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ABSTRACT  

The present study highlights the economic profits of markets’ participants, accumulated 

from the disaggregated forecasts of the stock market’s implied volatility, generated 

from an ensemble modelling architecture. We incorporate six decomposition 

techniques, namely, the EMD, the EEMD, the SSA, the HVD, the EWT and the VMD 

and four different model frameworks that of AR, HAR, HW and LSTM, which are 

tested against a trading strategy. We diverge from quantifying forecast accuracy solely 

on statistical loss functions and report the cumulative returns of short or long exposure 

on roll adjusted VIX futures. The findings show that decomposing a time series into its 

intrinsic modes prior to modelling and forecasting, can result in generating forecast 

gains that are translated into improved profits for trading horizons of 1 to 22 days ahead. 

Important trading implications are drawn from these results.  

 

Keywords: decomposition techniques, implied volatility forecasting, ensemble 
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1. Introduction 

Since the mid 00’s when VIX futures and options were introduced as the tradable 

part of the VIX CBOE volatility index, trading volumes on these derivatives have 

reached tremendous heights, especially during turbulent, for the global economy, 

moments. The reason lies in the special features these products display, especially 

futures and the strong ties with VIX index and more generally the equity market (Szado, 

2020; Fernandes et al., 2014). These characteristics make them quite appealing 

especially for investors and risk managers, who use them daily to hedge uncertainty 

and diversify portfolios, transforming trading strategies based on short and long 

volatility exposure in options and futures contracts into top financial risk management 

tools, no matter if the use of derivatives encloses high risk of capital loss and demand 

careful manipulation. Therefore, engaging in derivatives markets’ practices, requires 

the ability to accurately forecast the underlying implied volatility index, which is the 

key input for pricing them (Degiannakis et al., 2018). Forecasting implied volatility, 

which in our study is the VIX, the leading volatility index for the U.S stock market, 

was and will continue to be a demanding and of immense importance task, not only for 

those directly involving in markets but also for stakeholders, researchers and policy 

makers, who desire to navigate through past and present trends, but in the same moment 

desire to shape future regimes.   

Literature has to provide an abundant of studies that model and forecast volatility, 

conditional, stochastic, implied or realized (Becker and Clements, 2008; Degiannakis 

and Filis, 2017; Kambouroudis et al., 2021), especially realized that flourished the last 

20 and so years through the studies of Andersen and Bollerslev (1998), Barndorff-

Nielsen and Shephard (2002), Barndorff-Nielsen et al. (2008) to name a few, due to the 

availability of ultra-high frequency data that completely altered the modeling 

landscape. The use of implied volatility primary involved in forecasting realized 

volatility, but steadily gained ground due to the information expected volatility encloses 

for the future path of a market, but also for macroeconomic conditions, energy 

commodities, speculative strategies, portfolio optimization etc. (Fernandes et al., 2014; 

Bams et al., 2017; Degiannakis and Filis, 2022). Various parametric frameworks have 

occasionally been used to assess the usefulness of volatility forecasts, such as ARIMA, 

ARFIMA, VAR (Konstantinidi et al., 2008), GARCH-type, ARMA-type 
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(Kampouroudis et al., 2016; Taylor, 2004) and HAR. HAR (Corsi, 2009) the state-of-

the-art framework for modeling and forecasting volatility, was initially proposed for 

realized volatility (Bollerslev et al., 2009; Degiannakis and Filis, 2017). Lately, it has 

been established for implied as well, since it proved to be efficient in producing 

meaningful forecasts and economic profits when incorporated in trading practices 

involving implied volatility derivatives (Delis et al., 2023).  

Quite recently in the financial analysis, modeling theory and practice utilized non-

parametric decomposition methodologies, paired either with parametric or non-

parametric techniques, resulting in hybrid models (Risse, 2019). These hybrid 

frameworks, are the outcome of the evolution contacted in computer science that 

allowed the construction of powerful algorithms, liberating the scientific and 

engineering work processes. One of the major contributors of such algorithms by far is 

the signal processing field, followed by the machine learning, deep learning and 

artificial intelligence environments. Signal decomposition methodologies along with 

ensemble frameworks, suddenly flourished providing a more integrated analysis for 

time series data. These techniques, efficiently tackle with the restrictions raised from 

classic econometric models and effectively cope with the special characteristics, 

economic and financial data processes undergo, the non-linearity and non-stationarity 

(Vrontos et al., 2021; Huang et al., 1998; Civera and Surace, 2021; Prasad and Bakhshi 

2022).  

Decomposition frameworks, can reveal the peculiar features time series display 

and are capable of separating trend, high and low frequency components, periodicities, 

noise etc. Then, the retrieved components can be optimally analyzed and modeled 

separately, with the help of parametric models, if the nature of the retrieved component 

allows such, or with more advanced. Adaptive mode decomposition, variational mode 

decomposition, semi-variational mode decomposition, wavelet decomposition, 

convolution neural networks, recursive neural networks, deep neural networks are only 

few of the available algorithms combined together to conduct analysis, modelling and 

forecasting of complex systems, resulting in optimal statistical and economic gains (Yu 

et al., 2008; Hewamalage et al., 2021; Degiannakis et al., 2018; Rua, 2017). 

We will not go into an extensive review of existing literature that exhibit the 

superiority of the above-mentioned techniques, as it exceeds the scope of this paper. 

Rather we will highlight some points of relevant studies that will better clarify the 
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contribution of this work amongst the bulk of adequate research. In particular, current 

studies incorrectly incorporate decomposition techniques in their modeling and 

forecasting frameworks, resulting in their disability to be utilized for real life 

applications (Liu et al., 2022; Wang et al. 2016, Guo et al., 2012). The reason lies in 

the boundary issue that stands for the inclusion of future info into the modeling system 

(Chen et al., 2022; Kaufman et al., 2012). This arises when one disaggregates entire 

time series data into distinctive components and then splits components into training 

and test sets in order to proceed with rolling out of sample forecast and evaluation 

techniques. As a result, the demonstrated low statistical loss functions and trading 

profits as the major gains of decomposition prior to modeling and forecasting, is the 

outcome of a rather biased procedure that suffers from future data leakage, data 

snooping and deterioration of the component selection process that each of the diverse 

decomposition frameworks, follows.   

The difficult part is to split original dataset into smaller periods and observe how 

components and forecasts alter as new info gets updated iteratively on daily basis and 

new expectations of the future path are formed each consecutive day. At this very point 

lies the actual contribution of this study. More specifically, we disaggregate VIX index 

by taking original sample consisting of 2600 trading days and proceed by incorporating 

a rolling window approach, with a fixed window of 1000 observations that gets updated 

daily with new info. That said, we split original input into subsamples of 1000 

observations. Each subsample ends at time t, which is the 1000 observation, in order to 

totally exclude the future info, t+1. Thus, in an iterative manner, each day we use 1000 

observations as our training data set in order to decompose, utilizing diverse techniques, 

model and forecast for a completely unknown horizon of multiple days ahead, spanning 

from 1 to 22 days and for an out of sample period of 1600 trading days in place of our 

test data set. When above steps are completed, we proceed by adding all individual 

forecasted components, from each incorporated method, forming the final aggregated 

forecast. 

