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ABSTRACT 

We show that text-based indicators of supply and demand disturbances in commodity markets 

provide distinct information about future inflation movements relative to existing predictors, 

inflation expectations and survey forecasts. Specifically, we document that demand-side 

disturbances play a significantly larger role in prediction because they typically lead to uniform 

increases in quantities and prices of goods across the consumer basket, resulting in a clear and 

positive relationship between commodity prices and overall inflation. Supply-side disturbances 

matter in particular circumstances, for instance during the recent period of the pandemic and 

geopolitical shocks. In terms of magnitudes, the commodity-specific indicators reduce out-of-

sample inflation forecast errors by up to 30 percent. We finally apply our indexes to the inflation 

decomposition framework of Blanchard and Bernanke (2023) and corroborate their finding that the 

bulk of pandemic-era inflation can be attributed to commodity supply disruptions, resulting in price 

increases in goods markets. 
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1. INTRODUCTION

Monetary authorities recognize that fluctuations in commodity prices are significant deter-

minants of inflation dynamics (Bernanke, 2008). These prices serve as leading indicators of

inflation since they are sensitive to changing economic conditions and can influence aggregate

prices through distribution channels and second-round effects. Understanding the intricate rela-

tionship between commodity price changes and inflation is vital for effective monetary policy,

especially in the face of evolving global challenges that can have large effects on commodity

markets. How exactly commodity prices affect inflation, however, likely depends on the dri-

vers of commodity price fluctuations. Such fluctuations can arise from demand shifts associated

with economic booms and recessions, hedging operations and speculative trading behaviors,

supply constraints precipitating precautionary demand pressures, or geopolitical events, includ-

ing trade agreements and wars. Each of these factors exerts differential influences on aggregate

price indices and macroeconomic outcomes, both in terms of magnitudes and persistence. Sev-

eral studies have documented that specific commodities (for instance, oil) are informative about

inflation, but this relation is not stable across different countries and time periods.1

We show that commodity prices provide distinct information about future inflation move-

ments relative to existing predictors, inflation expectations and survey forecasts, but that pre-

dictive power is obscured by the fact that commodity prices are driven by both supply and

demand shocks, and these shocks have different passthrough to inflation. Our starting point is

that under the presence of aggregate demand shocks, which typically affect most sectors of the

economy in a homogeneous manner, the relationship between commodity prices and inflation

tends to be direct and unambiguous, reflecting substantial pass-through effects. Specifically,

positive aggregate demand shocks are generally associated with widespread increases in both

prices and quantities across the consumer basket, thus establishing a stronger link to overall in-

flation dynamics.2 Conversely, supply shocks that are idiosyncratic to specific commodities can

generate varying effects on the general price level, depending on the interplay between substi-

tute and complementary goods. For instance, a negative supply shock in the cocoa market may

elevate cocoa prices while exerting downward pressure on the price of sugar, given their comple-

mentary nature in consumption. Meanwhile, commodities such as coffee, which are imperfect

substitutes for cocoa, may see limited demand effects, thereby remaining relatively insulated

from price changes. Consequently, although a commodity-specific supply shock might elevate

1Commodity prices were effective predictors of inflation until the early 1980s, but their predictive power has
diminished since the mid-1980s (Stock and Watson, 2003). The predictive power of commodity prices for aggregate
price indices is weak, despite the widespread view that commodity futures capture substantial information regarding
underlying supply and demand conditions aggregated by futures markets (Bernanke, 2008). An additional compli-
cation, recently emphasized by Shapiro (2020), arises from the aggregation of categorical inflation measures at a
broad-index level which can obscure inflation dynamics due to the varying sensitivities of different sectors to distinct
underlying factors.

2More broadly, shocks to aggregate demand tend to predict future inflation more accurately compared to id-
iosyncratic supply shocks, particularly when the latter are not accommodated by monetary authorities (Boughton
and Branson, 1991).
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the price of the affected good, its broader impact on inflation may be attenuated due to weak

pass-through to the overall consumption basket.

Identifying supply and demand shocks across different commodity markets entails significant

challenges. Although the literature has historically provided us with reliable measures of shocks

for the oil market, the price drivers of other commodities remain understudied. To mitigate this

challenge, we employ the narrative-based indicators of Mouabbi, Passari, and Rousset Planat

(2024), that combine textual analysis with human auditing to construct disaggregated supply-

and demand-side disturbances for a wide array of commodities from business news. In addition

to these indicators, we also use text-based measures of key risk factors that affect commodity

markets, such as severe recessionary regimes and extreme natural disaster events. Employ-

ing the narrative-based, commodity supply and demand indicators allows us to cut through the

sources of confusion that arise when one looks at the informational content of commodity price

developments alone. We then proceed to explore whether these measures that separately identify

supply- and demand-side disturbances across commodity markets are able to provide additional

information regarding the future trajectory of inflation.

We report three key findings. First, narrative-sourced supply and demand disturbances help

predict future inflation, over and beyond common predictors such as past inflation, interest rates,

economic growth, stock and bond market indexes, volatility measures and tradable commodity

returns. For example, the textual indicators help reduce the out-of-sample forecast error in in-

flation by 20% to 30%, depending on the horizon and the exact specification. The fact that the

textual indicators provide incremental information on top of commodity returns is particularly

encouraging and illustrates the benefit of separately examining the supply and demand drivers of

commodity prices, given that their importance and persistence may vary. For instance, we find

that, on average, demand-side disturbances generally contribute more to the out-of-sample pre-

dictability of different inflation baskets. However, supply-side disturbances matter in particular

circumstances, such as during the recent period of the pandemic. We further assess the validity

of the textual commodity supply and demand indicators by looking at their performance across

different regimes and turning points. We follow the approach of Joseph et al. (2021) and split

the sample in periods when inflation is increasing, falling or remains stable. Our framework

provides clear improvements over the baseline model for headline inflation at the one-year hori-

zon, especially for episodes of falling and stable headline inflation. For episodes of increasing

inflation, the narrative measures also provide substantial and consistent improvements across

several specifications. For shorter horizons, e.g. six months, the addition of text-based com-

modity measures again improves the performance of specifications that incorporate additional

predictors such as tradable commodity returns.
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Second, we use our indicators to separately forecast two key components of inflation: food

and energy. In both of these cases, the supply- and demand-side indicators significantly im-

prove the out-of-sample forecast error. Importantly, we document a significant asymmetry: our

supply-side indicators are the key drivers of food inflation, whereas energy inflation is primar-

ily forecasted by our demand-side indicators. Additionally, the magnitudes are not small - the

improvement in out of sample forecast errors ranges from 10% (food) to 20% (energy). The

improvement in forecasting energy inflation is particularly notable, given that (1) energy is one

of the most volatile and least predictable components of inflation, and (2) commodity returns

have essentially no ability to forecast energy inflation.

Third, after establishing that our measures for oil compare favorably with the structurally

identified oil shocks of Baumeister and Hamilton (2019) and Känzig (2021), we examine the

effects of our proxies for different inflation baskets in a local projections setup. The bigger

role of demand disturbances is once again confirmed by the impulse responses of headline,

goods and services inflation. Supply disturbances matter only for the recent period that includes

the COVID-19 pandemic. We further show that our indices contain information which is not

reflected in various measures of inflation expectations, such as measures derived from financial

market prices and survey-based measures of professional forecasters and consumers. Hence,

our indices are not merely picking up already-available information but insights that are not

apparent to either market participants, forecasters, or households.

Given that various drivers of supply and demand dynamics may have disparate effects on

macroeconomic variables, we also study the persistence of these developments on inflation

within recessionary regimes and under the impact of severe natural disasters. This part of the

analysis is motivated by the recent pandemic experience and the significant economic fluctua-

tions observed over the past decades. This is highly relevant for policy-making because differ-

ent inflation developments call for different monetary policy responses; central banks can look

through transitory shocks, but may have to respond to persistent shocks. We show that account-

ing for the drivers of demand and supply-side disturbances matters both for the magnitude and

the persistence of the pass-through to inflation. We find that a decrease in demand for com-

modities is deflationary, but in a recession its effect on inflation is more muted and transitory. In

contrast, the deflationary effect of a demand decrease is not counteracted under the presence of

severe natural disasters, at least in horizons up to one year. On the other hand, the effect of a de-

crease in demand for commodities on inflation is more persistent than the effect of an increase in

demand. Demand decreases appear to be less deflationary in the short run and more deflationary

in the long run. Increases in supply of commodities are generally deflationary, regardless of the

regime. At the same time, increases in supply do not appear to be generally deflationary unless

they coincide with a natural disaster, over and above the effect of the COVID-19 pandemic.
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In a final exercise, we illustrate the usefulness of our indexes for decomposing post-pandemic

inflation given the recent importance of supply shocks (Banbura, Bobeica, and Martínez Hernán-

dez (2023)). We employ the framework of Blanchard and Bernanke (2023), who use a simple

structural model to account for the sources of inflation during the pandemic era, between energy

and food shocks, labor market tightness, and supply shortages. We use one of our measures

(supply decrease) instead of the reduced form measure of Blanchard and Bernanke (2023), de-

rived from Google Trends. Our results are very similar to those of Blanchard and Bernanke

(2023), showing that the bulk of inflation during the recent episode can be attributed to com-

modity shocks and shortages; we, hence, provide strong support to their framework by using a

narratively-identified measure of supply developments.

Overall, our work illustrates that the proposed text-based, narrative measures of demand and

supply of commodities can inform monetary policy decisions because they have the ability to (i)

identify common and idiosyncratic drivers of demand and supply across commodities; (ii) iso-

late variations in commodity prices that have inflationary implications; and (iii) distinguish be-

tween different types of price developments, across a wide range of commodities. For instance,

commodity price fluctuations might reflect supply-related events, changes in global demand that

are common across commodities, or commodity-specific demand developments; each of these

has differential effects on inflation.

To our knowledge, this is the first attempt to employ real-time measures of commodity supply

and demand drivers for the understanding and prediction of inflation dynamics. Our analysis

further suggests that the supply and demand of commodities have differential impact across

different inflation measures.

Our contribution to the literature is threefold. Our primary contribution is the application

of measures of commodity-price decomposition that span the broad commodity market for in-

flation prediction on the backdrop of the disconnect between commodity prices and inflation

documented by the literature.3 The advantages of the employed text-based measures are three-

fold. First, they leverage the universality of business news as a comprehensive and widely

available source of information, ensuring broad applicability across different economic con-

texts. Moreover, they offer extensive coverage of the highly heterogeneous commodity market,

encompassing a diverse range of understudied commodity categories and spanning multiple

geographic regions. This breadth allows for a more granular understanding of the drivers of

commodity-specific price movements across global markets. Finally, the high frequency of

these measures provides timely insights, allowing for more responsive and up-to-date forecast-

ing of inflation dynamics, which is particularly valuable in rapidly evolving macroeconomic

3See the works of Hooker (2002), Stock and Watson (2003). A notable exception is the work of Gospodinov
and Ng (2013), which demonstrates that the principal components of convenience yields retain predictive power for
aggregate price indices and commodity prices.
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environments. These characteristics position the employed measures as a robust tool for analyz-

ing the transmission of global shocks and their implications for inflation, particularly in the wake

of the recent policy challenges following the COVID-19 pandemic and the global geopolitical

tensions.

Second, our work contributes to the growing literature that uses textual analysis for the study

of various economic and financial outcomes. Recent contributions include the works of Tetlock

(2007), Gentzkow and Shapiro (2010), Hoberg and Phillips (2010), Boudoukh et al. (2013),

Alexopoulos and Cohen (2015), Baker, Bloom, and Davis (2016), Allcott and Gentzkow (2017),

Hassan et al. (2019), Angelico et al. (2022), Hassan et al. (2023a), and Hassan et al. (2023b).

The closest related work is the study of Angelico et al. (2022) that employs Italian tweets to

build a real-time measure of consumers’ inflation expectations. The authors show that Twitter-

based indicators are highly correlated with monthly survey-based and daily market-based infla-

tion expectations. Their measure is found to both lead and provide a good real-time proxy for

consumers’ expectations. Different from this work, our focus is on inflation prediction. For this

reason, we employ a narrative measure that exploits information from business news in a super-

vized and semi-supervized textual framework which, differently to Latent Dirichlet Allocation

(LDA) methods, allows the definition of the source of commodity-price developments ex-ante.

Third, our work complements the extensive literature that tries to identify supply and demand

shocks in energy markets (Kilian, 2008; Kilian, Rebucci, and Spatafora, 2009; Kilian, 2009;

Kilian and Vigfusson, 2017; Känzig, 2021). Recent papers that construct narrative measures

of shock identification in the spirit of Romer and Romer (2010), include the works of Wu and

Cavallo (2012), Caldara, Cavallo, and Iacoviello (2019), Loughran, McDonald, and Pragidis

(2019) and the study of Datta and Dias (2019). Our approach differs in that we exploit the news

analysis coverage of the universe of tradable commodities following the work of Mouabbi,

Passari, and Rousset Planat (2024), instead of focusing on the oil market. A more fundamental

distinction from the aforementioned literature is that our indexes represent a real-time appraisal

of how market participants perceive the current and future state of commodity markets through

the news rather than representing commodity-price shocks.

The remainder of the paper is organized as follows. Section 2 introduces our methodology

and the text-based commodity indices. Section 3 highlights the distinct properties of supply and

demand indices and sets the ground for the empirical analysis. Section 4 presents a forecast-

ing exercise in which we study the differential impact of the proposed text-based commodity

indices on a number of broad and disaggregated inflation measures, across different sample

periods. Section 5 compares the automated, narrative supply and demand measures to shocks

affecting oil prices identified by the literature using structural vector autoregressions (SVAR).

Section 6, studies the responses of prices to commodity-market events picked by the textual-

based measures. Section 7 builds on the richness of the news informational content to couple
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supply and demand dynamics with specific regimes which relate to recessionary phases of the

business cycle or are characterized by severe natural disasters and provides more intuition about

the nature of inflation dynamics as well as their persistence. Section 8 applies our indices to the

inflation decomposition framework of Blanchard and Bernanke (2023) and corroborates some

of their findings. Section 9 concludes.

2. TEXTUAL ANALYSIS AND NARRATIVE IDENTIFICATION OF COMMODITY PRICE

DEVELOPMENTS

A Text-based Framework for Disentangling Commodity Supply and Demand. We first

present the general framework of Mouabbi, Passari, and Rousset Planat (2024) that uses a narra-

tive approach for the construction of supply and demand developments in commodity markets.

Indices of supply and demand are constructed first at the market-wide level which summarizes

the dynamics across the universe of commodities, and subsequently the analysis is tailored to

span a large number of commodity categories, including energy, industrial and precious metals,

agricultural commodities, and livestock. Ultimately, individual commodities such as oil, natural

gas, copper, iron, gold, wheat, corn, sugar, and hogs are also individually analyzed and mapped.

For the construction of the indices, news reading is simulated in three steps. The first step

is content analysis. Words and word combinations are identified within sentences that can be

attributed to supply and demand factors. During the second step of refinement, the process is

overlayed with additional algorithms that cater to negations, as well as to a number of exceptions

that vary across commodity categories. The third step involves an extensive human auditing

exercise. Commodity-related information is collected from more than four million articles from

Reuters and Dow Jones between January 2000 and June 2023.

A crucial step in content analysis is the use of supervised and semi-supervised methods for

learning; the algorithm identifies words and word combinations that can be attributed to supply

and demand factors. The starting point is the search for the most popular words over the universe

of business news articles. The words that appear more frequently are identified and classified

into supply and demand lists. The process is complemented with a large number of human

checks. This forms the basis of the creation of the supply and demand dictionaries. Additionally,

standard dictionaries of “increase” and “decrease” words that are typically employed in the

literature that uses textual analysis for the measurement of economic outcomes are employed.

