝛴𝑡 matrix 

has 𝑓𝑛,𝑚 non-diagonal elements which are time invariant and are assumed to follow a 

multivariate normal distribution.  

The diagonal elements of the 𝛴𝑡 matrix are of the form 𝑠̅𝑖𝑒
𝜆𝑖,𝑡 , with 𝑠̅𝑖 being a 

time invariant scaling factor. On the other hand, 𝜆𝑖,𝑡 follows an AR (1) process: 

𝜆𝑖,𝑡 = 𝛾𝜆𝑖,𝑡−1 + 𝑢𝑖,𝑡                                             (8) 

Where 𝑢𝑖,𝑡~ 𝑁 (0, 𝜑𝑖) 

Thus, to formulate the prior for the 𝜆𝑖,𝑡 the hyperparameter 𝛾 has to be determined 

by the researcher. Furthermore, for the prior of 𝜑𝑖 holds that: 

𝜑𝑖~𝐼𝐺(
𝑎0

2
,
𝛿0

2
) 

With 𝛼0, 𝛿0 being scaling factors that also need to be determined by the 

researcher. As the posterior for the 𝑓(𝐵, 𝛺, 𝑓−1, 𝜆, 𝜑|𝑦) cannot be analytically solved, 

once the abovementioned hyperparameters have been chosen, the Gibbs sampler must 

be used to obtain results. For more detailed presentations of TVP-VARs, one can look 

up Primiceri (2005), Chan and Jeliazkov (2009), Lubik and Matthes (2015), or Dieppe 

et al. (2018). 

The above equations imply that there is no mechanism in the model to produce 

future values of the coefficients of the model, as in the absence of new shocks, 

coefficients remain the same. It is an interesting approach, however, to attempt a 

forecast based on the most recent interrelations between the variables and neglect 

coefficient values of the past, which may not adequately represent the dynamics of the 

system anymore. 

In our estimation of the model, we follow Primiceri (2005) in choosing the 

number of lags, which is set to 2. We also set  𝛼0 = 𝛿0 = 0.001 implying a rather 

uninformative prior. Furthermore, we set 𝛾= 0.95, implying strong persistence of 
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variance shocks thus limiting the possibility of explosive behavior in the model’s 

coefficients5 (strong persistence of shocks is also a valid macroeconomic assumption). 

Finally, we set the Gibbs sampler to perform 10000 iterations, out of which 2000 are 

burn-in iterations. 

 

4. Forecasting evaluation  

To evaluate the forecasting performance of the models two different forecasting 

exercises are carried out. The first one consists of estimating the models up to 2015:Q4 

(as described in the previous sections) and then conducting a forecast of 28 quarters 

ahead (up to 2022:Q4). The second one is a recursive forecasting exercise, where the 

three models are estimated up to time t and perform a forecast of the quarters t+1 to 

t+4, they are then estimated up to t+1 and perform a forecast of the quarters t+2 to t+5, 

and so on and so forth. Overall, 26 recursive estimations are performed from 2015:Q4 

up to 2021:Q4, with the last forecast being that of 2022:Q1-2022:Q4. 

The forecasts are then evaluated using the Mean Absolute Percentage Error 

(MAPE), the Mean Absolute Error (MAE), and the Root Mean Squared Error (RMSE): 

 

𝑀𝐴𝑃𝐸 = ( 
1

𝑛
∑

|𝑌𝑡−𝑌𝑡̂|

𝑌𝑡
) ∗ 100𝑛

𝑡=1 = (
1

𝑛
∑

|𝑒𝑡|

𝑌𝑡
) ∗ 100𝑛

𝑡=1                    (9) 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑌𝑡 − 𝑌𝑡̂|𝑛

𝑡=1 =
1

𝑛
∑ |𝑒𝑡|𝑛

𝑡=1                                  (10) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑡 − 𝑌𝑡̂)2𝑛

𝑡=1 = √
1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1                              (11) 

Where n is the period of the forecasting horizon, 𝑌̂𝑡 is the forecasted value of GDP 

and 𝑌𝑡 is the actual value of GDP at time t. The forecast evaluation results can be found 

in Table 3. 

 
5To further check for such behavior in the model’s coefficients, upon estimation we performed 

stationarity test. All coefficients are found to be stationary within a 10% level of significance (most in 

levels and a few in first differences).  
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Table 3: Forecast evaluation criteria 

  
28 quarters ahead forecast Recursive forecasts* 

  MAPE MAE RMSE MAPE MAE RMSE 

VECM  
4.362820 2.06E+09 2.77E+09 5.122833 2.08E+09 2.34E+09 

BVAR 3.247458 1.47E+09 2.08E+09 5.044736 2.00E+09 2.23E+09 

TVP-VAR 4.335012 1.98E+09 2.67E+09 4.548460 1.98E+09 2.23E+09 

*Average of 26 recursive iterations 

 

Overall, the Bayesian models outperform our benchmark standard VECM model. 

More specifically, the BVAR with the Minnesota prior provides a more accurate 

forecast over the long run, as evidenced by the first forecasting exercise, whereas the 

TVP-VAR is more accurate when it comes to short-term forecasts. 