Disaggregation of VIX is conducted via six signal decomposition techniques 

namely, the empirical mode decomposition (EMD) (Huang et al. 1998), the embedded 

empirical mode decomposition (EEMD) (Wu and Huang, 2009), the singular spectrum 

analysis (SSA) (Golyandina et al., 2001), the Hilbert vibration decomposition (HVD) 

(Feldman,2006), the empirical wavelet decomposition (EWD) (Gilles, 2013) and the 
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variational mode decomposition (VMD) (Dragomiretskiy and Zosso, 2014), where all 

exhibit different theoretical background, but all are successfully utilized in the analysis 

of real and complex signals. Furthermore, modeling takes place by employing four 

models, the Autoregressive model (AR), the Heterogeneous autoregressive framework 

(HAR), the Holt Winters (HW) and the Long short-term memory model (LSTM) (Chen 

et al., 2021). Models were not randomly chosen but is the outcome of carefully 

inspecting the stochastic path of each and every component, their linear or non-linear 

dynamics. For comparison, the same models are also applied to the rolling samples of 

VIX as a unity, to form our benchmark models.  

Additionally, another point we address is to assess how evaluation of forecasts 

should be conducted, especially when dealing with financial time series that are daily 

employed in real asset allocation practices. Evaluation criteria should be able to reflect 

the purpose for which forecasts are generated, in our case implied volatility forecasts, 

so as findings be comparable to pure market applications and able to be replicated.  

There exists a literature strand that employs objective-based evaluation criteria 

developed to directly relate economic decisions with the generated forecasts (Elliot and 

Timmerman, 2008), contrasted to classical loss functions of MSE, MAE, RMSE, 

MAPE, etc. One of the first studies to make use of an economic loss function to evaluate 

the performance of volatility forecasts, is of Engle et al. (1993) who apply an options 

trading strategy, followed by Engle et al. (1996) who evaluate the ability of volatility 

forecasts to maximize trading profits. Since then, literature has recorded significantly 

contrasting findings of forecasts being evaluated through statistical loss functions along 

economic criteria (West et al., 1993, Degiannakis and Filis, 2022, Angelidis and 

Degiannakis, 2008, Becker et al., 2015). Patton and Sheppard (2015) consider these 

criteria as an indirect evaluation of volatility’s forecast accuracy, since an economic 

criterion does not directly assess accuracy, rather measures the profit a market 

participant can extract from the forecast. The same states Taylor (2014) who maintains 

that indirect evaluation of volatility forecasts is a way to measure the value the end-user 

receives no matter if statistical loss functions are well defined. Furthermore, Mukherjee 

and Swanson (2021) point the usefulness of economic criteria such as trading strategies, 

are critical for highlighting the linkage between predictive accuracy and trading 

profitability.  



7 
 

Adding to this literature, we develop a simple yet effective objective-based 

evaluation framework in order to evaluate the generated volatility forecasts according 

to the purpose these forecasts serve. Since our study is centered to VIX index, that has 

an extensive network of derivatives products, we employ front month’s VIX futures 

contracts as a fitted choice for our trading practice. Therefore, our forecasts are 

evaluated based on the profitability of naively trading the most liquid VIX futures. 

Depending on the signal the comparison between the aggregated forecast values 

generated daily and the actual VIX levels, sends, we take interchangeably short or long 

positions to VIX futures by reconstructing our position on a daily basis. Afterall, VIX 

futures should not be considered as long-term, buy-and-hold investments. 

Moreover, we consider the roll of futures, that is the roll to the next month’s 

contract. Roll takes place the 3rd week of each month, when front month’s contract 

expires and an investor would have to decide whether to roll or not to the next month’s 

contract since it is, its final settlement day. In this study, that day we close our position 

and roll to the following month’s contract, no matter if that entails losses due to 

contango (roll cost) or gains due to backwardation (roll yield)1. At the end of the out of 

sample period, we report the cumulative returns, either positive (gains) or negative 

(losses). Obviously, there are many other trading strategies we could have enlisted 

especially because we employ VIX futures, a recognized portfolio diversification tool, 

but the extra complexity, disaggregation techniques may have imposed in our modeling 

architecture, dictated that we should keep things simple. Finally, in order to evaluate 

the risk-adjusted performance of our naïve trade in line with relative literature, we also 

adopt the Sharpe and Sortino ratios. 

To the best of our knowledge, this is the first paper to compare six diverse 

decomposition frameworks in an out-of-sample rolling forecast practice for multiple 

horizons2, that is tailored to the exact moment information becomes available. Our 

empirical findings suggest that decomposing prior to modelling can be multi beneficial.  

The evaluation of the out-of-sample forecasts shows that each technique performs 

differently and simply answers if decomposition techniques used that way, which is the 

 
1 Szado (2020), reports that a roll five days prior to maturity has lower carry over for VIX futures 

contracts and escapes the maturity effect, but here we have chosen to be risky and measure final outcome. 
2 The LSTM, part of the recursive neural networks has a detailed structure that for the case of the rolling 

scenery and for the multiple forecast horizons becomes computational heavy compared with other 

models incorporated in our study. 
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proper and the only unbiased way, can end with the significant outcomes, relative 

studies demonstrate. Even more, without focusing on the minimization of a statistical 

loss function3, but instead on the maximization of the objective-based evaluation 

criterion employed here, we report significant economic gains for EEMD-based, EMD-

based and SSA-based frameworks, which by far outperformed compared to other 

decomposition-based models or to the benchmark models. The fact that some 

outperformed while others failed to even compete in MSE terms is rather informative, 

as we noticed that the different modelling combinations of the components of each of 

the disaggregation techniques, can alter the final outcome and even generate a return of 

44 times of invested capital4. Thus, if a trader invests $1 on VIX futures and decides 

daily of going long or short based on the VIX forecast, would earn multiple times her 

money during our out-of-sample period. Finally, we highlight the purpose, the 

generation of objectively accurate forecasts, should serve and stress out how critical it 

is, when producing forecasts of core financial indices, to assess the conditions under 

which markets operate and exposure is conducted, where there is a complete absence 

of any forward information. Thus, we maintain that decomposition enhances the 

economic outcome when outcome is evaluated based on objective-based criteria. 

Results remain robust against several robustness tests.   

The remainder of this study is organized in the following manner. Sections 2, 3 

and 4 present the six diverse decomposition techniques, the four forecast frameworks 

and the evaluation tests, providing all appropriate justification for their choice, the 

number of resulting components, the choice for the best fitted modelling frameworks, 

the final generated forecasts and the choice of the appropriate evaluation steps to verify 

robustness of empirical findings, respectively. Section 5, provides a description on the 

data used, their choice, their significance for this study and rεports their descriptive 

statistics. Section 6, presents the empirical findings of this study by presenting all 

relative tables and finally, section 7 sets the concluding remarks.    

 
3 Our study provides an indicative table where the classic mean square error is recorded for any of the 

proposed models, but only for highlighting of how illusive this turns out to be and how contradictive 

cumulative returns are for models with infinitesimally small divergence in this statistical measurement. 
4 Valid for EEMD-HW-AR-HAR model for the 5 trading days ahead horizon.  
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2. Decomposition techniques  

This study incorporates 6 diverse decomposition techniques. All methods were 

carefully selected to be applicable to the implied volatility index. The fact that most 

were originally developed for application on continuous time series, earthquake 

motions, liquid motions, vibration mechanics, medical data, mechanical engineering, is 

not restrictive for a more general use, in our case on financial time series. Generally 

speaking, there are always restrictions, restrictions as for the length of the sample to be 

decomposed, the randomness, the aperiodicity and other relative issues, for the reason 

that methods will not have enough data to conduct analysis or will not be able to 

effectively capture all those features that would allow for a more thorough analysis. 