The “supply” and “demand” words are then combined with the “increase” or “decrease” words

to form pairs that we count as signals. The following equations detail the construction of suppply

increase, supply decrease, demand increase and demand decrease indicators.

SIt =
1

Nt

Wt∑
w

{1[w = Supply]× 1[|w − posIncrease| ≤ i]} (1)
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SDt =
1

Nt

Wt∑
w

{1[w = Supply]× 1[|w − posDecrease| ≤ i]} (2)

DIt =
1

Nt

Wt∑
w

{1[w = Demand]× 1[|w − posIncrease| ≤ i]} (3)

DDt =
1

Nt

Wt∑
w

{1[w = Demand]× 1[|w − posDecrease| ≤ i]} (4)

where w = 0, 1, ...,Wt are the words contained in articles, with Nt the number of articles pub-

lished at date t, and posDecrease (posIncrease) the position of the nearest synonym of decrease

(increase). To measure changes in demand or supply, we thus count only mentions of supply or

demand that occur within a i-word window of a synonym of increase or decrease. We set i = 4

but the validity of the indices is robust to the choice of different word-window sizes.

Net supply is defined as the difference between supply decrease and supply increase and net

demand is defined as the difference between demand increase and demand decrease. Conse-

quently, an increase in net supply and an increase in net demand should both have a positive

effect on inflation. To quantify the net effects, we thus generate:

NetDemandt = DIt −DDt (5)

NetSupplyt = SDt − SIt (6)

A standardized version of the indices divides the net supply and demand indicators with the

total number of articles published per day, ensuring that they are not artificially inflated by

changes in the publication policy of news articles.

Decomposing the Drivers of Supply and Demand Developments. The origins of supply and

demand developments can have different implications for inflation. For instance, natural disas-

ters are thought to have an impact mostly on short- to medium-term inflation while environmen-

tal regulation could have a lasting effect on inflation by permanently affecting relative prices

through expectations. This is highly relevant for policy because it implies that central banks can

look through transitory shocks, but may have to respond to persistent shocks. Hence, the de-

composition of commodity price fluctuations into a number of key drivers potentially allows the

distinction between short and long-term impacts of commodity price developments. Four main

drivers of commodity prices are retrieved according to information collected from IMF com-

modity market reports; namely, a business cycle /recessionary factor, a geopolitical risk factor,

a natural disasters factor, and a climate change factor. These four factors potentially explain an
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important share of inflation variations; coupling the factors with supply and demand dynamics

provides more color to the underlying dynamics of commodity prices and can better inform us

about their time-varying significance. The commodity drivers’ dictionaries are derived using a

semi-supervised approach, employing a rich list of authoritative texts for each driver category,

according to the approach of Engle et al. (2020).

The proposed framework complements concurrent structural measures for the identification

of supply and demand developments that focus on the oil market because it spans most individ-

ual tradable commodities. This allows us to study the differential impact of supply and demand

developments for different inflation measures and assess their suitability. Additionally, we are

able to distinguish across different regimes of supply and demand developments.

Measures of Supply and Demand Developments for a Broad Commodity Index. For the

construction of supply and demand indicators for the global commodity index Mouabbi, Passari,

and Rousset Planat (2024) retain all articles that provide information about commodity markets

that reference any commodity that forms a constituent of the Composite Spot Commodity Index

from the Standard & Poors, Goldman Sachs Commodity Index (GSCI) spot price series.4

Figure 1 from Mouabbi, Passari, and Rousset Planat (2024) plots the monthly standardized

net supply and demand indicators for the full sample period, after adjusting the net supply and

demand indicators with the total number of articles per day. The peaks and troughs of the

standardized net supply and net demand indices map to well-known commodity-wide develop-

ments. Large spikes correspond to major events such the global financial crisis, the trade war,

the COVID-19 epidemic, the Russo-Ukrainian War and the U.S. debt-ceiling crisis. Sizable net

supply peaks correspond to important oil production cuts by OPEC and to natural disasters.

Measures of Supply and Demand Developments for Individual Commodities. The narrative

approach is subsequently tailored to cover commodity categories (energy, industrial metals, pre-

cious metals, agricultural commodities and livestock) and individual commodities; oil, natural

gas, heating oil, copper, aluminium, zinc, nickel, wheat, corn, soybean, sugar, cocoa, coffee,

cotton, cattle and hogs. Methodologically, this is achieved by augmenting the dictionaries of the

broad commodity indicators with words that capture commodity-specific supply and demand

elements.

Figures A1 and A2 in the appendix plot the standardized net supply and demand indicators for

crude oil and wheat for the 2001-2023 period. Interestingly, while the crude-oil narrative indices

map to well-known oil developments, such as OPEC meetings and other notable business cycle-

related events, including the weakening global demand following the U.S. recessions of 2001

and 2008, and the dramatic increase in US production between 2014 and 2016, wheat is marked

by events of a different nature. The wheat index captures a number a supply disruptions that

coincide with extreme weather events and natural disasters that affect production. The peaks in

4This index tracks the prices of major physical commodities for which there are active, liquid futures markets.
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FIGURE 1. Standardized Net supply and Standardized Net Demand across All
Commodity-Related News Articles
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Note: This figure plots the standardized net supply and demand indicators for the period between 2001 and 2020.
The bars map a number of well-known commodity-wide developments. These events are: [A] US recession and
events of 9/11 weighed on commodity markets (118th Extraordinary Meeting of the OPEC Conference – production
cut), [B] OPEC agreed to raise output quotas (131st Extraordinary Meeting), [C] Global Financial Crisis, [D] Worst
drought in more than 50 years in the U.S. severely cut corn and soybeans productions, sparking all-time high prices,
[E] COVID-19 dented demand and disrupted supply chains, [F] The Russo-Ukrainian War raised concerns about
supply shortages in grains, oil, and metals, [G] Demand concerns from rising global interest rates, China’s COVID-
19 lockdown extensions, [H] 2023 United States debt-ceiling crisis.
Source: Mouabbi, Passari, and Rousset Planat (2024)

demand, which appears to be rather inelastic, coincide with trade deals between U.S. and China

and stockpiling around the pandemic, which is indicative of precautionary demand.

Measures of Commodity Supply and Demand Drivers. As previously discussed, an addi-

tional refinement of the employed narrative toolkit is the construction of thematic indices that

further characterize the supply and demand of commodities. The latter should coincide with the

key determinants that have shaped commodity markets since the beginning of the 21st century.

To the extent that these thematic indices could be combined with commodity supply and de-

mand they should contain valuable information about the different properties and persistence of

inflation dynamics.

The focus of the present study will be on the interaction of a business cycle (recessionary)

and a natural disasters indicator with the supply and demand indices. For this purpose, we agr-

regagate the business cycle and natural disaster drivers of Mouabbi, Passari, and Rousset Planat

(2024) into monthly signals and we subsequently convert them to dummy variables defined by

the median value of the original driver series. This allows us to define four distinct regimes; a
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highly recessionary regime, a low-recession regime, a regime characterized by the presence of

severe natural disasters and a regime characterized by the absence of severe natural disasters.

The commodity drivers dictionaries in Mouabbi, Passari, and Rousset Planat (2024) are

drawn from a rich list of authoritative texts for each category, following the approach of En-

gle et al. (2020), as no well-defined dictionaries exist. In particular, the authoritative text for

the business cycle is composed of the full history of the Business Cycle Dating Committee

Announcements of the NBER (1979-2020). Similarly, for natural disasters we exploit the full

database of EM-DAT (the International Disaster Database of the Centre for Research on the

Epidemiology of Disasters.

3. PROPERTIES OF SUPPLY AND DEMAND MEASURES

In an effort to better understand the behavior of the supply and demand indicators detailed

in the previous section, we carry out a number of tests. This process allows us to validate the

informational content of the series extracted from business news that talk about commodities

and to additionally obtain new insights by studying their properties. Our starting point is the

premise that supply and demand shocks manifest in distinct ways in commodity markets and

have varied implications for macroeconomic performance and inflation dynamics.

When aggregate demand shocks occur, such as during an economic expansion or increased

consumer confidence, they exert upward pressure on prices across a broad spectrum of com-

modities. This phenomenon is particularly evident in procyclical goods, such as oil or industrial

metals. For example, an increase in consumer spending often correlates with rising oil prices,

which, in turn, influences transportation and production costs across most sectors. As these costs

rise, the higher prices tend to get passed through to consumers, leading to sustained inflation-

ary pressures. This relationship between aggregate demand and commodity prices highlights a

significant and homogeneous component that links the behavior individual commodities to their

contribution to the overall price level.

Empirically, the textual composite demand measure captures an aggregate component that

reflects a broad-based change in overall economic activity. By encompassing various demand

signals across different commodities, this measure allows us to discern shifts (e.g. in consumer

behavior or investment patterns) that signal fluctuations in economic performance. Its signifi-

cance lies in its ability to provide a comprehensive view of demand trends rather than focusing

solely on isolated sectors. Descriptive evidence highlights this property, as the composite de-

mand measure displays a high correlation with a textual measure of the business cycle from

Mouabbi, Passari, and Rousset Planat (2024). This correlation suggests that as demand across

commodities shifts, it coincides with changes in important business cycle components. For

instance, a rise in consumer confidence leads to increased spending, which, in turn, bolsters de-

mand for goods and services across multiple sectors, including manufacturing and retail. This
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interconnectedness reinforces the composite measure’s role as a valuable predictor of economic

trends. Figure 2 plots the 1st principal component of individual commodities’ net demand in-

dexes, the net demand composite index, and a measure of the business cycle, illustrating the

high correlation across these measures.

In contrast, supply shocks tend to exhibit idiosyncratic characteristics that can lead to diverse

outcomes depending on market conditions and the interrelationships between different goods.

Taking the cocoa market as an example, a negative supply shock - perhaps a disease that affects

cocoa crops - can result in a sharp increase in cocoa prices. However, since cocoa and sugar

are typically used for the production of chocolate, the reduced supply of cocoa can depress

the demand for sugar. In such cases, the complementarity between these two commodities

results in divergent pricing movements, where sugar prices may decrease even as cocoa prices

rise. Thus, while cocoa experiences significant inflationary tension, the overall impact on the

consumer price index could be mitigated, showcasing the nuanced effects of supply shocks. The

behavior of commodities such as coffee, which act as imperfect substitutes for cocoa further

complicates the aggregate effects on prices baskets. A supply disruption affecting cocoa may

not lead to a proportional increase in demand for coffee and subsequently coffee prices, but

instead may see consumers shifting preferences to tea or other substitutes. This limited demand

response within the context of substitute goods demonstrates that supply shocks have unique

properties, but also interact with consumer behavior in ways that can dampen their broader

inflationary impact. Hence, the interconnectedness of commodities through substitutability and

complementarity could lead to varying inflation outcomes even when specific commodities face

supply constraints.

Figure 3 plots the eigenvalues of the principal components of textually-extracted individual

commodity net demand and supply developments and provides some first evidence that illus-

trates this point. The scree plot of the principal component analysis of individual commodity

net supply indicators does not suggest a natural break between high and low eigenvalues - how-

ever, the first eigenvalue from the principal component analysis of the individual commodity

net demand indicators is notably larger, showcasing the importance of an aggregate demand

component.

Furthermore, Figure 4 presents the pairwise correlations of the supply and demand indices of

individual commodities with those of oil. We focus on this relationship due to the unique im-

portance of oil in the production stages across economic sectors, but also due to its prominence

in a literature that has historically focused solely on oil behavior to proxy for global supply

chain disruptions. With the exception of wheat and sugar–both essential food products with

relatively inelastic consumer demand–pairwise supply correlations between energy, industrial,

agricultural, and animal commodities and oil are notably lower than the corresponding demand

correlations, consistent with our conjecture.
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FIGURE 2. Net Demand, Commodities and Composite

Notes: The figure plots the 1st Principal Component of net demand indexes of individual commodities, the net demand composite
index, and the (negative) of the business cycle index. Commodities included are aluminium, cattle, cocoa, coffee, copper, corn,
cotton, gasoline, hogs, natural gas, oil, soybean, sugar, wheat and zinc, spanning the period May 2001-July 2023.

Finally, it is crucial to recognize that the different underlying structures of supply dynamics

across commodity sectors complicate the overall inflationary landscape. While demand dynam-

ics tend to exhibit significant commonality across diverse commodities, supply dynamics are

more fragmented. For example, agricultural commodities like grains may respond strongly to

extreme weather events, while energy and metals markets often display less correlation in their

supply shocks. Therefore, the idiosyncratic nature of supply – shaped by seasonal conditions,

regional disruptions, and specific industry characteristics – becomes essential in understanding

inflation transmission. In this context, the presence of both complement and substitute goods

becomes pivotal as they influence how supply shocks propagate through the economy, rein-

forcing the notion that while commodity-specific disruptions can elevate prices, their ultimate

effect on inflation may be significantly muted due to a weak pass-through effect on the overall

consumption basket.

4. DO THE NARRATIVE COMMODITY INDICES IMPROVE INFLATION FORECASTS?

The analysis presented in the previous sections suggests that textual measures of commodity

supply and demand, derived from business news, may contain valuable informational embed-

ded in equilibrium aggregate commodity prices. This finding prompts further investigation into

whether differentiating between supply- and demand-side dynamics may provide distinct infor-

mation about future inflation relative to existing predictors, potentially leading to more accurate

inflation forecasts.
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FIGURE 3. Scree Plots from Principal Component Analysis

Note: Scree plots of eigenvalues after principal component analysis conducted on net supply and net demand indices of individual
commodities including aluminium, cattle, cocoa, coffee, copper, corn, cotton, gasoline, hogs, natural gas, oil, soybean, sugar, wheat
and zinc, spanning the period May 2001-July 2023.

In this section, we evaluate the proposition outlined above. The existing literature remains

divided on the utility of commodity prices for inflation forecasting, particularly during the Great

Moderation and the post-Great Financial Crisis period. Rather than taking a definitive position

on the general forecasting value of commodity prices, we focus on whether our textual measures

of supply and demand dynamics can enhance inflation predictions relative to baseline models,

both with and without the inclusion of commodity prices. The analysis is conducted for both

headline inflation and core inflation, the latter excluding volatile components such as food and

energy prices. By doing so, we aim to assess the incremental value that text-based indicators

provide over traditional forecasting models in capturing inflation dynamics, especially in the

context of heterogeneous drivers across different inflation measures.
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FIGURE 4. Correlations of commodity indices with oil index

Notes: The figure shows correlations of net demand and net supply for each individual commodity against oil, spanning the period
May 2001-July 2023.

We conduct two broad sets of empirical exercises. In the first, we incorporate our textual

indices into a baseline model, without the inclusion of tradable commodity prices or other con-

trol variables. This allows us to assess the standalone predictive value of our measures. In the

second set of exercises, we introduce commodity prices along with additional macroeconomic

and financial controls, evaluating whether our indices offer incremental informational content

beyond the effects captured by commodity price movements and other macroeconomic and fi-

nancial variables. The analysis employs a simple linear model, adhering to parsimonious speci-

fications commonly used in the literature, particularly following the frameworks of Gospodinov

and Ng (2013) and Stock and Watson (2003). Specifically, we estimate linear regressions of the

following form:

∆h(πt+h) = α0 + β0(L)πt + β1(L)indext + β2xt + ϵt+h. (7)

In the above expression, ∆h(πt+h) represents inflation over a horizon of h months from

time t, where ∆h(πt+h) = (1200/h)× ln(pt+h/pt), with pt denoting the price level at time t.