 

Figure 3: MAPE of recursive forecasts 

 

A further interesting point arises when we examine the temporal distribution of 

the forecasting errors of the models from the recursive forecast. As shown in Figure 3, 

during the period 2016-2019, when GDP demonstrated limited variability, all models 

performed similarly. However, during the quarters impacted by COVID-19 and the 

lockdown, even though forecast errors spiked across models, the two models containing 

adjusting mechanisms, namely the cointegrating vector for the VECM and the time-
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varying coefficients of the TVP VAR, outperformed the BVAR. In the post COVID-19 

quarters, the BVAR returns to outperforming the VECM, while the TVP-VAR seems 

to be the best of both worlds, as it has a smaller spike in forecast errors when forecasting 

COVID-19 quarters and performs similarly to the BVAR in the post COVID-19 

quarters.   

 

5. Conclusions 

Three VARs were estimated using a given set of variables aiming to examine 

whether Bayesian estimation could provide real GDP forecasting gains. Using two 

different Bayesian VAR estimation methods, namely Bayesian estimation using a 

Minnesota-Litterman prior and a TVP-VAR it is found that Bayesian estimation 

methods outperform a corresponding VECM model estimated by standard methods. 

Specifically, the BVAR that was estimated using a Minnesota prior outperformed the 

VECM model in a 28-quarters ahead forecast, whereas the TVP VAR was superior in 

providing forecasts over the short run, as evidenced by the 26 4-quarter ahead recursive 

forecasts. 

This exercise also yielded an interesting policy point, as it demonstrated that 

forecasting at times of high uncertainty can be more accurate when it is done using 

models with adjusting mechanisms as the TVP VAR’s time-varying coefficients 

allowed the model to adjust more efficiently to the state of the economy at that moment, 

and to re-adjust in order to capture the post-Covid recovery, thus showing that the 

model’s performance compensates for its intensive parameterization.  

This forecasting exercise demonstrated that even the most basic of Bayesian 

priors provided forecasting gains when it comes to Greek GDP forecasting, but this is 

only one of the available priors a researcher is available to choose from. One could 

extend this research to include more advanced Bayesian priors such as the Sims-Zha 

prior (Sims and Zha, 1998) that incorporates the existence of unit roots and 

cointegrating relationships in the priors (as it is found in Table 2 that cointegration 

relationships exist between the variables of the given set); or the GLP prior (Giannone 

et al., 2015) that treats hyperparameters not as arbitrary inputs of the user but as 

parameters to be determined from an optimization procedure. Another way this research 

could be extended is by using the TVP-VAR estimated above (possibly using a larger 
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sample if available, to account for the model’s intensive parameterization), to compute 

the variation in the relations between macroeconomic variables, as expressed by the 

time-varying coefficients, and thus examine structural changes of the Greek economy 

over time. This model can also be used to perform impulse response analysis on specific 

dates, which allows examining how differently exogenous shocks would affect the 

Greek economy, at different points in time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix: BVAR prior determination 
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Table 4: BVAR prior determination criteria 

λ3 λ2 λ3 

Value Theil's U MAPE Value Theil's U MAPE Value Theil's U MAPE 

0.1 0.007687 1.04284 0.1 0.007687 1.042835 10 0.007686 1.042888 

0.2 0.007687 1.04288 0.2 0.007686 1.042888 9 0.007686 1.042888 

0.3 0.007688 1.04293 0.3 0.007686 1.042960 8 0.007686 1.042888 

0.4 0.007688 1.04299 0.4 0.007686 1.042990 7 0.007686 1.042887 

0.5 0.007688 1.04305 0.5 0.007686 1.042900 6 0.007687 1.042885 

0.6 0.007688 1.04312 0.6 0.007686 1.042901 5 0.007687 1.042880 

0.7 0.007688 1.04321 0.7 0.007686 1.042901 4 0.007689 1.042864 

0.8 0.007689 1.04330 0.8 0.007686 1.042902 3 0.007691 1.042802 

0.9 0.007689 1.04341 0.9 0.007686 1.042902 2 0.007701 1.042465 

1 0.007689 1.04354 1 0.007686 1.042902 1 0.007767 1.041715 

 

To determine the priors for the model a series of one step ahead in-sample 

forecasts are performed (2000:Q3- 2015:Q4). Each time a prior value changes until the 

optimal value is reached, starting from λ3 (with the rest hyperparameters set to 

uninformative values). After the value of λ3 is determined we move to λ2 and then to λ1. 

A further check is performed to make sure that optimal values have not changed for λ1 

once values for λ2 and λ3 have been determined or for λ2 once the value for λ3 has been 

determined. 

As the Mean Absolute Percentage Error (MAPE) seems to favor extreme 

hyperparameter values, we implemented Theil’s inequality coefficient using MAPE to 

decide among equal Theil’s values: 

𝑀𝐴𝑃𝐸 = ( 
1

𝑛
∑

|𝑌𝑡−𝑌𝑡̂|

𝑌𝑡
) ∗ 100𝑛

𝑡=1 = (
1

𝑛
∑

|𝑒𝑡|

𝑌𝑡
) ∗ 100𝑛

𝑡=1                (12) 

𝑇ℎ𝑒𝑖𝑙′𝑠 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
√∑ (𝑌𝑡−𝑌̂𝑡)/𝑛𝑛

𝑡=1

√∑ 𝑌̂𝑡
2/𝑛𝑛

𝑡=1 +√∑ 𝑌𝑡
2/𝑛𝑛

𝑡=1

                (13) 

Where n is the period of the forecasting horizon, 𝑌̂𝑡 is the forecasted value of GDP 

and 𝑌𝑡 is the actual value of GDP at time t. This process resulted in determining the 

following hyperparameter set: λ1=7, λ2=0.2, and λ3= 0.1. 
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