Huang et al. (1998), when introduced EMD as a general use method, specified that few 

are the datasets either from natural or artificial phenomena that satisfy all definitions 

imposed by these processes-methods and maintained that the retrieved components do 

not guarantee a well-defined physical meaning, something true for all decomposition 

techniques, however in most cases, IMFs do carry a physical significance. Feldman 

(2011) who provides an extensive description of Hilbert Transform (HT), points out 

that it can be applied to any oscillatory signal, since mathematically it is correct for any 

vibration, no matter if in practice is essential mostly for narrowband signals and states 

that from a general point of view, the analytic signal method is equally applicable to 

deterministic and random processes because it allows investigating any oscillating time 

function, no matter if it does not separate then at all. It is still a good method for solving 

problems of stationary and non-stationary vibrations. Thus, we deduce that the selection 

and application of any of these techniques that each has a differentiated theoretical and 

practical core, solely depends on the perspective desired (Feldman, 2011). Inevitably 

all these methods come with advantages and disadvantages5 and that is the reason why 

occasionally new extensions come forth.   

In this study we did not go into an extensive analysis of the components, that 

makes sense to applications from other scientific fields, since our analysis is targeted 

elsewhere. The analysis conducted on the individual components is only for assisting 

us in the effort to discover their data generating process in order proper models to be 

 
5 All techniques have pros and cons, but our intention is not to extent through the issues the methods 

face, either mathematical or technical, rather provide a basic understanding of the underlying theory. 

Those who desire a more thorough learning can always refer to the original papers of their initiators.   
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fitted, although, we did notice differences between EMD and EEMD performance. 

Thus, there must be indeed an impact on empirical findings by the choice of the 

methodologies. Moreover, as for the number of components that each method returns 

is dictated, for EMD, EEMD and HVD by the very own procedures as there are certain 

stopping criteria. For the cases of EWT and VMD it is user defined, while for SSA 

depends on the choice of specific parameters and auxiliary methods. Hence, for the 

methods that at least have a user dependency, the number of components, was dictated 

by the reason we originally engaged in this disaggregation practice, forecasting. 

Forecasting demands accuracy and as such the closer approximation of the summation 

of retrieved components to original input is the key for our decision and definitely can 

have an impact on the reported empirical findings.  

2.1. The empirical mode decomposition method 

It was the year 1998 when the study of Huang et al. (1998) published, proposing 

a new 2-step tool to cope with the difficulty faced when trying to analyze noisy, non-

stationary and non-linear time series and partially replace the Fourier spectral analysis 

that due to its restrictions, would not fit for the analysis of such data. The first step was 

the EMD that could decompose any complex data through a spline algorithm into a 

finite and small number of intrinsic mode functions (imfs) that were complete and 

orthogonal (Huang et al., 2003) and would localize an event on time. The second step 

was the Hilbert transform of the imfs that would localize event in the frequency domain 

and would allow for a more efficient and meaningful analysis. Since then, EMD has 

been widely applied and paired with parametric and non-parametric models for 

decomposing and modeling wind-speed data, crude-oil price time series and other 

financial time series (Ali et al., 2023; Shu and Gao, 2020; Jin et al., 2022).  

EMD is an adaptive and direct algorithmic method for decomposing a signal. The 

signal in order to be decomposed into a zero-mean amplitude modulated imfs and a 

residue, must comply with three assumptions (Huang et al., 1998), 1) have at least two 

extrema, one minimum and one maximum, 2) the characteristic time scale to be defined 

by the lapse of time between the extrema and 3) when there is a total absence of extrema 

and only the presence of inflection points, then differentiate one or more times in order 

to reveal the extrema. Furthermore, an imf must satisfy two conditions, 1) the number 

of extrema and the number of zero-crossings in the entire sample to be either equal or 
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differ by one6 and 2) at any point the mean value of the envelope defined by the local 

maxima and the envelope defined by local minima to be zero. Thus, in order to identify 

an imf, EMD follows an iterative process that is better described in five steps: 

1. For any signal X𝑡 = {x1, x2, … , x𝑡}, which in our case is the VIX𝑡 , we 

identify all extrema. 

2. Then, we connect all local maxima with a cubic spline and create the upper 

envelope. We do the same for the local minima to create the lower envelope. 

Upper and lower envelopes should cover all data points, afterall, the creation 

of the envelopes is the one that will help in separating components with 

close frequencies (Feldman, 2011). 

3. We designate the mean of the upper and lower envelopes as 𝑚1 =

(env𝑚𝑎𝑥 − env𝑚𝑖𝑛)/2. We subtract 𝑚1 from original signal and retrieve 

the first component c1→ X𝑡 −m1 = c1 

4. Does the component comply with imposed restrictions? If so, then it is an 

imf, if not we replace X𝑡 with c1 and iterate over i times until component 

equals an imf7. That is called the sifting process. 

5. In the case the resulted component satisfies the characteristics of an imf, then 

𝑖𝑚𝑓1 = 𝑐𝑖 (with 𝑖 = 1, 2, … ). And we get the first imf. After having the first 

imf we subtract it from original series X𝑡 − 𝑖𝑚𝑓1 = 𝑟1. The 𝑟1 now takes the 

place of signal and process starts over until all imfs are retrieved and only a 

residue is left, res𝑡, that is a monotonic function. At that point EMD 

terminates. The first imf is the one with the highest frequency, and 

progressively frequency of ongoing imfs lessens as gradually moves 

towards the final monotonic residue. 

The summation of all imfs and residue returns original series. Among proposed and 

adopted decomposition techniques, EMD is the only complete method whom 

summation of components (imfs and residue) returns the exact same signal → X𝑡 =

∑ 𝑖𝑚𝑓𝑘
𝑡
𝑘=1 + res𝑡.  

 
6 Huang et al. (2003) argue that imfs retrieved based on this condition are orthogonal and not over sifted. 

Basically, one of the cons that is being addressed to EMD is the lack of a mathematic formula and the 

fact that although imfs are indeed orthogonal, orthogonality itself cannot be proved.  
7 In the original work of Huang et al. (1998) the stopping criterion of the sifting process with which a 

component is recognized as an imf is given by a standard deviation function. Other studies use different 

criteria. In our study we use the standard deviation function ∑ [
|((𝑐1(𝑖−1)(𝑡)−𝑐1𝑖(𝑡))|

2

𝑐1(𝑖−1)
2 (𝑡)

𝑇
𝑡=0  < 0.2.  
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There have been proposed various extensions to the above process regarding 

cubic spline end conditions or stopping criteria. In this study we follow a distinct 

literature branch that adopts a specific cubic spline end criterion, that is to place the end 

points of the slope of the cubic spline equal to 0. According to Peel et al. (2007) this 

condition returns fewer imfs and tends to be more efficient compared to other cubic 

spline rules proposed for EMD (Rilling et al., 2003; Flandrin et al., 2004). We evidence 

the same findings8. We decompose VIX on a daily basis for an out-of-sample period of 

1600 trading days, each day the process ends on 5 or 6 components consequently. As 

such the number of components is dictated by the stopping criterion imposed that 

terminates process when only the long term trend component is left and finally by the 

very own structure of the input, thus it alters through successive iterations. As for the 

nature of components, each follows a different stochastic process that determines the 

choice of the proper model for the analysis that follows. 