Therefore, πt is the one-month annualized inflation rate at time t. The coefficients βk(L) are lag

polynomials for inflation and the textual indices, where β0(L) is a first-order lag polynomial,

β1(L) represents lag polynomials of orders 0 to 2, depending on the specification, and indext

denotes our textual measure of commodity demand or supply. The control variables, xt, include

the one-month log growth in aggregate commodity prices and the policy rate (effective federal

funds rate), both entering contemporaneously. In certain specifications, we also incorporate the

unemployment gap to capture Phillips Curve effects. For robustness, additional controls such
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as oil prices, oil production, oil inventories, inflation forecasts (SPF), and oil futures (WTI) are

tested. However, these controls do not improve the forecasting performance of models with

textual indices and, in fact, increase the RMSE of baseline models. As a result, they are not

systematically included in the tables and figures.

The richness of our indices allows for a variety of specifications, which can tease out dif-

ferent patterns in the data. For simplicity, we focus on our composite indices in this section.

In line with the parsimony requirement, we examine several combinations of these indices.

Specifically, we consider models incorporating: i) net supply and net demand together; ii) only

net supply; iii) only net demand; iv) demand increase and decrease; v) supply increase and

decrease; vi) supply and demand increase and decrease. Initially, we limit our analysis to the

pre-COVID period to establish baseline results. Subsequently, we address the econometric chal-

lenges unique to the COVID-19 period, to enhance the robustness of our results in the face of

the unprecedented disruptions associated with the pandemic. These distinct specifications allow

us to capture the nuanced effects of supply and demand shocks across different time-frames and

economic conditions, thereby enhancing the reliability of our inflation forecasting models.

We employ rolling window forecasts, using 120-month windows as is standard in the liter-

ature. A potential concern with such long windows is that crises are frequently present in the

sample. In addition to the simple AR models5, as specified in (7), we also consider models in-

corporating moving average terms, which have been shown to improve inflation forecasts. The

β0(L) term is of order 1 for the AR models and IMA(0,2) specifications further include MA

terms of order 2 in the residuals.6,7

We analyze both Consumer Price Index (CPI) and Personal Consumption Expenditures (PCE)

inflation, acknowledging the significant differences between these measures and their potential

impact on our findings. CPI is a Laspeyres index derived from consumer survey data, while

PCE represents a Fisher-ideal index based on business surveys. Notably, CPI captures only out-

of-pocket expenditures, whereas PCE encompasses indirect expenditures, such as those covered

by employer-provided health insurance. The PCE is the Federal Reserve’s preferred inflation

metric; in contrast, the European Central Bank (ECB) focuses on the Harmonized Index of

Consumer Prices (HICP), which is also a Laspeyres index sourced from consumer surveys. Al-

though our analysis centers on the U.S. context, the universal applicability of our measures

5These models are not strictly autoregressive, as the dependent variable is inflation h periods ahead, while the
regressor is a polynomial of one-period inflation. Thus, these models are only truly autoregressive when h = 1. For
convenience, we maintain this notation.

6While the literature typically employs IMA(1,p) models, we found that predictions deteriorate significantly
with integrated specifications, likely due to the absence of the high and persistent inflation of the 1970s and 1980s in
our dataset, which starts in 2000.

7We also test AR models with two lags and IMA(0,1) models, yielding similar results. Lag selection criteria
were not employed, as they produce different optimal structures depending on the covariates, and we aimed to avoid
confounding our results with varying lag structures.
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ensures that our examination of CPI remains relevant and valuable in broader economic discus-

sions.

4.1. Accounting for the COVID shock. The unprecedented shock induced by the pandemic

has complicated standard time series estimation methods, primarily due to the presence of ex-

treme outliers in the data. This phenomenon has prompted the literature to explore various

strategies for addressing these challenges. Researchers have investigated a range of potential

solutions, seeking to mitigate the distortions caused by these outliers and enhance the robust-

ness of econometric estimates in the context of such peculiar economic conditions.

In our analysis, we encounter two principal challenges. The first is the non-stationarity intro-

duced by the COVID-19 pandemic, which has significant implications for parameter estimation

and the reliability of our models. Second, even if we achieve accurate parameter estimates, our

demand indices experience a dramatic collapse in magnitude during the initial three months of

the shock. This pronounced decline complicates the forecasting process for the relevant time

horizons, as the stability and predictive power of our indices are undermined by these extraor-

dinary conditions.

To address this challenge, we adopt the approach proposed by Lenza and Primiceri (2022),

who contend that while excluding extreme outliers from the COVID episode may be suitable

for parameter estimation, it is not advisable for forecasting, as this practice risks underestimat-

ing uncertainty. They recommend incorporating stochastic volatility within a Bayesian VAR

framework, which effectively scales down the variables of interest during the months impacted

by the shock. To preserve the parsimony of our model, we implement a simplified version of

their approach by replacing the values of the demand indices for the initial three months of the

shock with their mean from 2019. Additionally, we include a dummy variable equal to one for

the COVID era in our parameter estimation, as suggested by Ng (2021).8

4.2. Forecasts.

We present our results separately for the pre-COVID period and the entire sample, to evaluate

the performance of our framework across different economic regimes. This distinction is par-

ticularly relevant as baseline models exhibit significant variations in performance across these

regimes, especially for Integrated Moving Average (IMA) specifications. We begin with the

forecasting results for Consumer Price Index (CPI) inflation during the pre-COVID period, as

detailed in Figure 5 and Table 1.

Figure 5 plots 12-month ahead inflation forecasts together with actual inflation for the period

between December 2010 and December 2019. The top panels display the behavior of forecasts

8Ng (2021) also advocates for incorporating the log growth of hospitalizations or infections to account for
the shock. While this method does enhance prediction accuracy, it offers a smaller improvement compared to the
scaling-down approach.
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derived from models that only contain autoregressive components (Panel A), or a full set of con-

trols including log monthly changes in commodity prices (Panel B). The bottom panels further

introduce the textual indicators of net supply and net demand to the aforementioned models.

The improvement in the forecasting performance is evident, even following a comparison with

the richer specification of Panel B. The textual indicators appear to offer information not em-

bedded in standard macroeconomic and financial variables traditionally used in the forecasting

of inflation.

FIGURE 5. Inflation Forecasts versus Actual Inflation, Pre-COVID

(a) Baseline, no controls (b) Baseline, controls

(c) No controls, net supply/demand in-

dices

(d) Controls & net supply/demand in-

dices

Note: Inflation forecasts plotted together with actual inflation spanning the period December 2010-December 2019. Where noted,
controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR, 10-year minus 2-year US treasury,
VIX, trade-weighted US dollar monthly log returns, and log monthly changes in commodity prices.

Panel A of Table 1 presents the results for models that do not incorporate any control vari-

ables (i.e., the set x is null). The Root Mean Square Error (RMSE) for the baseline model across

all specifications is reported in the second column for each forecast horizon. We assess the sta-

tistical significance of the forecasts relative to the benchmark using the Diebold-Mariano test.

Focusing on headline inflation at the h=12 horizon, most Autoregressive (AR) models demon-

strate a clear improvement over the baseline, particularly those in columns 1 and 3, which fea-

ture a combination of net demand and net supply and net demand alone respectively. Secondary

enhancements are observed in columns 4 and 6, which consider demand increase/decrease and

supply/demand increase/decrease. This indicates that demand serves as a considerably stronger

predictor of future price growth. The Integrated Moving Average (IMA) model yields similar

19



FIGURE 6. Inflation Forecasts versus Actual Inflation

(a) Baseline, no controls (b) Baseline, controls

(c) No controls, net supply/demand in-
dices

(d) Controls, & net supply/demand in-
dices

Note: Inflation forecasts plotted together with actual inflation spanning the period December 2010-August 2023. Where noted,
controls are: industrial production log monthly change, S&P 500 log monthly change, FFR, 10-year minus 2-year US treasury,
VIX, trade-weighted US dollar monthly log change, and log monthly changes in commodity prices.

findings, with its predictive power being most pronounced at the h=12 and h=6 horizons, where

the gains in prediction are statistically significant across models that include textual indices of

commodity demand (models 1,3,4,6). We also evaluate a set of specifications that includes a

comprehensive array of control variables: the log monthly change in industrial production, S&P

500 log monthly returns, the effective federal funds rate, the spread between 10-year and 2-year

U.S. Treasury yields, the VIX, and trade-weighted U.S. dollar monthly log returns. Even when

compared to this more competitive benchmark, our framework consistently yields significant

improvements for the h=12 horizon.

Panel B presents the results for a baseline model that incorporates commodity price returns

as a control variable. Compared to Panel A, the Root Mean Square Error for the autoregressive

model is lower across all forecast horizons (however, these differences are not statistically sig-

nificant). Notably, for the h=12 and h=6 horizons, the models identified as successful in Panel

A continue to provide substantial improvements in predictive accuracy in Panel B. This finding

indicates that, despite the inclusion of commodity price information in the baseline model, our

indices enhance forecasting performance. The same is observed with the Integrated Moving

Average (IMA) specification in the absence of controls. When a comprehensive set of controls

is included, the predictive gains for the autoregressive model persist for models which include
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TABLE 1. Forecast performance (RMSE), Headline CPI inflation, Pre-COVID

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.978 0.682** 0.991 0.687** 0.769** 0.928 0.731**
h=6 1.373 0.836* 1.022 0.838* 0.863 1.012 0.929
h=3 1.791 1.015 1.085 0.971 1.011 1.127 1.112

Controls, Autoregressive
h=12 0.824 0.819* 1.035 0.803** 0.924* 1.053 0.947
h=6 1.446 0.963 1.014 0.964 0.983 1.000 1.010
h=3 1.998 1.016 1.021 0.999 1.024 1.039 1.086

IMA
h=12 0.977 0.658** 0.987 0.675** 0.731** 0.900 0.680**
h=6 1.375 0.777** 0.997 0.798** 0.805* 0.970 0.838
h=3 1.895 0.917 1.046 0.919 0.965 1.065 1.005

Controls, IMA
h=12 0.822 0.786** 1.028 0.756** 0.864** 1.010 0.864**
h=6 1.261 0.919 0.999 0.930 0.939 0.990 0.954
h=3 1.859 0.980 0.997 0.976 0.987 1.000 0.996

Panel B: with commodities

Autoregressive
h=12 0.940 0.710** 0.999 0.708** 0.802** 0.950 0.771**
h=6 1.338 0.858* 1.029 0.852** 0.872* 1.014 0.942
h=3 1.699 1.017 1.088 0.962 0.993 1.117 1.108

Controls, Autoregressive
h=12 0.786 0.871 1.051 0.852 1.001 1.071 1.031
h=6 1.436 0.978 1.023 0.980 1.004 1.002 1.025
h=3 1.896 1.040 1.035 1.020 1.049 1.050 1.112

IMA
h=12 0.959 0.667** 0.980 0.682** 0.748** 0.894 0.693**
h=6 1.355 0.782** 0.989 0.804** 0.812** 0.971 0.850
h=3 1.728 0.988 1.071 0.978 1.044 1.096 1.092

Controls, IMA
h=12 0.790 0.818* 1.033 0.782** 0.919* 1.017 0.918
h=6 1.224 0.941 0.999 0.951 0.963 0.989 0.985
h=3 1.716 1.043 1.043 1.011 1.028 1.046 1.071

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the com-
posite commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the
baseline. Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes
net demand; model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply de-
crease; and model 6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive
specification is given by (7), and IMA specifications further include MA terms of order 2. Each specification includes
some of our indexes, as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log
monthly change, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B
also includes log monthly change in commodity prices. Sample: March 2001-July 2023. Newey-West standard errors;
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

net demand of commodities (models 1 and 3), although they no longer achieve statistical signif-

icance. In contrast, the IMA specification demonstrates considerable predictive improvements

for the h=12 horizon.

It is important to note that the baseline model presented here, which incorporates commodity

inflation, exhibits a lower Root Mean Square Error (RMSE) than that observed in Panel A.

Consequently, our predictive gains are understated when compared to a simple autoregressive

model. Nevertheless, given that our primary objective is to demonstrate that our indices offer
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TABLE 2. Forecast performance (RMSE), Headline CPI inflation

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 1.229 0.770** 0.999 0.768** 0.804** 0.988 0.793**
h=6 1.657 0.882** 1.012 0.882** 0.899* 1.002 0.937
h=3 2.279 1.005 1.039 0.986 1.014 1.057 1.065

Controls, Autoregressive
h=12 1.220 0.831** 1.010 0.820** 0.864 1.018 0.878
h=6 1.738 0.964 1.004 0.956 0.968 0.987 1.004
h=3 2.551 1.048 1.006 1.036 1.069 1.033 1.114

IMA
h=12 1.889 0.806* 0.957 0.850* 0.826 0.886 0.729
h=6 2.086 0.838* 0.966 0.879* 0.873 0.942 0.839
h=3 2.648 0.910 0.982 0.948 0.966 0.981 0.936

Controls, IMA
h=12 1.460 0.851* 0.996 0.860** 0.879* 0.991 0.844
h=6 1.814 0.905 0.989 0.922* 0.923 0.997 0.916
h=3 2.448 0.955 0.982 0.972 0.976 0.986 0.965

Panel B: with commodities

Autoregressive
h=12 1.172 0.798** 1.005 0.789** 0.831** 0.999 0.828**
h=6 1.596 0.902** 1.017 0.896** 0.910* 1.000 0.951
h=3 2.101 1.014 1.046 0.986 1.004 1.052 1.067

Controls, Autoregressive
h=12 1.195 0.861* 1.018 0.848* 0.901 1.026 0.918
h=6 1.724 0.980 1.014 0.969 0.983 0.991 1.017
h=3 2.343 1.078 1.019 1.059 1.080 1.040 1.137

IMA
h=12 1.877 0.809* 0.954 0.853* 0.831 0.880 0.731
h=6 2.070 0.840* 0.962 0.883* 0.876 0.939 0.842
h=3 2.548 0.940 0.992 0.976 0.999 0.991 0.969

Controls, IMA
h=12 1.448 0.856* 0.996 0.867** 0.892 0.991 0.852
h=6 1.798 0.913 0.989 0.930 0.933 0.996 0.927
h=3 2.277 0.994 1.009 0.989 0.998 1.016 1.011

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the com-
posite commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the
baseline. Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes
net demand; model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply de-
crease; and model 6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive
specification is given by (7), and IMA specifications further include MA terms of order 2. Each specification includes
some of our indexes, as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log
monthly change, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B
also includes log monthly change in commodity prices. Sample: March 2001-July 2023. Newey-West standard errors;
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

additional informational value irrespective of the inclusion of commodity price inflation, we

concentrate our analysis on within-class comparisons.

Figure 6 plots inflation forecasts together with actual inflation for the period between Decem-

ber 2010 and August 2023. As before, the top panels display the behavior of forecasts derived

from models that only contain autoregressive components (Panel A), or a full set of controls

including log monthly changes in commodity prices (Panel B). The bottom panels further in-

troduce the textual indicators of net supply and net demand to the aforementioned models. The
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inability of all models to timely forecast the inflation surge following the outbreak of the pan-

demic is obvious and expected. However, there is still some improvement in the forecasting

performance of the latter period of the sample when one employs the textual indicators, over the

benchmark case or the specification including controls and log monthly changes in commodity

prices.

Table 2 shows results for the full sample, which includes the COVID period. As expected, the

baseline performance is substantially worse than before, due to the large inflation shock. Per-

haps unexpectedly, this worsening is especially pronounced for the IMA models, with RMSE

sometimes twice as large relative to the pre-COVID sample. The autoregressive baseline in-

stead has an increase in RMSE of around 25% for the h=12 horizon. Despite these shifts in

baseline performance, the relative effectiveness of our models compared to the baseline remains

consistent, even compared to models which include commodity prices. Thus, within each class

of models examined, our indices yield substantial predictive gains, highlighting their relevance

and utility across varying inflationary regimes.

For completeness, we report, in tables C1-C2 in the appendix, results for core CPI infla-

tion. Core CPI presents a more challenging forecasting benchmark, as it includes far fewer

commodity-driven components relative to headline CPI. Despite this, we observe notable im-

provements relative to the baseline, particularly in the IMA models. Interestingly, the most

effective models are found in columns 5 and 6, offering a key insight: while headline CPI infla-

tion is better predicted by demand indices, core CPI inflation is more accurately forecasted by

supply indices. Model 5, which includes supply indices split into negative and positive move-

ments, performs reasonably well across most specifications. It should be noted though, that few

specifications give statistically significant improvements.

Overall, our commodity demand and supply indices appear to contain highly informative

content for forecasting aggregate price indices. Demand-driven indices yield significant im-

provements in predicting headline inflation, particularly over longer horizons, when no addi-

tional controls are included. Even when controlling for commodity price inflation and macro

and financial variables, these indices continue to provide notable forecasting gains, particularly

for longer horizons. In addition, supply indices provide sizable prediction gains for core CPI

inflation though they are not always statistically significant.

Tables 3 and 4 present the results for headline PCE inflation, while tables C3 and C4 in the

appendix focus on core PCE inflation. Given the key differences between CPI and PCE mea-

sures, the results are not necessarily expected to align. For headline PCE, the baseline RMSE is

generally lower than for CPI, though it is similar for the core measure in the pre-COVID sample.

Despite these differences, the performance of our indices in improving forecasts relative to the

baseline remains consistent. Notably, the forecast improvements are more pronounced for Core
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PCE compared to Core CPI, with a number of models providing improved forecasts over shorter

horizons of three to six months.9

TABLE 3. Forecast performance (RMSE), Headline PCE inflation, Pre-COVID

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.779 0.705* 0.979 0.713** 0.781** 0.885 0.717*
h=6 1.009 0.802 1.008 0.810* 0.821 0.985 0.879
h=3 1.279 0.982 1.049 0.965 0.995 1.095 1.080

Controls, Autoregressive
h=12 0.652 0.810** 1.027 0.789** 0.897* 1.038 0.922
h=6 1.040 0.939 1.008 0.938 0.951 0.995 0.980
h=3 1.391 0.990 1.007 0.983 1.003 1.022 1.054

IMA
h=12 0.778 0.664** 0.975 0.691** 0.736** 0.864 0.652**
h=6 1.007 0.729* 0.995 0.757** 0.755** 0.962 0.790
h=3 1.342 0.879 1.030 0.896 0.931 1.036 0.964

Controls, IMA
h=12 0.655 0.789** 1.022 0.761** 0.861** 0.991 0.842*
h=6 0.894 0.884 0.998 0.900 0.909 0.994 0.941
h=3 1.314 0.941 0.992 0.943 0.942 0.976 0.944

Panel B: with commodities

Autoregressive
h=12 0.750 0.731* 0.990 0.732** 0.808** 0.906 0.749**
h=6 0.976 0.822 1.021 0.822* 0.827* 0.990 0.889
h=3 1.187 0.976 1.063 0.946 0.969 1.092 1.069

Controls, Autoregressive
h=12 0.620 0.858 1.040 0.836* 0.963 1.052 0.991
h=6 1.002 0.969 1.020 0.968 0.986 1.001 1.012
h=3 1.279 1.019 1.023 1.010 1.034 1.036 1.087

IMA
h=12 0.766 0.673** 0.968 0.698** 0.753** 0.856 0.664**
h=6 0.992 0.734* 0.985 0.763** 0.761** 0.960 0.801
h=3 1.195 0.964 1.056 0.953 1.010 1.082 1.069

Controls, IMA
h=12 0.631 0.827* 1.033 0.789** 0.911 1.004 0.889
h=6 0.860 0.915 0.999 0.927 0.938 0.994 0.976
h=3 1.171 1.003 1.027 0.988 0.990 1.016 1.026

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the com-
posite commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the
baseline. Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes
net demand; model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply de-
crease; and model 6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive
specification is given by (7), and IMA specifications further include MA terms of order 2. Each specification includes
some of our indexes, as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log
monthly change, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B
also includes log monthly change in commodity prices. Sample: March 2001-July 2023. Newey-West standard errors;
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

4.3. Forecasting the turning points of inflation.

9In further extensions, we augment the baseline model with controls to also include oil prices, oil inventories,
inflation expectations from SPF, and oil futures. We do not report these results for brevity, because not only do our
indicators consistently beat these other baselines, but also because specifications including a combination of these
variables peform worse than the simple autoregressive baseline.
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TABLE 4. Forecast performance (RMSE), Headline PCE inflation

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.916 0.761** 0.990 0.761** 0.793** 0.956 0.763**
h=6 1.198 0.871* 1.005 0.875** 0.890* 0.993 0.927
h=3 1.556 0.987 1.021 0.982 1.014 1.043 1.059

Controls, Autoregressive
h=12 0.907 0.811** 1.006 0.800** 0.842** 1.015 0.856*
h=6 1.242 0.926* 0.996 0.927** 0.942** 0.984 0.966
h=3 1.644 1.023 0.994 1.022 1.057 1.019 1.098

IMA
h=12 1.468 0.828* 0.960 0.867* 0.835 0.875 0.734
h=6 1.556 0.838* 0.965 0.880* 0.862 0.934 0.827
h=3 1.881 0.904 0.979 0.951 0.962 0.970 0.922

Controls, IMA
h=12 1.104 0.858** 0.997 0.863** 0.878* 0.987 0.842*
h=6 1.310 0.889* 0.984 0.911* 0.907* 0.992 0.898
h=3 1.733 0.939 0.979 0.960 0.959 0.979 0.943

Panel B: with commodities

Autoregressive
h=12 0.875 0.785** 0.997 0.780** 0.817** 0.968 0.793**
h=6 1.155 0.887* 1.012 0.884** 0.897* 0.992 0.936
h=3 1.436 0.987 1.030 0.974 0.997 1.039 1.054

Controls, Autoregressive
h=12 0.890 0.835** 1.012 0.825** 0.872 1.020 0.887
h=6 1.219 0.942 1.005 0.940** 0.958 0.988 0.982
h=3 1.509 1.041 1.006 1.036 1.061 1.024 1.107

IMA
h=12 1.461 0.832* 0.958 0.872* 0.843 0.869 0.737
h=6 1.544 0.841* 0.962 0.886 0.868 0.931 0.831
h=3 1.778 0.950 0.993 0.983 0.997 0.991 0.972

Controls, IMA
h=12 1.096 0.865* 0.998 0.869** 0.890* 0.990 0.848
h=6 1.298 0.898 0.983 0.921* 0.917 0.990 0.906
h=3 1.619 0.972 0.996 0.981 0.980 1.002 0.981

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of headline PCE inflation across different monthly horizons, using the com-
posite commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the
baseline. Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes
net demand; model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply de-
crease; and model 6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive
specification is given by (7), and IMA specifications further include MA terms of order 2. Each specification includes
some of our indexes, as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log
monthly returns, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B
also includes log monthly change in commodity prices. Sample: March 2001-July 2023. Newey-West standard errors;
∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Another way to assess the performance of our measures is to see how well they perform across

different regimes and turning points. Good average performance may mask bad performance at

time of falling or rising inflation, rendering the framework problematic when good forecasts are

most important.

We follow Joseph et al. (2021) and split the sample in periods when inflation is increasing,

falling or is stable. We define an episode as increasing when the 3-month moving average %

change in inflation is positive for at least 5 consecutive months; falling when the same measure
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registers a negative change for at least 5 consecutive months; and stable when it is neither falling

nor rising.

Results are shown in Appendix Tables D1 for CPI and D2 for PCE, for h=12 and h=6 hori-

zons. Overall our framework provides clear improvements over the baseline for headline infla-

tion for h=12, especially for episodes of falling and stable headline inflation. For episodes of

increasing inflation, some models also provide substantial and consistent improvements, espe-

cially models 0, 2 and 4, with the rest providing improvements in some specifications, but not

others. For h=6, similar patterns hold, though improvements for increasing episodes are strong

only for models with commodities.10

4.4. Forecasting CPI items.

As a final forecasting exercise, we test whether we can also use our indicators to improve the

forecasts of CPI items most related to commodity prices, namely food and energy. We do so

using the respective food and energy commodity indices. The results are shown in Tables C5

and C6.

Starting with energy inflation, we first note that energy is extremely volatile, as shown by the

baseline RMSE, which is an order of magnitude higher than headline CPI. As such, it is very

difficult to forecast. Nevertheless, we do observe model improvements across most models, and

in fact quite large improvement with the specification with demand increase and decrease in

the model with IMA and controls (column 4). Including tradable commodity returns does not

improve the forecasting performance of the model, but the gains from including the narrative

based measures improve the forecasting performance by 20%. The improvement is exclusively

driven by demand.

As for food, there are some modest improvements from using textual supply indicators across

most models, though few are statistically significant. Again, further including tradable commod-

ity returns provides minimal improvement.

5. OIL PRICE NEWS SHOCKS AND OIL PRICE SHOCKS

In order to assess the forecasting power of the textual indicators we don’t need to make a

statement about the exoneity of commodity-supply and demand signals that are sourced from

the news. This is important because the endogenous nature of commodity prices, which are

influenced by macroeconomic conditions, complicates the estimation of their causal effects. To

address this challenge, the literature has traditionally employed structural vector autoregressions

(SVAR) to identify distinct shocks affecting oil prices. These have been identified using (i) zero

restrictions (Kilian, 2009), (ii) sign restrictions (Kilian and Murphy, 2012; Lippi and Nobili,

10Note that because the sample can be quite small for some cases, we do not perform Diebold-Mariano tests.
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2012; Baumeister and Peersman, 2013; Baumeister and Hamilton, 2019), (iii) narrative infor-

mation (Antolin-Diaz and Rubio-Ramirez, 2018; Caldara, Cavallo, and Iacoviello, 2019; Zhou,

2019), and more recently (iv) high-frequency variation in oil prices around OPEC announce-

ments (Känzig, 2021). Despite the extensive development of methodologies for modeling oil

price movements, there is a notable scarcity of analyses on other tradable commodities, such as

natural gas and wheat, which have gained significance during the recent period of turbulence.

The purpose of this section is to show that the Oil Net Supply and Net Demand Indices

contain valuable information for the understanding and future trajectory of macroeconomic

fundamentals, similar to structurally-estimated shocks. To do so, we repeat an exercise from

Mouabbi, Passari, and Rousset Planat (2024), who take the "surprise" in the Oil Net Supply

series, given by the residuals of an AR(1) regression, and compare the impulses responses of a

number of relevant variables to this surprise, relative to two well-known frameworks. The first

is the oil supply shock of Baumeister and Hamilton (2019), identified using sign restrictions

with informative priors drawn from the literature. The second is the news shock about future

oil supply of Känzig (2021), who uses a high-frequency identification scheme exploiting reac-

tions of futures prices to OPEC announcements, and uses them as an external instrument in a

standard oil VAR.11 These two shock series are estimated using two different structural methods

and represent the frontier for oil-price modeling. Establishing this benchmark is extremely im-

portant against the backdrop of a lack of proxies for the drivers of other commodities (besides

oil), which is exactly the gap that this paper aims to fill.

We use the six variables used in the exercise of Känzig (2021): the real WTI spot price,

global oil production, inventories (proxied by OECD inventories), global industrial production,

US industrial production and US CPI. Following Känzig (2021), the shocks are normalized to a

shock that raises the real oil price by 10% on impact. Throughout this set of exercises (as well

as in the following section), we plot, as is standard, the coefficients of the Local Projections

across horizons, together with 90% and 95% confidence intervals. However, as is well known,

the coefficients in Local Projections are highly serially correlated, which can result in separately

insignificant coefficients that are jointly significant. We employ the fix of Jordà (2023), and plot

the inverted statistic of the test of joint significance at each step h of total horizon H , which is

given by ±σh
√
d(H,α)/H , where d(H,α) is the critical value of the joint null for significance

level α (with an asymptotic χ2 distribution), and σh is the standard deviation of the estimated

coefficient at horizon h. These significance bands are useful because while each coefficient may

not be statistically significant, they can still be jointly significant, which is the economic effect

of interest (i.e. whether a treatment had an effect on the outcome.

Figure 7 and Table 5 present compelling evidence that the textual indices correlate and offer

comparable predictions to those of structural methods popular in the literature. In particular,

11The authors of these papers provide updated versions of their shocks on their respective websites. We use
shocks up to March 2023 from both papers (and not the vintages provided in the replication packages).
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Table 5 presents the correlations of the Net Supply and Net Demand Oil Indices of Mouabbi,

Passari, and Rousset Planat (2024) with those of Baumeister and Hamilton (2019) and Känzig

(2021). The results indicate that a surprise of the simplest Net Supply indicator for oil (computed

as the residual of an autoregressive process of order one) has a correlation of 31% with the oil

shock series of Baumeister and Hamilton (2019) and 35% with Känzig (2021). Their correlation

is 37% for same sample. The surprise of the Net Demand Oil Index has a correlation of 41% with

the sum of the three demand components of Baumeister and Hamilton (2019). All correlations

are highly significant (over 99.9% confidence level).

The study of the impulse responses of the local projections (Figure 7) further reveals that

a negative surprise of the Net Supply Index of Mouabbi, Passari, and Rousset Planat (2024)

predicts a substantial and immediate increase in oil prices. Global oil production decreases over

the subsequent 24 months. There is also a small but statistically significant short-term inventory

depletion. In addition, a negative supply surprise leads to a marked and sustained decline in US

and global industrial production, highlighting global vulnerabilities to higher oil prices. U.S.

consumer prices rise significantly, on impact, and continue to increase for approximately one

year.

TABLE 5. Correlations

Supply Demand

MPRP 2024 Kanzig 2021 BH 2019 MPRP 2024 BH 2019

MPRP 2024 1.0000 1.0000
Kanzig 2021 0.3534 1.0000
BH 2019 0.3138 0.3735 1.0000 0.4109 1.0000

Note: The table shows correlations of the structural shocks of Baumeister and Hamilton (2019) and Känzig (2021) with a
surprise series in the indices of Mouabbi, Passari, and Rousset Planat (2024), given by the residuals of a regression of the
index on its own lag. We use the Net Oil Supply and Demand indices, respectively.

Interestingly, despite the fact that the textual methodology does not include any data on prices

or quantities, the indices are still able to capture similar dynamics to methods that do incorporate

this information. The results across the three methods are broadly consistent, both qualitatively

and in terms of statistical significance.