2.2. The Ensemble empirical mode decomposition method 

 EMD process although being an adaptive and fully data driven decomposition 

method, which is widely implemented, it has frequently been accused of mode mixing, 

an outcome of signal intermittency (Huang et al., 1999). This can raise annoying issues 

in the analysis conducted in the resulting components that may lack in any physical 

meaning through the second step that is the Hilbert transform. In order to cope with this 

issue Wu and Huang (2009) proposed the EEMD based on the study of Flandrin et al. 

(2004). This noise-assisted signal extraction method infuses signal with white noise of 

finite amplitude that leads to efficient frequency separation. Thus, the resulting imfs 

constitute the mean of an ensemble of repeated iterations (Yeh et al., 2010). The process 

of EEMD is in the same line as EMD and follows the same steps with the difference 

that:  

1. We add a white noise series, wnt to the original signal, s𝑡:  X𝑡 = s𝑡 +wn𝑡. 

2. We proceed with the decomposition as conducted in EMD and retrieve imfs. 

3. We iterate9 above steps many times adding different white noise series. 

4. We calculate the ensemble means of the imfs returned from every iteration. The 

means returned are the final imfs of entire process.   

 
8 Classic cubic spline conditions returned 10 and 11 components, the zero ends returned 5 and 6 

components interchangeably.  
9 The number of ensembles is dictated by the data itself. For this study, we went through 30 trials.  
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According to Wu and Huang (2009) this repeated addition of different white noise 

series of finite amplitude not infinitesimal, in the original signal are cancelled out in the 

end result and the mode mixing problem is efficiently tackled without perturbating 

original signal. Moreover, the addition of finite amplitude white noise allows EMD to 

act as dyadic filter bank (Flandrin et al., 2004), and accomplish meaningful imfs.   

In this study, we thought the addition of EEMD would clarify if the imfs returned 

are more refined compared to those returned by EMD. We noticed that original EMD 

was efficient enough to decompose VIX and no mode mixing was optically inspected10, 

but despite the fact that both methods in each of the 1600 iterations terminated at 5 or 

6 components interchangeably, the reported economic gains of the implemented trade, 

at section 6 and Table 5, differ. Thus, although both methods are almost identical if not 

for the addition of white noise series, the infinitesimally differences between the 

resulted components of the EMD and EEMD processes seems to have a critical impact 

at the very end. Many are the studies who end with promising results when EEMD is 

incorporated in hybrid models or EEMD extensions are used (Dong et al., 2019; Sun et 

al., 2018; Tang et al., 2018).  

2.3. The Singular Spectrum Analysis method 

SSA, constitutes another non-parametric time series analysis and decomposition 

technique with various applications and many extensions (Golyandina and Zhigljavsky, 

2013; Golyandina et al., 2001; Hassani 2007) that approximately decomposes a time 

series into noise, periodicities, trend etc. Although SSA is demonstrated and primary 

used as a decomposition and filtering technique, it can also be used for forecasting 

purposes as in Degiannakis et al. (2018), Thomakos et al. (2002), Sulandari et al. (2020) 

to name a few, with remarkable results. In this study we will not test its forecasting 

potential, rather its efficiency to generate meaningful components. Afterall, the primary 

reason why one uses a decomposition technique is to separate the different harmonics, 

scales, frequencies, periodicities, trend, noise etc., who reveal the inner nature of a time 

series and allow for a more targeted analysis.  

SSA is performed by following some distinctive steps of a robust mathematical 

path (Hassani and Thomakos, 2010). Process has two stages, the decomposition and the 

 
10 It is important though to mention that for series as earthquake data and climate data, where mode 

mixing issues are obvious, where analysis for bio sustainability is the main target followed by forecast 

of nature’s elements, EEMD method has proved to be optimal. 
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reconstruction. The very first step is to construct the trajectory matrix and “transform” 

the time series into a multidimensional matrix:  

Stage 1: Decomposition 

1. Embedding. Let X𝑁 be a time series of length N, X𝑁 = (x1, x2, … , x𝑁). We need 

two parameters, L, which is called embedding dimension and K, two integers 

that will constitute the number of rows and columns of the trajectory matrix 

respectively, with L being (1 < L < N)11 and 𝐾 = 𝑁 − 𝐿 + 1. We form a 

sequence of L and K lagged vectors out of the original sample. So, the X matrix 

of eq.1 constitutes a Hankel matrix and has equal anti-diagonal elements: 

X = [X1, X2, … , XK] = (x𝑖𝑗)𝑖,𝑗=1
𝐿,𝐾 = (

x1  x2  x3 ⋯ x𝐾
x2  x3  x4 … x𝐾+1
⋮     ⋮      ⋮ ⋱ ⋮
x𝐿  x𝐿+1x𝐿+2  ⋯ x𝑁

). (1) 

2. Decomposition. In the core of SSA lies the singular value decomposition 

(SVD). Having constructed the trajectory matrix, we perform SVD on X and 

decompose it into a sum of rank-one matrices: 

𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑑, (2) 

where d denotes the rank of X and X𝑖 = Σ𝑖√𝜆𝑖U𝑖V𝑖
T (𝑖 = 1, 2, … , 𝑑). SVD 

process returns the eigenvalues 𝜆𝑖 of XXT in decreasing order of magnitude, 

(𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿 ≥ 0), the left singular vectors of X, U𝑖 and V𝑖 the right 

singular vectors. The assortment of (√𝜆𝑖U𝑖V𝑖) is called the ith eigentriple of SVD 

(Hassani et al. 2021).  

Stage 2: Reconstruction 

1. Grouping. Grouping is the one that defines the way the individual eigentriples 

of Eq. 2, (1, 2, …,d), are going to be grouped with each other into m disjoint 

subsets I1, I2, … , I𝑚 called eigentriple grouping12: 

𝑋 = XI1 + XI2 +⋯+ XIm. (3) 

 
11 According to Hassani et al. (2021) L plays an important role during the reconstruction phase and sets 

how well reconstructed time series approximates original one and how well efficient separation of 

components is dealt. Values of L varying in between (2 < L < N/2) have higher resolution. In this study 

we have chosen L to be 400, dictated by the length of VIX subsamples that consist of 1000 observations. 

Parameter m is 4, since we get the trend, two elementary components and noise.  
12 For the case where 𝑚 = 𝑑 and 𝐼𝑗 = {𝑗}, 𝑗 = 1, 2, … , 𝑑, the corresponding group is called elementary. 
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2. Diagonal averaging. Having grouped the eigentriples, the final step is to 

transform these X𝐼𝑗 matrices into new series/components of length N, the length 

of original series. In order to achieve that we first transform these matrices into 

Hankel matrices Y, of 𝐿 × 𝐾 dimensions and elements y𝑖𝑗 ,  for 1 ≤ 𝑖 ≤ 𝐿 and 

1 ≤ 𝑗 ≤ 𝐾. Then, via performing diagonal averaging on Y, we transform it into 

the desired series (y1, y2, … , y𝑁): 

𝑦�̃� = ∑ 𝑦𝑙,𝑘(𝑙,𝑘)∈𝐴𝑠 /|𝐴s|,   (4) 

where As = {(𝑙, 𝑘): 𝑙 + 𝑘 = 𝑠 + 1, 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑘 ≤ 𝐾} that is the averaging 

process of the antidiagonals and |A𝑠| the number of elements in the set of A𝑠. 