Notably, all three exercises match quite closely the effects on the two price series. Our

Net Supply surprise yields overall less precise and more erratic impulse responses in further

horizons, but this is a well-known feature of local projections relative to Vector Autoregressions

(VAR) used to identify the shocks in the other two papers.12 Overall, the impulse responses of

the Net Supply Oil Index compare well with other state-of-the-art measures of the literature that

use structural methods.
12Intuitively, as detailed by Känzig (2021) and Nakamura and Steinsson (2018), countless shocks hit the economy

in longer horizons. Without the additional structure imposed by Structural VARs, estimation is bound to be less
precise, also because the sample for high-frequency series is much shorter than with standard macro series.
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FIGURE 7. Local Projections Impulse Responses
(I) Baumeister & Hamilton, 2019 (II) Känzig, 2021 (III) MPRP 2024

A. Real WTI Spot

B. World Oil Production

C. OECD Inventories

D. World Industrial Production

E. US Industrial Production

F. US CPI

Note: This figure from Mouabbi, Passari, and Rousset Planat (2024) shows the impulse responses to an oil supply shock (mean
and 90% and 95% CI) for the Real Spot Price of Oil, World Oil Production, OECD Oil Inventories, World Industrial Production,
US Industrial Production, and US CPI. The teal dashed lines show significance bands for the test that all coefficients of interest are
jointly zero, as in Jordà (2023). The shocks are the oil supply shocks of Baumeister and Hamilton (2019) and Känzig (2021) and a
“surprise” series, calculated from our Net Supply Crude Oil Index as the residual of an AR(1). The shock is normalized to a shock
producing an impact increase of 10% in the real price of oil. 29



6. THE DIFFERENTIAL IMPACT OF COMMODITY SUPPLY AND DEMAND MEASURES ON

INFLATION

In this section, we study the responses of prices to commodity-market events picked by the

textual-based measures. Although the commodity news indicators are not shocks–but rather

proxies of shocks–and one cannot readily separate the commodity supply channel from demand

or from other inflation drivers, the leveling exercise of the previous section gives us some com-

fort that the constructed “commodity-news shocks” series behaves in a highly similar way to

other, well-established commodity shocks series.

Armed with this observation and the hypothesis that our news-derived proxies are close track-

ers of real shock behavior, we employ the Local Projections framework of Jordà (2005), which

involves regressing successive forward values of the dependent variable on its lags, our indices,

and relevant controls. The controls are the log change of industrial production, S&P 500 log

returns, the federal funds rates, the 10-year minus 2-year US treasury yield, VIX, and trade-

weighted US dollar log returns. We are mainly interested in disentangling the different effects

of net supply and demand developments, and we hence include the net supply and demand in-

dices for each category of indices together. We include up to an 18-month horizon, and use

Newey-West standard errors.

The impulse responses have been normalized to have the same scale. The indices we use are

scale free, and hence the unit standard deviation normalisation commonly used cannot say how

large the shocks are, which is not very useful for studying passthrough. The normalisation is

akin to the unit effect normalisation of Stock and Watson (2018). We normalize by shocks that

raise the annual GSCI growth by its median absolute value (14.3%). Ideally we would normalize

by the effect on inflation, but on occasion the impact effect is negative. We could have chosen a

different horizon, but in this case we would assume the same effect for both supply and demand.

The dependent variable is the natural logarithm of the respective price level (headline CPI or

one of its components), and so the coefficients give 100*log points change from the baseline.

A serious issue one needs to address is the non-stationarity induced by the COVID-19 shock,

which is particularly severe in our framework. Lenza and Primiceri (2022) argue that, for the

calculation of impulse responses, dropping the pandemic is typically sufficient. However, we

also want to examine how well our indices perform during this volatile episode, especially

because the pandemic coincided with a generational spike in inflation. As such, we take a simple

version of the Lenza and Primiceri (2022), whereby we replace our indices with their 2019

mean for the January-April 2020 period, and include a COVID-19 dummy in the regressions, as

suggested by Ng (2021). We provide further details on these methods in Section 4.

The Impact of the COVID-19 Pandemic on Inflation. We have already underlined the impor-

tance of pinning down the origins of commodity price movements for the modeling of inflation
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dynamics. The COVID-19 pandemic has posed additional challenges for the understanding

of the commodity price-inflation link by creating large and persistent supply shocks with grave

and long-lasting inflationary consequences. The inflation discussion this time moved away from

crude oil considerations and rather focused on a broader commodity basket that was affected by

global supply-chain disruptions.

Figure 8 shows the impact of including the data of the first year of the COVID-19 pandemic

in our sample. Panel A plots the Local Projection of CPI to a standardized unit increase in our

composite net supply index between 2001 and 2023. This sample includes the Ukraine war, but

results are very similar even before the large increase in global energy prices starting in early

2022. The panel to the right (panel B), plots the same response, but calculated only for the

pre-COVID sample (until December 2019). The effect of supply developments is much smaller

in the pre-COVID sample, and is hardly statistically significant at the 18-month horizon.

Instead, the result reflects the various supply-related problems created due to the COVID

pandemic, such as lockdowns, supply chain disruptions, the rising cost of global shipping, and

any other hindrance to the supply of commodities. In particular, 2021 was a year marked by

persistent low inventories for a number of key metals, with copper, aluminum, nickel and zinc

markets registering a deficit due to both inventory and distribution problems. This is consistent

with the inspection of the same set of impulse responses coming only from the oil market (panels

C and D). Indeed, the responses of CPI to a standardized unit increase in our net supply of oil

index are similar in terms of statistical significance with or without the COVID sample.

Commodity Indices and Inflation. We now turn to the effects of commodity developments

(both supply and demand) on aggregate price growth. While some of the US literature tends

to focus on PCE inflation, because this is the measure targeted by the Fed, in this section, we

focus only on CPI inflation. We do so because most other countries rely on CPI inflation, which

is computed from consumer surveys, while PCE is measured from business surveys. Since our

framework is designed to be used in any jurisdiction, CPI is the more natural choice. However,

we report results for both CPI and PCE in the next section on forecasting.

The first row (panels A and B) of Figure 9 shows the response of annual CPI inflation to

supply and demand developments, using the composite indices. The response to demand is

almost twice as high, and equally persistent. We argue that this is due to the fact that our com-

posite demand measure captures essentially an aggregate demand component, and so signals a

broad-based change in demand. This is evidenced by the fact that the demand measure is highly

correlated with the business cycle driver.

The second row (panels C and D) shows the response of core CPI inflation to the same

disturbance. As expected, the response is much smaller, because most commodities have been

removed from the price index. In this case, the response to supply developments is somewhat

larger, and significant for a few months (according to both the standard confidence intervals and
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FIGURE 8. CPI Inflation Response to Supply Developments - COVID

(a) Headline, Composite - COVID (b) Headline, Composite - No COVID

(c) Headline, Oil - COVID (d) Headline, Oil - No COVID

Note: Log CPI response following a one unit increase in contemporaneous composite net supply up to an 18-month horizon (90%
and 95% CI). The response is normalized to a shock that raises the GSCI by 10% in 12 months. The teal dashed lines show
significance bands for the test that all coefficients of interest are jointly zero, as in Jordà (2023). Controls: industrial production
log change, S&P 500 log returns, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar log returns. Each
specification also includes a constant and 13 lags of log CPI. COVID corrections using a COVID dummy and rescaling of the
indices for January-April 2020. Sample: March 2001-July 2023.

the joint test). In addition to direct effects from other commodities which are still present in the

core price index and are captured in our composite indices (e.g. metals), the response also likely

captures second-round effects.

Panels E and H further show the responses of goods and services inflation. Services inflation

is structurally higher than goods inflation, as it benefits less by productivity growth, but is much

less volatile. The response of both is significant and persistent for demand developments, but

naturally more pronounced for goods. Goods inflation also responds to supply developments,

about half as strongly as to demand developments, while services inflation has a very weak

response to supply developments. It should be noted that energy is classified under services

in CPI, and so services inflation differs from core inflation. At the same time, a larger chunk

of goods CPI is composed of commodities than services CPI, which can also account for the

different responses.
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FIGURE 9. CPI Inflation Response to Composite Developments

(a) Headline - Supply (b) Headline - Demand

(c) Core - Supply (d) Core - Demand

(e) Goods - Supply (f) Goods - Demand

(g) Services - Supply (h) Services - Demand

Note: Log CPI response following a one unit increase in contemporaneous composite net supply and net demand, up to an 18-

month horizon (90% and 95% CI). The response is normalized to a shock that raises the GSCI by 10% in 12 months. The teal

dashed lines show significance bands for the test that all coefficients of interest are jointly zero, as in Jordà (2023). Controls:

industrial production log change, S&P 500 log returns, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar

log returns. Each specification also includes a constant and 13 lags of log CPI. COVID corrections using a COVID dummy and

rescaling of the indices for January-April 2020. Sample: March 2001-July 2023.33



FIGURE 10. CPI Goods Inflation Response to Commodity Developments

(a) Goods x food - Supply (b) Goods x food - Demand

(c) Food - Supply (d) Food - Demand

Note: Log CPI response following a one unit increase in contemporaneous composite net supply and net demand, up to an 18-
month horizon (90% and 95% CI). The response is normalized to a shock that raises the GSCI by 10% in 12 months. The teal
dashed lines show significance bands for the test that all coefficients of interest are jointly zero, as in Jordà (2023). Controls:
industrial production log change, S&P 500 log returns, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar
log returns. Each specification also includes a constant and 13 lags of log CPI. COVID corrections using a COVID dummy and
rescaling of the indices for January-April 2020. Sample: March 2001-July 2023.

We then turn to considering the response of goods CPI, broken down into food and goods

less food (GLF). The latter accounts for around two thirds of the total goods CPI basket, and is

composed of roughly equal parts of durables and non-durables less food. GLF inflation is more

volatile than food inflation, and so the magnitude of the response to demand developments is

substantially larger and highly persistent (Figure 10). The response of food inflation is more

gradual, peaking at 9 months, and eventually disappears. This disparate behavior can account

for the response of headline CPI inflation to demand developments, which rises fast, plateaus

at 8 months, but does not revert even at 18 months (Figure 9b). For both categories, there

are positive effects from supply as well; for food CPI, in particular, the response to supply

developments is slower than for demand but is persistent, and the overall effect deeper.

Overall our indices provide intuitively reasonable results, showing that our news-reading

method manages to extract information not otherwise available in standard macro controls.

However, it is possible that we are just picking up information already available to economic

agents, which is, however, not embodied yet in time t controls. One way to test this proposition

is to see whether our indices can also "predict" agents’ expectations; if they do, then we are

simply picking up knowledge incorporated into people’s forecasts. As such, we repeat the local
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projection exercise, but instead of regressing future prices on the textual indices, we instead

regress various measures of inflation expectations on the textual indices.

We use three different measures of expectations. The first is a market-based measure from

inflation swaps, as computed by Haubrich, Pennacchi, and Ritchken (2012), and published by

the Cleveland Fed (CLEV). It incorporates expectations for CPI implicit in the bond market. The

second comes from the Survey of Professional Forecasters (SPF), a long survey conducted by

the Philadelphia Fed, and reflects the views of experts. SPF data is given at a quarterly basis, and

we use interpolated monthly measures of annual growth rates, for both CPI and PCE inflation.

The third measure comes from the University of Michigan Survey of Consumers (MICH), and

is a household measure of inflation expectations. As such, it is not tied to any specific price

basket, and is considered to be a less sophisticated measure of inflation expectations.

The results of this exercise are shown in Table 6. Because expectations data are mostly

available on an annual basis, we do not conduct a full impulse response analysis, and instead

only consider expected inflation over the next 12 months. As such, the baseline comparison

is relative to impulse responses of annual price growth rates, not levels, as in the previous

exercise. These are shown in Column 1 of Panel A, for actual CPI inflation 12 months ahead,

in log growth form. For this exercise, we do not normalize the coefficients, as we only compare

the same variables of interest across models. As before, the response to demand is significant

12 months ahead; for supply, the coefficient has a p-value for 0.133, and, as we saw before,

a test of joint-significance will reject the null for h = 12. Column 2 shows results for the

SPF measure. Both coefficients are at least an order of magnitude smaller, and not significant.

Column 3 shows results for the SPF measure 12 months ahead, i.e., t+24 inflation expectations

of professional forecasters formed at time t+12. Interestingly, the response is much larger in

this case, suggesting a delayed response to the information picked up by our indices. Columns

4 and 5 repeat these exercises for CLEV, and the results are very similar; essentially no effect

for t+12 expectations at t, and a much larger effect for t+24 expectations at time t+12, though

still much smaller than the baseline effect on CPI growth.

Panel B repeats this exercise for PCE inflation, which is only available in SPF, and also

provides results for MICH, which is not specific to any particular price basket. The results

are very much the same. For completeness, Panels C and D repeat the previous two exercises

removing the high inflation sample which began in the COVID era, and where expectations

were highly anchored, hence vastly underpredicting actual inflation. However, the results are

very similar with the full sample. Overall, the message from Table 6 is that our indices contain

information about future inflation not included in measures of inflation expectations derived

from financial prices or inflation expectations of professional forecasters and consumers.
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TABLE 6. News Indices and Inflation Expectations

(1) (2) (3) (4) (5)

Panel A - CPI
Baseline SPF F12 SPF Clev F12 Clev

NetDemand 0.885∗∗∗ -0.0334 0.150∗∗ 0.0493 0.147
(4.40) (-0.68) (3.18) (0.65) (1.96)

NetSupply 0.378 0.0115 0.0340 0.00310 0.0644
(1.51) (0.33) (0.85) (0.06) (0.66)

N 257 266 259 266 259

Panel B - PCE and Consumers
Baseline SPF F12 SPF Michigan F12 MICH

NetDemand 0.314∗∗∗ -0.0539 0.124∗∗ -0.0598 0.0711
(4.23) (-0.94) (3.29) (-0.50) (1.03)

NetSupply 0.162∗ 0.00796 0.0361 -0.00314 0.0563
(2.04) (0.19) (0.96) (-0.03) (0.86)

N 257 197 202 266 257

Panel C - CPI, Until 2019
Baseline SPF F12 SPF Clev F12 Clev

NetDemand 0.894∗∗∗ -0.0339 0.128∗∗ 0.0215 0.162
(3.80) (-0.65) (2.97) (0.30) (1.74)

NetSupply 0.340 -0.0261 0.0112 -0.0593 0.0450
(1.39) (-0.82) (0.31) (-1.20) (0.46)

N 224 224 224 224 224

Panel D - PCE and Consumers, Until 2019
NetDemand 0.254∗∗ -0.102∗ 0.118∗∗ -0.0254 0.0571

(3.19) (-2.04) (3.11) (-0.16) (0.65)

NetSupply 0.112 -0.0191 0.0123 -0.0865 0.0354
(1.62) (-0.46) (0.43) (-0.70) (0.57)

N 224 155 167 224 224
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table reports coefficients from a one standard-deviation increase in contemporaneous composite supply and demand
developments. The dependent variable in the baseline column is the annual log growth rate of CPI or PCE, 12 months ahead, as
indicated. In columns 2 and 4, the dependent variable is expected inflation at t+12, as of time t, according to the indicated measure.
In columns 3 and 5, the dependent variable is expected inflation at t+24, as of t+12. SPF=Survey of Professional Forecasters;
Clev=market-implied expectations from Haubrich, Pennacchi, and Ritchken (2012); MICH=Michigan consumer survey. Controls:
industrial production log change, S&P 500 log change, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar
log change. Each specification also includes a constant and 13 lags of log CPI. COVID corrections using a COVID dummy and
rescaling of the indices for January-April 2020. Sample: March 2001-July 2023.