Thus, from the original series of (𝑥1, 𝑥2, … , 𝑥𝑁), the entire process returns the 

reconstructed series of X̃(k) = (x̃1
(𝑘), x̃2

(𝑘), … , x̃𝑁
(𝑘)) that are the SSA m 

components and their summation approximates back original series: 

𝑥𝑛 =∑�̃�𝑛
(𝑘)

𝑚

𝑘=1

, 𝑛 = 1, 2, … ,𝑁. (5) 

Diagonal averaging completes the SSA decomposition process but still the step 

of grouping remains the most intrinsic one. That is why different frameworks have been 

proposed part of the separability issue faced in SSA that signals the way distinct 

components are going to be grouped together. Golyandina et al. (2001) propose the 

weighted correlation concept along with the graphs of eigenvectors that can reveal 

components who strongly interact. Hassani et al. (2021) against the classic weighted 

correlation propose hierarchical clustering methods and there is also the relative 

entropy13 that we adopt. Thus, based on this criterion of the most efficient way to group 

eigentriples that terminates process, we ended generating 4 components in each 

iteration.  

2.4. The Hilbert Vibration Decomposition method 

In the same spirit to EMD, that forms the first step for Hilbert Huang transform, 

Feldman (2006) introduced the HVD, as part of the evolution conducted in signal 

analysis. HVD is a decomposition method used especially for the analysis of 

 
13 Relative entropy or else the Kullback–Leibler divergence, part of probability and information theory, 

is a type of statistical distance and measures the similarity between two probability density functions 

(Theodoridis, 2020). 



16 
 

mechanical vibrations, earthquake motions (Huang et al., 2012), and for the analysis of 

Electroencephalograms (EEG), Electrocardiograms (ECG) or Seismocardiograms 

(SCG) (Shankar et al., 2021; Singh et al., 2022) among others. HVD constitutes an 

iterative algorithm, where in each iteration the component with the highest energy is 

subtracted from original data relying on the synchronous demodulation process 

(Feldman and Braun, 2017). HVD follows some distinctive rules and must comply with 

three assumptions, 1) the underlying vibration to be the outcome of the superposition 

of quasi-harmonics functions, 2) the envelopes of each vibration component to differ, 

and 3) the total length of the vibration to include several longest periods of the 

corresponding slowest component (Feldman, 2006). In the core of HVD lies the Hilbert 

transform (HT), a linear operator designated for the analysis of complex signals with 

varying amplitude and frequency through the course of time. For a vibration process, 

x(t), the HT takes the form of an integral transform considered a Cauchy Principal 

Value: 

H[x(𝑡)] = x̃(𝑡) = 𝜋−1∫
𝑥(𝜏)

𝑡 − 𝜏
𝑑𝑡

∞

−∞

, (6) 

where x̃(𝑡) is the HT of x(t). Let us consider x(t) being a multicomponent signal, then 

it can be denoted as the sum of monocomponents of slow varying instantaneous 

amplitudes and frequencies: 

x(𝑡) =∑al(𝑡)cos (∫𝜔𝑙(𝑡)𝑑𝑡),   

l

 (7) 

where 𝑎𝑙(𝑡) represents the instantaneous amplitude (envelope) and 𝜔𝑙(𝑡) denotes 

the instantaneous frequency of the ith component. For estimating these parameters each 

time, in every successive iteration, we have to obtain the analytical signal, X(t), 

expressed by the summation of the real part along the imaginary part and by the 

exponential form (Feldman, 2011) both appearing in Eq. 7: 

X(𝑡) = x(𝑡) + jx̃(𝑡) = A(𝑡)e𝑗𝜑(𝑡). (8) 

The instantaneous amplitude (envelope, magnitude) is then estimated as:  

A(𝑡) = |X(𝑡)| = √x2(𝑡) + x̃2(𝑡) = eRe[log(X(𝑡))], (9) 

and its instantaneous phase as: 
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φ(𝑡) = arctan (
x̃(𝑡)

x(𝑡)
) = lm[log(X(𝑡))]. (10) 

From the first derivative of the instantaneous phase, we get the instantaneous 

angular frequency ω(𝑡) = φ̇(𝑡). Now, the slow varying vibration component can be 

extracted by imposing a low pass filter on the instantaneous envelope and frequency 

respectively that will help subtract the largest vibration component out of initial signal 

x𝑙−1(𝑡) = x(𝑡) − xl(𝑡) and then treat x𝑙−1(𝑡) as the initial and repeat process until its 

termination. The cutoff frequency of the low pass filtering14 is the one responsible for 

the frequency resolution of the HVD process and should be of a small value because on 

every successive iteration, after having subtracted the previous frequency, the 

frequency of the next to be extracted component dominates and so components with 

close frequencies must be able to be efficiently separated. The HVD process terminates 

when the standard deviation difference between two successive components become ≤ 

0.01. Overall, HVD constitutes an unpretentious process, easily implemented and 

computationally fast. In this study HVD terminated at 5 components in each iteration 

as was dictated by the standard deviation stopping criterion. 

2.5. The Empirical Wavelet Transform method 

Among the concepts that seem to dominate the signal processing field, lies the 

wavelet theory with a vast literature dedicated on wavelets’ features and their use 

(Meyer, 1997; Daubechies, 1992). Inspired by the wavelet theory and the continuous 

and discrete wavelet transforms, Gilles (2013) proposed a new adaptive method for 

decomposing non-stationary and non-linear signals into amplitude modulated-

frequency modulated (AM-FM) components, the EWT. Since then, EWT appeared in 

the analysis of power system signals, wind data, medical disease diagnosis, seismic 

data, machine fault diagnosis, image processing etc. (Liu et al., 2016; Singh and 

Sunkaria, 2016; Beoula et al, 2017), but also, in combination with parametric and non-

parametric frameworks for forecasting short-term wind speed, drought etc. (Hu and 

Wong, 2015; Shaari et al., 2018). 

EWT builds a family of wavelets that can easily be adapted to the signal to be 

decomposed. The very starting point and the most crucial one in the entire process, is 

 
14 In our study we use the Elliptic low pass filter that fits perfect in order to efficiently manage the 

randomness that financial time series experience. The choice of filter is critical for the efficient 

disaggregation. 
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how to segment the Fourier spectrum of the signal. Each segment denotes a mode, so 

there are equivalent segments corresponding to the inspected components. This step 

seems to be and the most controversial as one has to predefine the modes the moment 

that any prior relevant information of the analyzed to be signal is absent. Thus, setting 

the boundaries of Fourier segments becomes demanding and various algorithms have 

been proposed to efficiently cope with this issue (Shi et al. 2017). The next step is to 

define the empirical scaling function and the empirical wavelets that will act as band 

pass filters on each predefined segment. Let us assume that we segment Fourier support 

[0, π] into N points. Let 𝜔𝑛 be the boundaries of the different segments with ω0 = 0 

and ω𝛮 = π. Each segment lies in [ω𝑛−1, ω𝑛]. Around every 𝜔n a transition phase is 

defined, 𝑇𝑛, with width 2𝜏𝑛 and thus the empirical scaling function is defined by: 

φ̂𝑛(𝜔) =

{
 

 
1                    if |𝜔| ≤ 𝜔𝑛 − τ𝑛 ,          

cos [
π

2
β (

1

2τ𝑛
(|𝜔| − 𝜔𝑛 + τ𝑛))]

0                                 otherwise.          

 if 𝜔𝑛 − τ𝑛 ≤ |𝜔| ≤ 𝜔𝑛 + τ𝑛, 

 

 

 

(11) 

And the empirical wavelets by: 

ψ̂n(ω)

=

{
 
 
 

 
 
 
1                        if 𝜔𝑛 + 𝜏𝑛 ≤ |𝜔| ≤ 𝜔𝑛+1 − 𝜏𝑛+1                                                               

cos [
π

2
β(

1

2𝜏𝑛+1
(|𝜔| − 𝜔𝑛+1 + 𝜏𝑛+1))]    if    ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin [
π