7. DRIVERS OF COMMODITY PRICE FLUCTUATIONS

The applied methodology allows us to dig deeper in the assessment of the commodity supply

and demand implications for inflation. We employ two of the thematic drivers of Mouabbi,

Passari, and Rousset Planat (2024), the Business Cycle and the Natural Disaster indices. The
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drivers have been named after the important determinants that have affected commodity markets

since the beginning of the 21st century (the driver selection has been driven by information

sampled from the IMF commodity reports published between 2000 and 2021). The original

indices have been purposely built according to a semi-supervised approach that uses dictionaries

sampled from authoritative texts, similar to Engle, Giglio, Kelly, Lee, and Stroebel (2020).

Building these indices requires more detailed information to be extracted from the business

news articles. As such, issues that relate to the sparsity of the text-based indicators might occur.

Given that the volume of the sentences that combine a commodity instance with a supply or

demand development and an underlying driver is low, we employ the driver indicators at the

monthly frequency as single unconditional measures sampled independently from supply and

demand dynamics.

We consider how these drivers interact with our main indices. To do so, and keeping in mind

the sparsity concerns mentioned earlier, we transform them to define different regimes. Specif-

ically, we convert the commodity driver indicators of Mouabbi, Passari, and Rousset Planat

(2024) to dummy variables defined by the median value of the original series. We thus define

four distinct regimes; a high-recession regime, a low-recession regime, a regime characterized

by the presence of severe natural disasters and a regime characterized by the absence of severe

natural disasters. We then interact these regimes with the supply and demand indicators.

We then conduct in-sample estimation of year-on-year inflation growth on the disaggregated

supply and demand indicators, the driver dummy, and the interaction of each disaggregated

supply and demand component with the regime-dummy (one-at-a-time) across horizons. Our

analysis spans the three-month, six-month, one-year and 18-month horizons and reveals hetero-

geneous patterns.

Table 7 shows that an increase in demand is inflationary, especially in the short run, and

a decrease in demand is deflationary. However, during a recession their effect on inflation is

generally more muted and transitory; it is more pronounced and persistent in normal times.

In contrast, the inflationary effect of demand increases and the deflationary effect of demand

decreases are both exacerbated under the presence of severe natural disasters.

Increases in supply are generally deflationary, regardless of the regime, and these effects do

not change much across regimes and occasionally get amplified. On the other hand, the effect of

supply decreases is substantially affected by the business cycle; it is highly inflationary only in

a recessionary environment or in the presence of natural disasters in the short-term; the overall

effect appears muted when the different regimes are not taken into account.

It is important to note that the amplification effect of natural disasters in supply is on top of

the impact of the COVID-19 pandemic, as the latter is controlled for across specifications. The

COVID-19 dummy is significant across horizons and the size of its coefficient grows monoton-

ically through time.
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TABLE 7. Commodity Developments and Drivers

(1) (2) (3) (4) (5) (6) (7) (8)

Business Cycle Natural Disaster
h=3 h=6 h=12 h=18 h=3 h=6 h=12 h=18

Driver 0.210 0.555 0.531 -0.478 -0.230 -0.057 0.602 0.583
(0.70) (1.44) (1.30) (-0.86) (-0.89) (-0.20) (1.36) (1.60)

DI 0.536∗∗∗ 0.641∗∗∗ 0.427 0.002 0.700∗∗∗ 0.571∗∗∗ -0.110 0.001
(3.43) (3.07) (1.58) (0.01) (4.27) (3.22) (-0.36) (0.01)

DD -0.218 -0.828∗∗∗ -1.522∗∗∗ -0.814 -0.328∗∗∗ -0.497∗∗∗ -0.610∗∗ -0.876∗∗∗
(-1.18) (-2.95) (-3.64) (-1.52) (-2.63) (-3.06) (-2.22) (-3.32)

SI 0.063 -0.054 -0.307∗ -0.616∗∗∗ -0.077 -0.240∗∗ -0.361∗∗∗ -0.196
(0.72) (-0.46) (-1.71) (-2.73) (-0.89) (-2.40) (-2.71) (-1.44)

SD -0.377∗∗∗ -0.346∗ -0.221 0.142 -0.076 -0.005 0.067 -0.107
(-2.73) (-1.85) (-0.90) (0.50) (-0.64) (-0.03) (0.27) (-0.71)

DI -0.440∗ -0.239 0.051 0.410 -0.481 0.104 0.888∗∗ 0.009
× Driver (-1.76) (-0.77) (0.15) (0.88) (-1.48) (0.26) (2.16) (0.03)

DD -0.501∗ -0.068 1.276∗∗ 1.053∗ -0.623∗ -0.888∗∗ -0.352 1.173∗∗∗
× Driver (-1.79) (-0.20) (2.49) (1.79) (-1.95) (-2.60) (-1.01) (3.33)

SI -0.294∗ -0.129 -0.233 0.402 -0.002 0.525 -0.046 -1.058∗∗∗
× Driver (-1.71) (-0.63) (-0.62) (0.90) (-0.01) (1.62) (-0.15) (-3.77)

SD 1.199∗∗∗ 1.222∗∗∗ 0.883∗∗ -0.281 0.779∗∗∗ 0.598∗ -0.019 -0.226
× Driver (4.00) (3.75) (2.29) (-0.66) (2.64) (1.80) (-0.05) (-0.72)

COVID 0.756∗ 1.611∗∗∗ 3.387∗∗∗ 4.358∗∗∗ 0.973∗ 2.001∗∗∗ 3.522∗∗∗ 3.899∗∗∗
(1.72) (2.72) (4.92) (13.83) (1.92) (3.18) (5.08) (19.00)

N 266 263 257 251 266 263 257 251

Note: The table shows results from regressing year-on-year inflation across different monthly horizons, on the
drivers and their interaction with the indices. The Drivers are dummies equal to one for above-median values
of the respective driver. The indices are denoted as: DI=Demand Increase; DD=Demand Decrease; SI=Supply
Increase; SD=Supply Decrease. Controls are: industrial production log monthly change, S&P 500 log monthly
returns, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar monthly log returns. Sample:
March 2001-July 2023. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

The results of the analysis hold true also when one focuses on the sub sample that excludes

the COVID-19 period. Table 8 conveys a very similar message in terms of significance, sign

and magnitude of the reported coefficients.

8. DECOMPOSING THE 2021-2023 INFLATION SHOCK

In a final exercise, we use our indices to account for the drivers of the 2021-2023 inflation

shock. In particular, we use the framework of Blanchard and Bernanke (2023) to decompose

the sources of inflationary pressures into their most salient possible sources: energy, food, labor

market tightness, and supply shortages. Energy and food prices picked up a steep upward trend

after the first few months of the COVID shock, likely due to a combination of rising global

demand and continued supply constraints, and rose further following the Russian invasion of

Ukraine. At the same time, the labor market became increasingly tight, with the vacancy rate

rising to unprecedented levels, on the back of a large fiscal expansion and accommodating mon-

etary policy. In turn, supply shortages are crucial to account for the various shocks to the global

distribution system, which affect various types of commodities and processed goods.
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TABLE 8. Commodity Developments and Drivers

(1) (2) (3) (4) (5) (6) (7) (8)

Business Cycle Natural Disaster
h=3 h=6 h=12 h=18 h=3 h=6 h=12 h=18

Driver -0.459∗∗ -0.258 0.089 0.141 -0.204 0.205 1.016∗∗ 0.598∗
(-1.98) (-0.85) (0.22) (0.24) (-0.73) (0.92) (2.42) (1.78)

DI 0.431∗∗∗ 0.604∗∗∗ 0.404 -0.076 0.620∗∗∗ 0.571∗∗∗ -0.039 0.041
(3.18) (3.07) (1.57) (-0.21) (3.59) (3.62) (-0.14) (0.24)

DD -0.089 -0.747∗∗∗ -1.495∗∗∗ -0.952∗ -0.434∗∗∗ -0.713∗∗∗ -0.743∗∗∗ -0.859∗∗
(-0.64) (-3.44) (-3.90) (-1.94) (-3.50) (-4.11) (-2.66) (-2.42)

SI 0.104 -0.028 -0.302 -0.629∗∗∗ -0.003 -0.161 -0.360∗∗∗ -0.216
(1.28) (-0.24) (-1.59) (-3.11) (-0.04) (-1.65) (-2.81) (-1.42)

SD -0.362∗∗∗ -0.273∗ -0.173 0.183 -0.047 0.047 0.118 -0.143
(-2.89) (-1.66) (-0.71) (0.68) (-0.42) (0.35) (0.46) (-0.97)

DI 0.057 0.096 -0.018 0.298 -0.244 -0.021 0.261 -0.162
× Driver (0.27) (0.36) (-0.05) (0.61) (-0.95) (-0.07) (0.71) (-0.41)

DD -0.566∗∗ 0.141 1.520∗∗ 0.921∗ -0.597∗∗ -0.568 -0.286 1.145
× Driver (-2.31) (0.50) (2.46) (1.82) (-2.05) (-1.55) (-0.90) (1.51)

SI -0.159 0.033 0.030 0.545 0.047 0.475 0.254 -0.888∗∗
× Driver (-0.91) (0.14) (0.07) (1.23) (0.22) (1.57) (0.91) (-2.38)

SD 0.871∗∗∗ 0.815∗∗∗ 0.734∗ -0.382 0.543∗∗ 0.103 -0.534∗ -0.203
× Driver (2.92) (2.92) (1.91) (-0.85) (2.03) (0.51) (-1.73) (-0.74)

N 266 263 257 251 266 263 257 251

Note: The table shows results from regressing year-on-year inflation across different monthly horizons, on the
drivers and their interaction with the indices. The Drivers are dummies equal to one for above-median values
of the respective driver. The indices are denoted as: DI=Demand Increase; DD=Demand Decrease; SI=Supply
Increase; SD=Supply Decrease. Controls are: industrial production log monthly change, S&P 500 log monthly
returns, FFR, 10-year minus 2-year US treasury, VIX, trade-weighted US dollar monthly log returns. Sample:
March 2001-December 2019. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

The added value of our indices is in providing a structured measure of shortages. Blanchard

and Bernanke (2023) use measures of shortages from Google Trends, which can be useful in

measuring specific types of shortages crucial for the period under study, such as cars and chips.

On the other hand, because Google Trends are essentially a measure of salience, they reflect

perceived, rather than actual shortages. Moreover, such observational measures confer a market

equilibrium view, and cannot disentangle supply from demand. Our measures instead cannot

exactly pinpoint specific goods and are restricted to raw materials, but can provide a distinct

measure of supply constraint (in particular, supply decrease).

We provide a brief description of the model and the econometric exercise, maintaining the

original notation of Blanchard and Bernanke (2023). The model boils down to four equations.

The wage equation is given as follows:

∆wt = (pet − pt−1) + α(pt−1 − pet−1) + β(xt − αxt−1) + zwt , (8)

where t is the time subscript, w is the log nominal wage, pe is the expected log price level, p

the actual log price level, x is a measure of labor market tightness, and zw a contemporaneous

shock. The parameter α (∈ [0, 1]) captures the desired "catch-up" of workers to previous losses
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to their purchasing power. With α=0, previous price surprises and previous labor market condi-

tions do not matter in wage demands. Higher values of α imply that nominal wage growth will

depend on the level and the change in tightness and price surprises, and so lead to higher wage

pressures following a series of price shocks.

The price equation is given by:

∆pt = ∆wt +∆zpt , (9)

where zp reflects various price shocks. As prices depend on unit labor costs, not simply

wages, the empirical implementation also includes labor productivity.

Finally, the model also includes short-term and long-term measures of inflation expectations,

given by

pet − pt−1 = δπ∗
t + (1− δ)∆pt−1, (10)

and

π∗
t = γπ∗

t−1 + (1− γ)∆pt−1, (11)

respectively, where ∗ are long-run expectations. Short-run expectations are a weighted av-

erage of long-run expectations and short-run price changes, where the degree of anchoring is

given by the δ and γ parameters.

The four equations determine the four endogenous variables, pt, wt, pet , and π∗
t . We follow

exactly the empirical formulation of Blanchard and Bernanke (2023), using their code and data.

The sample is from 2001Q1-2023Q1.

The wage and expectations equations are estimated until 2019Q4, with the exception of the

price equation. Blanchard and Bernanke (2023) do this to preserve meaningful variation in their

shortage measure. We go one step further and allow for a structural break in the shortage coef-

ficients in the price equation. In particular, we add a full interaction of the shortage measures

with a COVID dummy, equal to 1 for the 2020Q1-2023Q1 period. The muted inflation environ-

ment of the preceding two decades meant that aggregate prices responded little to shortages, and

assuming constant coefficients vastly underestimates the true forces during the present episode.

Blanchard and Bernanke (2023) are not affected by this concern because their indicator, which

measures perceived shortages, is essentially constant near zero for the pre-pandemic period.

The other exception of course lies in the use of different shortage indicators. We use our supply

decrease measure, which directly captures the essence of shortages.

Each estimated equation includes four lags of each endogenous and exogenous variable. The

implicit restriction used to identify the parameters of interest is that wage growth is affected

by all other variables with one lag. Price inflation is affected contemporaneously by wage

inflation, not expectations, and both affect expectations contemporaneously. As Blanchard and
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Bernanke (2023) note, this setup is akin to a structural vector autoregression framework with

exogenous variables: tightness (vacancies to unemployment), labor productivity (eight-quarter

moving average of value added over employment), food and energy inflation (quarterly log

growth of respective CPI index), and the supply decrease index. The price measure is the log

CPI index, the wage measure is the nominal employment cost index, and the short- and long-run

inflation expectations are the 1- and 10-year expectation measures of the Cleveland Fed.

We use the estimated coefficients to estimate the historical decomposition of each of the

exogenous variables for the 2020Q1-2023Q1 period, taking as a given previous values. The

results of this exercise are shown in Figure 11 below. The left panel replicates the original

Blanchard and Bernanke (2023) exercise, with the Google Trends shortage indicator, in the

2001Q2-2023Q1 sample, while the original sample starts in 1990, in order to compare our

results on an equal footing. The right panel shows the decomposition using our supply decrease

measure. Results are by and large quite similar, with our measure showing a somewhat more

persistent contribution of supply following a large initial shock in 2021Q2, at the expense of

a slightly smaller contribution from energy, but predominantly a lower contribution of initial

conditions and productivity. We also find that continued shortages did marginally contribute to

abating the fall in inflation in 2022.

FIGURE 11. Decomposition of pandemic inflation

(a) Google shortage measure (b) Supply decrease index

Note: Decomposition of quarterly annualized CPI inflation using the framework of Blanchard and Bernanke (2023). The continuous
black lines show actual inflation, and the stacked bars the contribution of each external variable, without including residuals. Initial
conditions show the contribution of pre-pandemic data and the productivity variable.

The main message is, however, the same as Blanchard and Bernanke (2023): the primary

drivers of inflation during that period were to be found in energy and food prices, and shortages.

Our contribution is to confirm their results using a supply based measure of shortages, stripped

from demand factors. It should be noted that our supply decrease measure is aggregate, and

derived from a wide variety of global commodity markets, including energy- and food-related

commodities. As such, one concern may be that we are simply picking up the correlation of

food and energy inflation with our supply based measure of shortages, and not a true measure of
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shortages. However, the correlation of our supply decrease measure with food and energy prices

is not high, and is in fact negative (with energy) for part of the sample. By contrast, it is quite

high (over 60%) with the Google Trend shortage measure, suggesting that we do successfully

manage to catch a distinct part of supply chain disruptions. Indeed, to the extent that we can

capture markets less salient to consumers, and hence less likely to be searched, our measure can

give a broader measure of aggregate shortages.