2
β (

1

2𝜏𝑛
(|𝜔| − 𝜔𝑛 + 𝜏𝑛))]    if 𝜔𝑛 − 𝜏𝑛 ≤ |𝜔| ≤ 𝜔𝑛 + 𝜏𝑛                       

0                                otherwise.                                                                                                 

 

 

 

 

 

(12) 

Assuming β(𝑥) being an arbitrary function C𝑘([0,1]), where: 

β(𝑥) = {
0      if   𝑥 ≤ 0
1     if   𝑥 ≥ 1

and β(𝑥) + β(1 − 𝑥) = 1    ∀𝑥 ∈ [0, 1]. (13) 

Setting 𝜏𝑛 proportional to 𝜔𝑛, 𝜏𝑛 = 𝛾𝜔𝑛, with 0 < 𝛾 < 1, then above equations can be 

rewritten as: 

φ̂n(𝜔) =

{
 
 

 
 1                    if |𝜔| ≤ (1 − 𝛾)𝜔𝑛   

co s [
π

2
β (

1

2𝛾𝜔𝑛
(|𝜔| − (1 − 𝛾)𝜔𝑛))]

0                             otherwise.          

 if    (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 + 𝛾)𝜔𝑛 (14) 

And 
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ψ̂n(𝜔)

=

{
 
 
 

 
 
 
1                        if (1 + 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1                                                               

cos [
π

2
β(

1

2𝛾𝜔𝑛+1
(|𝜔| − (1 − 𝛾)𝜔𝑛+1))]    if    (1 − 𝛾)𝜔𝑛+1 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛+1

sin [
π

2
β (

1

2𝛾𝜔𝑛
(|ω| − (1 − 𝛾)𝜔𝑛))]    if (1 − 𝛾)𝜔𝑛 ≤ |𝜔| ≤ (1 − 𝛾)𝜔𝑛               

0                                otherwise.                                                                                                 

 

 

 

(15) 

Now, in order to construct the EWT, denoted as 𝑊𝑓
𝜀(𝑛, 𝑡), the detail and 

approximation coefficients have to be estimated given by the inner products of 

empirical wavelets and scaling function respectively: 

Wf
𝜀(𝑛, 𝑡) = 〈f, ψ𝑛 〉 = ∫ f(τ)ψn(τ − t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ d𝜏 = (f̂(𝜔)ψ̂𝑛(𝜔)

̅̅ ̅̅ ̅̅ ̅̅ ̅V, (16) 

Wf
𝜀(0, 𝑡) = 〈f, φ1 〉 = ∫ f(𝜏)φ1(𝜏 − 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜏 = (f̂(𝜔)φ̂1(𝜔)̅̅ ̅̅ ̅̅ ̅̅ V, (17) 

where ψ̂𝑛(𝜔) and φ̂1(𝜔) are estimated above through Eq. 14 and Eq. 15 and the 

reconstruction: 

f(𝑡) = Wf
𝜀(0, 𝑡) ∗ φ1(𝑡) +∑Wf

𝜀(𝑛, 𝑡) ∗ ψ𝑛(𝑡)

𝑁

𝑛=1

 

= (Wf
�̂�(𝑛, 𝜔)ψ̂𝑛(𝜔) +∑Wf

�̂�(𝑛, 𝜔) ∗ ψ𝑛(𝜔))
V

𝑁

𝑛=1

. 

(18) 

Finally, the empirical mode, f𝑘 returned by the EWT is expressed as: 

f0(𝑡) = Wf
𝜀(0, 𝑡) ∗ φ1(𝑡), (19) 

f𝑘(𝑡) = Wf
𝜀(𝑘, 𝑡) ∗ ψ𝜅(𝑡).    (20) 

The empirical modes returned out of EWT come in ascending frequency order. 

Process starts from separating the component with the lowest frequency and terminates 

to the one with the highest. Actually, the number of modes and the point that terminates 

process is user defined, after inspecting the Fourier spectrum. For this method we 

defined 4 components for each iteration. 

2.6. The Variational Mode Decomposition method 

The final decomposition method applied in our study is attributed to 

Dragomiretskiy and Zosso (2014), who proposed a non-recursive variational model that 

could address limitations rising from corresponding decomposition models such as 
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EMD, HVD or EWT etc., the VMD. The use of this method has accelerated and many 

are the studies to incorporate VMD along neural networks, reconstruction techniques 

or optimization techniques in order to forecast oil price, short-term power load, 

financial data etc. (Lahmiri, 2016; Li et al., 2020; Ping Yu et al., 2021).  

Dragomiretskiy and Zosso (2014), utilize three concepts, the Wiener filtering, the 

HT and the frequency mixing and heterodyne demodulation to synthesize the VMD 

process that decomposes a real signal f(x) into distinct modes. Each mode is required 

to be compact around a central frequency, 𝜔𝑘 determined through the process, so, they 

determine the bandwidth of the modes by following three steps, 1) they compute 

analytic signal of each mode through HT and obtain a unilateral frequency spectrum, 

2) they shift mode’s frequency spectrum to baseband, by mixing it with an exponential 

tuned to the respective estimated center frequency, and 3) they estimate the bandwidth 

through the H1 Gaussian smoothness of the demodulated signal. So, they end up in a 

constrained variational problem: 

min
𝑢𝑘, 𝜔𝑘,

{∑||∂t [(δ(𝑡) +
𝑗

𝜋𝑡
) ∗ u𝑘(𝑡)] e

−𝑗𝜔𝑘𝑡||

k 2

2

}   s. t.  ∑u𝑘
𝑘

= f(𝑥), (21) 

where 𝑢𝑘 denotes the modes, 𝜔𝑘 denotes their central frequencies, * denotes 

convolution and the summation of all 𝑢𝑘 approximates original signal. The solution to 

above problem is given through Lagrangian multipliers, λ and a quadratic penalty term 

with the assistance of the alternate direction method of multipliers (ADMM) (Gabay 

and Mercier, 1976; Eckstein and Bertsekas, 1992) an iterative sub-optimization 

method, so the Lagrangian takes the form: 

ℒ(u𝑘, ω𝑘, 𝜆) = a∑||∂t [(δ(𝑡) +
𝑗

𝜋𝑡
) ∗ u𝑘(𝑡)] e

−𝑗𝜔𝑘𝑡||
2

2

 

k

+ ||f(𝑡) −∑u𝑘(𝑡)

𝑘

||

2

2

+ 〈λ(𝑡), f(𝑡) −∑u𝑘(𝑡)

𝑘

〉 .     

(22) 

The process returns the predefined from the user modes. The Lagrangian 

multiplier when used along with the penalty term ensures that the summation of all 

returned components will reconstruct actual signal not perfect but approximately close. 

The inclusion of only the penalty term will slightly vary the final outcome but will deal 
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more sufficiently with noisy data. After experimentation on the number of components 

that best approximates original series, we ended that 5 components were the most 

resolute approximation and thus we defined 5 components in each of the 1600 

iterations, who consist the out-of-sample period.  