9. CONCLUDING REMARKS

In this paper, we employ a computer-based, narrative approach that builds on the work of

Mouabbi, Passari, and Rousset Planat (2024) for the analysis of inflation as emanating from

developments in commodities. By leveraging the rich informational content of business news,

we distinguish between demand- and supply-side drivers of commodity price movements and

their respective impacts on future inflation, controlling for widely-used predictors. Our findings

point to the dominant role of demand-side developments as inflation drivers. Nonetheless, we

also document a notable increase in the significance of supply-side shocks under certain condi-

tions, particularly in recent years. The COVID-19 pandemic, in particular, has introduced new

complexities in understanding the relationship between commodity prices and inflation.

We find that our indices play a crucial role in enhancing out-of-sample forecasts of inflation

by significantly reducing forecast errors. These indicators not only facilitate an understanding of

the persistence of shocks generated by various commodity drivers, but they also offer substantial

incremental information beyond that provided by commodity returns alone. This underscores

the importance of analyzing supply and demand side factors independently, given the varying

persistence they may exhibit. The text-based commodity demand and supply measures also

demonstrate robust performance across different economic regimes, including periods charac-

terized by declining, stable, and rising headline inflation. The employed framework has the

additional benefit of catering to the forecasting of inflation components via the mapping of in-

dividual commodities to different inflation baskets, yielding further forecasting improvements.

Furthermore, narratively dissecting the drivers of commodity supply and demand provides novel

insights regarding the magnitude and persistence of the pass-through effect to inflation. Notably,

we illustrate the utility of the narrative indicators in decomposing the inflationary drivers during

the pandemic era, thereby providing valuable contributions to the empirical understanding of

inflation dynamics in unprecedented economic conditions.

The interplay of global supply chain disruptions and substantial fiscal stimulus, compounded

by the geopolitical ramifications of Russia’s invasion of Ukraine, has precipitated multi-decade

highs in annual inflation indicators, necessitating a rigorous analysis of the underlying inflation

dynamics. In this context, the growing literature that utilizes advancements in computational

linguistics to analyze economic narratives is emerging as a promising avenue for deepening our
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understanding of the complexities inherent in inflationary behaviors. While additional research

in this domain is essential, the implications for monetary policy could be significant. Our fore-

casting exercise, while intentionally straightforward and parsimonious, demonstrates that the in-

dices developed herein yield considerable forecasting improvements compared to conventional

autoregressive and moving average benchmarks. The real-time applicability of this framework

allows for its integration into existing forecasting methodologies employed by central banks,

thereby enhancing the precision and responsiveness of inflation predictions.
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APPENDIX A. ADDITIONAL FIGURES

FIGURE A1. Crude Oil Index: Standardized Net supply and Standardized Net
Demand Share of Total Number of Words per Month
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[A] OPEC cuts output to lift oil prices following US 2001 recession. [B] 118th OPEC Meeting, production cut
following US economic slowdown & 9/11. [C] OPEC to raise output quotas (131st E.M.). [D] OPEC pumps
at 25-year highs to cater for high demand expected from China. [E] 150th & 151st OPEC E.M.: production
cut (GFC). [F] Faster than expected recovery of Libyan oil production & unaffected Iraq production: perceived
glut. [G] Worries about oversupplied oil market (Chinaâs slowdown); Middle East producers pump crude at
record levels. [H] OPEC 171st Meeting: OPEC & non-OPEC to cut output for first time in 8 years. [I] OPEC+
extended cuts in oil output to battle global glut. [J] US record oil production: oversupply worries. [K] OPEC
to raise oil production amid calls from top consumers to cool prices & support world economy. [L] OPEC
production cuts & US sanctions on Iranian and Venezuelan crude. [M] COVID-19. [N] Winter storm in Texas
causes US crude production drop. [O] Global economy and oil demand recover faster than expected following
vaccination. [P] The US announces release of millions of barrels from strategic reserves in coordination with
China, India, South Korea, Japan & Britain, to cool prices. [Q] Subsiding recession risks in major economies
& reopening of China’s economy boost demand. [R] Surprise decision by OPEC+ to cut output (48th JMMC).
Source: Mouabbi, Passari, and Rousset Planat (2024)
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FIGURE A2. Wheat Index: Standardized Net supply and Standardized Net De-
mand Share of Total Number of Words per Month
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[A] Severe drought in Canada cuts wheat production by more than 25%. Worrisome dry weather in Australia &

US Northern Plains. [B] Hot & dry weather trims European output & Canada’s crop. [C] Ample world wheat

supplies amid bumper crops. [D] Due to heatwave Russia bans exports of wheat; Ukraine imposes export quotas.

[E] Dry weather stresses crops in Plains; wet weather slows wheat seedings in northern Plains. [F] Weather sparks

worries about world supply. [G] Prospects of strong demand from China. [H] Sluggish demand for US supplies due

to China’s policy shift that favors other grains. [I] Dry weather in US northern Plains threatens crops. [J] Severe

drought in Europe cuts harvests. [K] Resuming trade talks between China & the US boosts higher wheat demand.

[L] Abundant world supplies due to crop-friendly weather in key areas. [M] China & the US reach phase one trade

deal. [N] Covid-19 cause panic shoppers around the world to stock up on wheat-based items. [O] Strong demand

from China following trade deal with the US. [P] Improved US wheat condition ratings. [Q] Above-average global

yield expectations pressures wheat markets. [R] Adverse weather conditions & reduced expectations for Russia’s

harvest. [S] Easing fears of global recession & renewed import demand. [T] US winter crop ratings fall amid

droughts; hot weather curbs India’s production.

Source: Mouabbi, Passari, and Rousset Planat (2024)

APPENDIX B. DICTIONARIES

In this Appendix we provide the list of supply and demand words used for the creation of the

“global” commodity index and the indices for crude oil, natural gas an wheat. We also present

the standard list of increase and decrease words which is common across commodities.

Table B1 to Table B3 present the list of roots of words we use to search for supply and demand

related expressions for the construction of the “global” commodity index as well as the indices
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that aim to capture individual commodities. Our results our robust to using both words and

lemmas.

Table B4 and Table B5 present the list of roots of increase and decrease words.

TABLE B1. Supply and demand words: Global Commodity Index

Supply
suppl* produc* output

Demand
demand* consum* buy* purchas*

Source: Mouabbi, Passari, and Rousset Planat (2024)

TABLE B2. Supply and demand words: Crude Oil

Supply
suppl* produc* output discovery glut*
reserv* surplus* rig*

Demand
demand* consum* buy* util* drain*
deplet* refin*

Source: Mouabbi, Passari, and Rousset Planat (2024)

TABLE B3. Supply and demand words: Wheat

Table B4: Supply and demand words
Wheat
Supply

suppl* produc* output crop*
planting* farm* harvest*

Demand
demand* consum* buy* purchas*

flour* feed* miller*

Source: Mouabbi, Passari, and Rousset Planat (2024)
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TABLE B4. Increase words

accru* climb* improve* rais* soar*
accumulat* elevat* increas* rall* spik*

add* enlarg* inflat* reach* spring*
advanc* escalat* jackup* rebuil* spurt*

augment* expand* jump* recoup* strengthen*
bolster* firm* leap* recover* surg*
boom* gain* lift* regain* surpass*
boost* grow* perk* resurgenc* swell*
buil* heigh* pickup reviv* up*

bullish* high* pop* ris*
buoyant* hik* propell* *rocket*

Source: Mouabbi, Passari, and Rousset Planat (2024)

TABLE B5. Decrease words

abat* dent* evaporat* pullback* slump*
bearish* depress* fad* reced* small*
below deteriorat* fall* reduc* squeez*

collaps* diminish* falter* restrict* stumbl*
compress* dip* halt* retre* sub*
contract* disappear* landslid* sink* suppress*

crash* disappoint* less* short* suspend*
crimp* disrupt* los* shrink* tank*
crush* div* low* shut* tap*
curtail* down* meltdown* slack* tight*

cut* drawdown* nosediv* slash*
dampe* drop* outage* slid*
declin* dwindl* plummet* slip*

decreas* ebb* plung* slow*

Source: Mouabbi, Passari, and Rousset Planat (2024)
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APPENDIX C. ADDITIONAL TABLES

TABLE C1. Forecast performance (RMSE), Core CPI inflation, Pre-COVID

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.302 1.130 1.054 1.075 1.066 0.961 1.050
h=6 0.496 1.059 1.023 1.025 1.045 0.976 1.051
h=3 0.608 1.036 1.015 1.011 1.070 1.032 1.100

Controls, Autoregressive
h=12 0.339 1.090 1.027 1.056 1.131 1.045 1.117
h=6 0.531 1.061 1.022 1.038 1.086 1.029 1.065
h=3 0.627 1.068 1.035 1.033 1.097 1.098 1.157

IMA
h=12 0.304 1.084 1.016 1.059 1.027 0.919 0.984
h=6 0.505 1.025 0.996 1.009 1.007 0.949 0.987
h=3 0.652 1.010 0.994 0.999 1.034 1.004 1.053

Controls, IMA
h=12 0.336 1.032 1.001 1.019 1.073 0.971 1.026
h=6 0.512 1.025 1.001 1.018 1.055 0.984 1.004
h=3 0.629 1.028 1.008 1.014 1.060 1.066 1.093

Panel B: with commodities

Autoregressive
h=12 0.306 1.144 1.053 1.083 1.077 0.956 1.066
h=6 0.498 1.062 1.023 1.027 1.054 0.977 1.060
h=3 0.607 1.034 1.014 1.012 1.073 1.032 1.100

Controls, Autoregressive
h=12 0.344 1.077 1.027 1.051 1.118 1.044 1.107
h=6 0.537 1.060 1.023 1.039 1.082 1.027 1.062
h=3 0.627 1.064 1.037 1.033 1.096 1.098 1.153

IMA
h=12 0.303 1.084 1.015 1.062 1.030 0.917 0.986
h=6 0.504 1.024 0.995 1.011 1.009 0.949 0.989
h=3 0.651 1.014 0.999 1.002 1.031 1.009 1.049

Controls, IMA
h=12 0.335 1.021 1.002 1.006 1.056 0.981 1.023
h=6 0.513 1.026 1.003 1.018 1.051 0.988 1.009
h=3 0.630 1.030 1.011 1.016 1.054 1.067 1.092

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of Core CPI inflation across different monthly horizons, using the composite
commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the baseline.
Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes net demand;
model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply decrease; and model
6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive specification is
given by (7), and IMA specifications further include MA terms of order 2. Each specification includes some of our indexes,
as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR,
10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B also includes log monthly
change in commodity prices. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE C2. Forecast performance (RMSE), Core CPI inflation

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.645 0.998 1.007 0.985 0.976 0.997 0.983
h=6 0.891 1.011 1.000 1.008 0.989 0.976** 1.000
h=3 1.407 1.009 0.997 1.009 0.997 1.003 1.017

Controls, Autoregressive
h=12 0.633 1.011 1.009 0.999 1.016 1.026 1.016
h=6 0.887 1.010 0.997 1.011 1.015 1.021 1.033
h=3 1.476 1.016 1.003 1.012 1.029 1.016 1.044

IMA
h=12 1.146 0.901 0.948 0.935 0.923 0.888 0.835
h=6 1.207 0.935 0.948 0.973 0.974 0.925 0.913
h=3 1.615 0.949 0.959 0.985 0.990 0.932 0.935

Controls, IMA
h=12 0.900 0.938 0.979 0.955 0.961 0.972 0.922
h=6 1.055 0.962 0.982 0.978 0.985 0.988 0.960
h=3 1.475 0.980 0.986 0.989 0.991 0.995 0.978

Panel B: with commodities

Autoregressive
h=12 0.619 1.023 1.010 1.009 0.998 0.994 1.005
h=6 0.877 1.010 1.002 1.006 0.990 0.974** 0.997
h=3 1.373 1.005 0.997 1.006 0.993 1.001 1.013

Controls, Autoregressive
h=12 0.623 1.027 1.010 1.017 1.034 1.027 1.036
h=6 0.871 1.025 1.005 1.021 1.026 1.029 1.047
h=3 1.453 1.012 1.004 1.009 1.021 1.016 1.037

IMA
h=12 1.146 0.898 0.946 0.934 0.920 0.886 0.832
h=6 1.208 0.931 0.947 0.972 0.971 0.925 0.914
h=3 1.606 0.948 0.961 0.983 0.987 0.937 0.924

Controls, IMA
h=12 0.892 0.943 0.983 0.959 0.966 0.978 0.929
h=6 1.049 0.968 0.987 0.982 0.992 0.995 0.971
h=3 1.425 0.991 0.993 0.997 1.004 0.992 0.984

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of Core CPI inflation across different monthly horizons, using the composite
commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the baseline.
Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes net demand;
model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply decrease; and model
6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive specification is
given by (7), and IMA specifications further include MA terms of order 2. Each specification includes some of our indexes,
as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR,
10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B also includes log monthly
change in commodity prices. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE C3. Forecast performance (RMSE), Core PCE inflation, Pre-COVID

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.294 0.948 1.006 0.893 0.918 0.901 0.873
h=6 0.438 1.000 0.995 0.977 1.010 0.943 1.009
h=3 0.569 1.050 0.977 1.033 1.059 0.970 1.081

Controls, Autoregressive
h=12 0.278 0.979 1.053 0.923 0.982 1.034 1.023
h=6 0.445 1.025 1.023 1.003 1.028 1.008 1.041
h=3 0.586 1.088 1.072 1.029 1.054 1.083 1.134

IMA
h=12 0.296 0.893 0.996 0.872 0.866 0.887 0.791*
h=6 0.436 0.957 1.005 0.948 0.962 0.947 0.939
h=3 0.581 0.987 0.978 0.984 0.984 0.937 0.992

Controls, IMA
h=12 0.292 0.920 1.013 0.894** 0.943 0.947 0.910
h=6 0.422 0.973 0.997 0.969** 0.989 0.961 0.974
h=3 0.562 1.025 1.034 0.999 0.986* 1.025 1.035

Panel B: with commodities

Autoregressive
h=12 0.289 0.987 1.013 0.933 0.946 0.911 0.900
h=6 0.430 1.014 1.002 0.995 1.026 0.949 1.020
h=3 0.543 1.049 0.983 1.039 1.063 0.968 1.074

Controls, Autoregressive
h=12 0.277 1.015 1.058 0.954 0.997 1.037 1.035
h=6 0.440 1.044 1.027 1.017 1.042 1.010 1.058
h=3 0.563 1.100 1.081 1.032 1.064 1.094 1.145

IMA
h=12 0.295 0.897 0.994 0.877 0.870 0.885 0.792*
h=6 0.436 0.955 1.000 0.947 0.958 0.942 0.936
h=3 0.562 1.001 0.975 0.995 0.992 0.943 1.001

Controls, IMA
h=12 0.289 0.946 1.029 0.906* 0.947 0.972 0.916
h=6 0.420 0.986 1.001 0.976** 0.991 0.974 0.985
h=3 0.534 1.047 1.039 1.019 1.009 1.024 1.059

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of Core PCE inflation across different monthly horizons, using the composite
commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the baseline.
Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes net demand;
model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply decrease; and model
6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive specification is
given by (7), and IMA specifications further include MA terms of order 2. Each specification includes some of our indexes,
as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR,
10-year minus 2-year US treasury, VIX, trade-weighted US dollarlog monthly change. Panel B also includes log monthly
change in commodity prices. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE C4. Forecast performance (RMSE), Core PCE inflation

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 0.467 0.922 0.989 0.910* 0.910* 0.974 0.898*
h=6 0.678 0.989 0.986 0.992 1.013 0.975** 1.025
h=3 0.990 1.007 0.975 1.018 1.033 0.973 1.042

Controls, Autoregressive
h=12 0.438 0.945 1.010 0.930 0.946 1.022 0.963
h=6 0.645 0.988 0.990 0.995 1.022 1.005 1.033
h=3 0.936 1.023 1.002 1.020 1.062 1.019 1.087

IMA
h=12 0.969 0.893 0.952 0.927 0.902 0.876 0.808
h=6 0.977 0.919 0.953 0.960 0.954 0.920 0.897
h=3 1.234 0.942 0.950 0.983 0.979 0.914 0.910

Controls, IMA
h=12 0.689 0.911 0.983 0.923 0.923 0.974 0.896
h=6 0.783 0.932 0.976 0.952 0.951 0.978 0.933
h=3 1.091 0.964 0.986 0.976 0.966 0.977 0.946

Panel B: with commodities

Autoregressive
h=12 0.434 0.968 0.996 0.953 0.945 0.978 0.938
h=6 0.656 1.003 0.991 1.006 1.027 0.978** 1.035
h=3 0.930 1.012 0.978 1.026 1.036 0.973* 1.046

Controls, Autoregressive
h=12 0.429 0.980 1.016 0.964 0.972 1.026 0.991
h=6 0.636 1.011 1.000 1.013 1.039 1.012 1.054
h=3 0.896 1.032 1.008 1.027 1.061 1.024 1.090

IMA
h=12 0.969 0.894 0.951 0.929 0.902 0.873 0.807
h=6 0.978 0.919 0.951 0.961 0.952 0.919 0.897
h=3 1.165 0.955 0.951 0.996 0.995 0.945** 0.944

Controls, IMA
h=12 0.683 0.919 0.989 0.928 0.928 0.981 0.900
h=6 0.778 0.938 0.980 0.957 0.955 0.985 0.939
h=3 1.049 0.984 0.988 0.987 0.982 0.969 0.952

Composite Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of Core PCE inflation across different monthly horizons, using the composite
commodity indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the baseline.
Model 1 includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes net demand;
model 4 includes demand increase and demand decrease; model 5 includes supply increase and supply decrease; and model
6 includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive specification is
given by (7), and IMA specifications further include MA terms of order 2. Each specification includes some of our indexes,
as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR,
10-year minus 2-year US treasury, VIX, trade-weighted US dollar log monthly change. Panel B also includes log monthly
change in commodity prices. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE C5. Forecast performance (RMSE) of indices, Energy CPI inflation

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 10.794 0.965 0.979 0.978 0.912 1.077 1.026
h=6 14.697 1.020 1.017 1.000 0.934 1.068 1.026
h=3 19.413 1.060 1.067 1.003 0.994 1.088 1.065

IMA
h=12 10.884 0.95 0.976 0.954 0.854 0.973 0.915
h=6 15.033 0.973 0.979 0.975 0.887 0.962 0.928
h=3 19.843 0.992 0.999 0.977* 0.964* 0.982 0.967

Controls, IMA
h=12 10.282 0.946 0.999 0.947 0.808* 1.004 0.873
h=6 14.156 0.997 0.987 0.992 0.894*** 0.992 0.953**
h=3 19.920 0.984 0.995 0.966* 0.931** 0.999 0.958***

Panel B: with commodities

Autoregressive
h=12 10.057 1.032 1.01 1.031 0.964 1.143 1.072
h=6 14.113 1.072 1.059 1.019 0.986 1.110 1.054
h=3 18.189 1.087 1.071 1.033 1.047 1.092 1.093

IMA
h=12 10.046 0.999 1.009 1.000 0.897 0.983 0.945
h=6 14.443 1.005 1.004 0.994 0.910** 1.002 0.972
h=3 19.466 0.990 1.002 0.984 0.980 1.004 0.978

Controls, IMA
h=12 10.283 0.95 1.002 0.959 0.800** 0.994 0.873
h=6 14.231 1.004 0.994 0.977 0.888*** 0.982 0.947**
h=3 20.392 0.971** 0.989 0.940*** 0.923*** 0.970 0.933***

Energy Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the energy
indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the baseline. Model 1
includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes net demand; model
4 includes demand increase and demand decrease; model 5 includes supply increase and supply decrease; and model 6
includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive specification is given
by (7), and IMA specifications further include MA terms of order 2. Each specification includes some of our indexes,
as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR,
10-year minus 2-year US treasury, VIX, trade-weighted US dollar monthly log returns. Panel B also includes log monthly
change in commodity prices. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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TABLE C6. Forecast performance (RMSE) of indices, Food CPI inflation

horizon baseline (1) (2) (3) (4) (5) (6)
Panel A: without commodities

Autoregressive
h=12 1.242 1.015 1.022 0.990 1.048 0.981 1.019
h=6 1.396 1.037 1.025 1.017 1.027 1.006 1.009
h=3 1.440 1.073 1.054 1.022 1.029 1.049 1.065

IMA
h=12 1.320 0.903* 0.996 0.920 0.943 0.953 0.917
h=6 1.628 0.893 1.007 0.866 0.899 0.993 0.908
h=3 1.783 0.973*** 1.005 0.977 0.955 0.991 0.955***

Controls
h=12 1.021 1.007 1.047 1.011 0.940 0.880 0.854
h=6 1.468 0.982 1.004 0.930 0.954 0.961 0.926
h=3 1.580 1.004 1.013 0.969 0.947 1.009 0.921

Panel B: with commodities

Autoregressive
h=12 1.219 1.079 1.035 1.059 1.004 0.974 1.004
h=6 1.421 1.052 1.015 1.037 1.025 0.998 1.019
h=3 1.489 1.062 1.035 1.024 1.033 1.039 1.069

IMA
h=12 1.215 0.953** 0.999 0.958 0.901 0.955 0.896
h=6 1.578 0.951 0.994 0.955 0.941 0.997 0.945
h=3 1.736 0.994 0.997 1.002 0.980 1.015 0.975**

Controls, IMA
h=12 1.030 0.989 1.037 1.004 0.936 0.881 0.837
h=6 1.459 0.972 1.018 0.930 0.957 0.979 0.939
h=3 1.560 1.001 1.014 0.972 0.944 1.018 0.927

Food Indices
Net Supply X X
Net Demand X X
Supply Increase/Decrease X X
Demand Increase/Decrease X X

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the food
indices. Columns (1)-(6) show the root mean squared error (RMSE) of each forecast relative to the baseline. Model 1
includes as predictors net supply and net demand; model 2 includes net supply; model 3 includes net demand; model
4 includes demand increase and demand decrease; model 5 includes supply increase and supply decrease; and model 6
includes supply increase, supply decrease, demand increase and demand decrease. The autoregressive specification is given
by (7), and IMA specifications further include MA terms of order 2. Each specification includes some of our indexes,
as indicated. Where noted, controls are: industrial production log monthly change, S&P 500 log monthly returns, FFR,
10-year minus 2-year US treasury, VIX, trade-weighted US dollar monthly log returns. Panel B also includes log monthly
change in commodity prices. Newey-West standard errors; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.
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APPENDIX D. TURNING POINTS

TABLE D1. Forecast performance (RMSE) in turning points, CPI inflation

h=12 h=6

Headline Core Headline Core

Fall Incr Stable Fall Incr Stable Fall Incr Stable Fall Incr Stable
Panel A: without commodities

Autoregressive 1.510 0.987 0.849 0.060 0.109 0.086 4.400 1.59 1.436 0.697 0.261 0.212
model 0 0.858 0.378 0.840 1.953 2.313 1.476 0.621 0.969 1.041 1.017 1.174 1.037
model 1 1.057 1.043 0.991 2.049 2.164 1.515 1.035 1.182 1.034 0.991 1.100 1.019
model 2 0.931 0.503 0.744 2.455 1.464 1.495 0.649 1.116 0.924 1.013 1.146 1.002
model 4 0.466 0.729 0.588 2.333 1.563 1.508 0.620 1.245 0.868 1.022 1.206 1.108
model 5 0.637 1.421 0.600 0.992 1.120 0.946 0.553 1.965 1.005 0.981 1.625 0.957
model 6 0.441 0.690 0.661 2.317 1.472 1.336 0.455 1.337 1.046 1.343 1.634 1.252

IMA
model 0 0.858 0.532 0.678 0.909 1.359 0.880 0.734 0.815 0.726 0.739 1.551 0.849
model 1 1.032 1.045 0.934 0.876 1.367 0.960 0.992 0.965 0.943 0.627 1.591 0.878
model 2 0.961 0.594 0.654 0.831 1.406 0.917 0.745 1.130 0.690 0.698 1.596 0.867
model 4 0.466 0.826 0.471 0.406 1.415 0.930 0.727 1.025 0.581 0.673 1.586 0.865
model 5 0.550 1.403 0.568 0.773 1.172 0.809 0.568 1.328 0.782 0.658 1.500 0.849
model 6 0.276 1.184 0.471 0.986 1.187 0.794 0.473 1.428 0.645 0.757 1.509 0.809

Panel B: with commodities

Autoregressive 1.094 1.125 0.613 0.038 0.210 0.131 3.113 1.800 1.391 0.757 0.352 0.236
model 0 0.773 0.322 0.865 2.309 0.938 0.955 0.803 0.552 1.039 1.084 0.957 1.084
model 1 1.074 1.097 0.995 1.112 1.031 1.025 0.982 1.119 1.003 1.033 1.004 1.058
model 2 0.912 0.385 0.722 1.999 0.898 0.913 0.796 0.742 0.911 1.023 0.970 1.009
model 4 0.655 0.999 0.797 1.856 1.014 0.967 0.821 0.784 0.970 0.976 0.959 1.050
model 5 0.999 1.163 1.010 3.925 0.774 0.562 0.958 1.563 1.032 1.180 0.927 0.991
model 6 0.706 0.914 0.995 4.773 0.715 0.751 0.685 0.945 1.182 1.226 0.927 1.066

IMA
model 0 0.717 0.602 0.700 0.939 0.861 0.920 0.795 0.577 0.758 0.665 0.984 0.938
model 1 1.013 1.076 0.956 1.026 0.891 0.928 0.972 0.986 0.904 0.623 0.994 0.965
model 2 0.870 0.562 0.675 1.225 0.865 0.885 0.894 0.843 0.754 0.693 1.013 0.942
model 4 0.647 0.840 0.695 0.907 0.866 0.939 0.939 1.024 0.745 0.696 1.009 0.954
model 5 0.851 1.135 0.788 2.927 0.665 0.455 0.770 1.233 0.864 0.757 0.928 0.862
model 6 0.426 1.166 0.764 4.261 0.646 0.579 0.598 1.065 0.844 0.773 0.894 0.873

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the compos-
ite commodity indices. Each column shows the root mean squared error (RMSE) of each forecast relative to the baseline.
The autoregressive specification is given by (7), and IMA specifications further include MA terms of order 2. Each spec-
ification includes some of our indexes: i) model 0: net supply and net demand; ii) model 1: net supply; iii) model 2: net
demand; iv) model 4: demand increase and decrease; v) model 5: supply increase and decrease; vi) model 6: supply and
demand increase and decrease. Panel B also includes log monthly change in commodity prices and the FFR. Fall: 3-month
moving average % change in inflation negative for at least 5 consecutive months; Incr: same measure positive for at least 5
consecutive months; Stable: neither falling nor rising.
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TABLE D2. Forecast performance (RMSE) in turning points, PCE inflation

h=12 h=6

Headline Core Headline Core

Fall Incr Stable Fall Incr Stable Fall Incr Stable Fall Incr Stable
Panel A: without commodities

Autoregressive 0.906 0.430 0.571 0.119 0.098 0.081 2.437 0.967 0.744 0.142 0.297 0.183
model 0 0.893 0.452 0.876 1.200 0.702 1.326 0.572 1.067 0.991 0.389 1.066 1.118
model 1 0.973 0.819 1.046 1.558 0.691 1.392 1.034 1.112 1.034 0.927 1.076 1.022
model 2 0.871 0.611 0.803 0.463 0.940 1.054 0.594 1.192 0.921 0.553 0.945 1.100
model 4 0.469 0.633 0.629 0.473 0.906 1.022 0.579 1.282 0.831 0.469 0.962 0.991
model 5 0.595 1.388 0.514 1.062 0.971 0.974 0.580 1.748 0.936 0.267 1.563 0.842
model 6 0.485 1.004 0.561 0.443 0.812 1.002 0.386 1.154 1.062 0.132 1.110 1.141

IMA
model 0 0.865 0.371 0.686 0.855 1.175 0.701 0.777 0.642 0.670 0.692 0.993 0.939
model 1 1.011 0.888 0.980 1.173 0.922 0.976 1.071 1.000 1.003 1.393 1.019 1.012
model 2 0.907 0.478 0.698 0.940 1.103 0.788 0.753 0.873 0.656 1.286 0.831 0.985
model 4 0.406 0.769 0.556 0.507 0.787 0.824 0.687 0.849 0.520 0.954 0.746 0.777
model 5 0.572 1.271 0.477 0.328 0.814 0.753 0.668 1.302 0.824 0.487 1.314 0.751
model 6 0.332 1.271 0.417 0.487 0.667 0.715 0.343 1.053 0.703 0.750 0.951 0.806

Panel B: with commodities

Autoregressive 0.656 0.459 0.402 0.051 0.087 0.111 1.798 0.966 0.679 0.116 0.316 0.164
model 0 0.919 0.381 0.928 1.036 1.357 0.798 0.790 0.850 0.950 0.448 0.884 1.094
model 1 1.045 0.988 1.028 1.010 0.896 1.053 0.956 1.121 1.014 0.767 1.066 1.009
model 2 0.880 0.486 0.804 0.948 1.345 0.694 0.889 0.892 0.823 0.716 0.853 1.049
model 4 0.677 0.879 0.848 0.994 1.006 0.952 0.939 0.941 0.889 0.841 0.828 1.115
model 5 0.992 1.132 1.006 1.325 0.534 0.699 0.859 1.600 1.107 0.922 1.057 0.939
model 6 0.800 0.954 0.950 1.445 0.670 0.676 0.724 0.947 1.198 0.534 0.843 1.138

IMA
model 0 0.954 0.379 0.792 1.086 0.878 0.688 0.957 0.427 0.600 0.670 0.757 0.949
model 1 1.156 0.794 1.080 1.325 0.787 0.994 1.090 0.859 0.881 1.007 1.058 0.985
model 2 0.929 0.529 0.811 1.176 0.985 0.669 1.037 0.735 0.586 0.940 0.762 0.993
model 4 0.568 0.871 0.805 1.087 0.824 0.866 1.015 0.814 0.655 1.040 0.761 0.916
model 5 0.970 1.075 0.939 1.446 0.442 0.676 1.001 1.095 0.891 0.822 1.026 0.897
model 6 0.522 1.271 0.761 1.153 0.565 0.568 0.601 0.815 0.981 0.634 0.691 0.945

Note: The table shows results from forecasts of headline CPI inflation across different monthly horizons, using the compos-
ite commodity indices. Each column shows the root mean squared error (RMSE) of each forecast relative to the baseline.
The autoregressive specification is given by (7), and IMA specifications further include MA terms of order 2. Each spec-
ification includes some of our indexes: i) model 0: net supply and net demand; ii) model 1: net supply; iii) model 2: net
demand; iv) model 4: demand increase and decrease; v) model 5: supply increase and decrease; vi) model 6: supply and
demand increase and decrease. Panel B also includes log monthly change in commodity prices and the FFR. Fall: 3-month
moving average % change in inflation negative for at least 5 consecutive months; Incr: same measure positive for at least 5
consecutive months; Stable: neither falling nor rising.
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