3. Modelling and forecasting frameworks 

Modeling and forecasting consist the second step of this study. Our goal is to fit 

optimal models to the individual components. By optimal we mean models that best fit 

to the stochastic process components undergo. Therefore, we applied all appropriate 

statistical tests15 that would clarify the one that would capture the linear and the non-

linear patterns. Forecasts are then generated in fully alignment to the fitted model 

specifications. Consequently, the four models proposed here, were selected carefully 

since each component holds a distinctive characteristic of original time series that we 

managed to isolate. Models are also applied to original series for comparison reasons 

to investigate whether the disaggregation step as conducted here, by following the only 

unbiased way to prohibit data leakage and data snooping, allows for forecast accuracy 

apart from added complexity. Therefore, entire process is designed to warrant a robust 

and unbiased outcome.  

 Moreover, it is critical to proceed by incorporating a rolling window approach 

with a fixed window of 1000 observations. Initial sample consists of 2600 trading days 

(𝑇𝑡𝑜𝑡𝑎𝑙 = 2600). Thus, we split sample into rolling subsamples of 1000 observations 

that are used daily for training (𝑇𝑡𝑟𝑎𝑖𝑛 = 1000) that is for decomposing, in-sample 

estimation and forecasting. The remaining observations are then used for testing, that 

is for the out of sample validation (𝑇𝑡𝑒𝑠𝑡 = 1600). The first rolling sample spans from 

20th of August 2012 up to 12th of August 2016. Each day in our rolling sample, we drop 

the oldest observation, include a new one and proceed over and over with 

decomposition, model fitting and forecasting for a completely unknown future path of 

1, 5, 10 and 22 trading days ahead16. Then by aggregating the individual forecasts, we 

form the final forecast for each model combination, for each of the proposed techniques 

 
15 For the parametric frameworks, we did consider the fit of the model, the significance of model’s 

parameters, the 𝑅2, used the available information criteria that would specify the order and test for the 

validity of the conditions that should hold, for a process to be unbiased, that said we did check for 

heteroskedasticity, normality, etc. 
16 For the importance of considering multi step ahead forecast horizon one can resort to Degiannakis and 

Filis (2022). 
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and for each of the chosen horizons. In every iteration, forecasts are generated based on 

data that is available to forecaster at time 𝑡 = 1000.  

Subsections that follow, present the proposed frameworks. We end up with 28 

model combinations and 4 benchmark models for comparison reasons, in total 32 

models. Table 1A at the Appendix section, presents a detailed list of the decomposition-

based models and informs of the forecasting framework that was applied to the 

individual components that are enclosed in each model. Models are distinguished by 

disaggregation methods’ abbreviations. For components that constitute a white noise 

process, no modelling takes place. Figure 1 illustrates the modeling architecture.  

[FIGURE 1 HERE] 

3.1. The Autoregressive model 

The first model incorporated is the AR model. The inclusion of an intrinsic 

econometric model along with the more advanced ones, helps to model and forecast 

components that bare a first or higher order autoregressive pattern. For brevity, we 

present the model’s specification for the case of the first order, for modelling the 

logarithm of VIX components, for each of the decomposition techniques17, that is:  

 log (VIX𝑖,𝑗,𝑡) = w0
(𝑡) +w1

(𝑡)
log(VIX𝑖,𝑗,𝑡−1) + ε𝑡, (23) 

where, w0
(𝑡)

 and w1
(𝑡)

 represent the rolling estimated coefficients,  𝑖 is the number of the 

component, 𝑗 = {EMD, EEMD, SSA,HVD, EWT,VMD} and 𝜀𝑡 are the residuals that thought 

to be normally distributed, ε𝑡~N(0, σε
2). Forecasting for the t+h horizon, with h = 

{1,5,10,22} is conducted through: 

VIX𝑖,𝑗,𝑡+ℎ|𝑡 = exp (w0
(𝑡) +w1

(𝑡) log(VIX𝑖,𝑗,𝑡+ℎ−1)). (24) 

3.2. The Heterogeneous Autoregressive model 

The HAR, the state-of-the-art framework for volatility modelling of Corsi (2009), 

is an additive linear combination of indicators of volatility components at different time 

horizons, fully aligned with markets’ fractal structure. HAR has proven to be one of the 

best performing models for generating forecasts, especially when these forecasts entail 

asset allocation aspects (Degiannakis and Filis, 2022). The simple HAR for the 

 
17 Here equation is specified for VIX components. When modelling and forecasting the VIX as a unity, 

then specification becomes log(VIXt). The same applies for the rest of the benchmark models, but for 

brevity we refrain from complete presentation in the relevant sections.  
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logarithm of VIX components, for each of the decomposition techniques, takes the 

form: 

log(VIX𝑖,𝑗,𝑡) = w0
(𝑡) +w1

(𝑡)log (VIX𝑖,𝑗,𝑡−1) + w2
(𝑡)(5−1∑log (

5

k=1

VIX𝑖,𝑗,𝑡−𝑘))

+ w3
(𝑡)(22−1∑log (

22

k=1

VIX𝑖,𝑗,𝑡−𝑘)) + ε𝑡 , 

(25) 

where, w0
(𝑡), w1

(𝑡), w2
(𝑡)

 and w3
(𝑡)

 denote the rolling estimated coefficients and 𝜀𝑡 a 

normally distributed process, εt~N(0, σε
2). Since we have used the log form for model 

estimation, forecasts for the h-days-ahead horizon, are given by: 

VIX𝑖,𝑗,𝑡+ℎ|𝑡 = exp(ŵ0 + ŵ1log (VIX𝑖,𝑗,𝑡+ℎ−1|𝑡)

+ ŵ2 (s
−1∑log(VIX𝑖,𝑗,𝑡−𝑘+ℎ|𝑡)

s−1

k=1

+ (5 − ℎ)−1∑log (

5

k=s

VIX𝑖,𝑗,𝑡−𝑘+ℎ))

+ ŵ3 (s
−1∑log(VIX𝑖,𝑗,𝑡−𝑘+ℎ|𝑡) +

s−1

k=1

(22

− ℎ)−1∑log (

22

k=s

VIX𝑖,𝑗,𝑡−𝑘+ℎ)) +
1
2⁄ σ̂ε

2). 

(26) 

  

3.3. The Holt Winters model  

Apart from HAR and AR models, we further employ the HW framework as some 

components present features that best apply to HW specification. HW is a simple 

univariate procedure for producing forecasts based on the past and current values of a 

time series that utilizes triple exponential smoothing and allows to deal with both 

seasonal variation and trend (Winters, 1960; Chatfield, 1978). HW unfolds in two 

versions18, an additive and a multiplicative one where seasonal effects are thought to 

be of constant size or proportional to the local mean respectively (Chatfield, 1978). 

 
18 Additive and multiplicative versions apply depending on the data and their values. For running the 

HW model we made use of the statsmodels package of the python programming language.  



24 
 

There are three smoothing constants α, β, γ. The model specifications for the 

components of VIX, for the two distinctives versions have the following form19: 

Additive 

M̂𝑡 = â𝑡(log (VIX𝑖,𝑗,𝑡) − T̂𝑡−𝑐) + (1 − â)(M̂𝑡−1 + F̂𝑡−1), 

F̂𝑡 = β̂(M̂𝑡 − M̂𝑡−1) + (1 − β̂)F̂𝑡−1 

T̂𝑡 = γ̂𝑡(log (VIX𝑖,𝑗,𝑡) − M̂𝑡−1 − F̂𝑡−1) + (1 + γ̂)T̂𝑡−𝑐. 

(27) 

Multiplicative 

M̂t = â (
log(VIX𝑖,𝑗,𝑡)

T̂𝑡−𝑐
) + (1 − â)(M̂𝑡−1 + F̂𝑡−1), 

F̂𝑡 = β̂(M̂𝑡 − M̂𝑡−1) + (1 − β̂)F̂𝑡−1 

T̂𝑡 = γ̂ (
log (VIX𝑖,𝑗,𝑡)

M̂𝑡

) + (1 − γ̂)T̂𝑡−𝑐, 

(28) 

where, M̂𝑡,  F̂𝑡,  T̂𝑡 stand for the estimate of the de-seasonalized mean for time t, 

the estimated seasonal factor at time t and the estimated trend term at time t, 

respectively. The c term that appears as subindex in above system of equations denotes 

the number of observations included in a seasonal cycle (Chatfield, 1978).  Now, 

forecasts from the HW procedure can be generated for any horizon. Hence, forecasts of 

h days ahead of components in logarithmic form, for the additive and multiplicative 

versions respectively, are given by the formulas: 

Additive 

VIX𝑖,𝑗,𝑡+ℎ|𝑡 = exp(M̂𝑡 + hF̂𝑡 + T̂𝑡+ℎ−𝑐). (29) 

Multiplicative 

VIX𝑖,𝑗,𝑡+ℎ|𝑡 = exp(M̂𝑡 + hF̂𝑡) ∗ T̂𝑡+ℎ−𝑐. (30) 

Someone will argue that a seasonal model is no proper for financial time series, 

where there is a total absence of seasonality. That depends, because financial time series 

exceed periodicity and volatility clustering. Volatility clustering involves fluctuations 

in asset prices that form clusters. Large (small) asset price changes tend to be followed 

by large (small) changes of either sign. Thus, clustering is the outcome of extreme 

volatility movements in response to crises of different sources recorded on the global 

landscape. The observed clusters seem to persist over specific periods and periods of 

high volatility are replaced by periods of low volatility. This pattern is closely studied 

 
19 Again log (𝑉𝐼𝑋𝑖,𝑗,𝑡) can be rewritten as log (𝑉𝐼𝑋𝑡) to account for VIX as a unity.  
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in volatility literature (Patton and Sheppard, 2011) and perhaps this is to blame why 

HW model seems to fit that well when modeling and forecasting volatility. 

3.4. The Long Short-Term memory model  

In the field of deep learning algorithms there stands out the LSTM (Hochreiter 

and Schmidhuber, 1997). Part of recursive neural networks (RNNs), LSTM came as a 

solution in a major drawback of RNNs, their inability to produce accurate predictions 

attributed to the explosive gradient descent when trying to learn the long-term 

dependencies of a series (Bengio et al., 1994). LSTM ever since has proven to be a 

powerful enough tool for time series forecast scenarios and many are the studies to 

include it (Chen et al., 2021; Michańków et al., 2022; Shu and Gao, 2020; Liu et al., 

2022). Its main advantage lies in the addition of extra memory cells, extra layers, 

consisting of three gates, the input gate, 𝑖𝑔𝑡, the output gate, 𝑜𝑔𝑡 and the forget get, 

𝑓𝑔𝑡. Memory cells with the help of activation functions20, such as sigmoid and 

hyperbolic tangent function, act as filters concerning the information that will 

eventually reach the next cell state. The mathematical expression of how information 

flows inside each memory cell and the role each gates plays is presented in the 

following equations: 

𝑖𝑔𝑡 = sigm(weight𝑖𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡] + bias𝑖𝑔), 

𝑓𝑔𝑡 = sigm(weight𝑓𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡] + bias𝑓𝑔), 

m̃𝑡 = hyptan(weight𝑚 ∙ [ℎ𝑡−1, 𝑥𝑡] + bias𝑚), 

(31) 

where, m̃ is the value of the memory cell in order to update the cell, x𝑡 is the input data 

at time t, h𝑡−1 is the output of the previous layer that enters as input to present state, the 

weight with subindices of the different gates denote the weights set every time by 

forward and back propagation (Hecht-Nielsen, 1992), that try to minimize the error 

condition21 through successive efforts and finally, the bias term stands for the error 

term. The sigm and hyptan symbols, appearing in Eq. 31 denote the sigmoid and the 

hyperbolic tangent functions respectively. The new value of the cell becomes: 

ct = fgt ∗ ct−1 + igt ∗ m̃t, (32) 

 
20 For setting the model and its parameters (layers, optimizers, epochs, etc.), we use the keras deep 

learning API in python programming language (keras.io) that is built on top of TensorFlow, a machine 

learning platform.  
21 LSTM utilizes different types of loss functions. A frequently used loss function is the “mean squared 

error” and is the one we also incorporate for constructing our model.  
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where * denotes the convolution and 𝑐𝑡−1 denotes the value of the previous cell state. 

Now, the value of the output gate, ogt, is given by: 

og𝑡 = sigm(weight𝑜𝑔[ℎ𝑡−1, x𝑡] + bias𝑜𝑔, (33) 

Finally, the above steps result in the final layer’s filtered output that is of the form: 

h𝑡 = og𝑡 ∗ hyptan(c𝑡). (34) 

The above procedure provides the steps occurring in each memory cell and the 

way they control information, progressively over and over again among layers until the 

final estimated value that minimizes the error term is eventually reached. Perhaps it 

sounds a little complicated, but that is how RNNs work and LSTM being the improved 

version of RNNs, holds their core architecture. Now, LSTM contrariwise to RNNs 

thanks to its lookback period window and its ability to learn both the short-term and the 

long-term data characteristics, can generate multiple days ahead forecasts. Having 

produced the 1 day ahead forecast, incorporates forecasted value, updates data set and 

moves on to the next and so on, until all values for the specified horizon are gathered: 

h𝑡+ℎ = og𝑡+ℎ ∗ hyptan(c𝑡+ℎ). (35) 

In this study the inclusion of LSTM is used for modelling and forecasting components 

that their nature excludes more elementary frameworks.  

 

4. Criteria for model selection and forecast evaluation  

4.1. Forecast evaluation criteria  

  The aim of this study is twofold. The first is to preserve the robustness of 

decomposition process when employed in modeling financial time series, while the 

second is to figure out whether the proposed modelling architecture, can actually result 

in optimal forecast performance. We specify optimality through the production of 

meaningful and profitable forecasts for market participants, who engage dynamically 

in derivatives markets and seek to encompass futures contracts in their portfolios. Thus, 

we develop an objective-based forecast evaluation criterion, an economic criterion, 

incorporated along the classic statistical criterion of mean squared error, MSE, which 

is estimated by: 

𝑀𝑆𝐸𝑖,ℎ = T̃−1∑(VIX𝑖,𝑡+ℎ|𝑡 − VIX𝑡+ℎ)
2

T̃

𝑡=1

 (36) 
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where, VIX𝑖,𝑡+ℎ|𝑡 is the forecast from model 𝑖 for day 𝑡 + ℎ and VIX𝑡+ℎ is the 

actual value of VIX volatility index at day 𝑡 + ℎ. T̃ is the out-of-sample forecast period 

and the subindex 𝑖 denotes the i=1,2,…,32 different models. The reported MSE on the 

section of empirical findings, when for the decomposition-based models, denotes the 

aggregated forecast error, thus, tables report the total error. It may appear that we rest 

upon the empirical findings of a single study, to validate that total error from 

aggregating forecasts of components is less or equal to the ones generated without 

primary decomposing, but there is ground evidence that total error can be smaller by 

forecasting the decomposed variables. Degiannakis (2023) pointed out through a series 

of Monte Carlo simulations, that MSE of aggregated predictions of GDP22 

subcomponents was lower to the one of the predicted GDP in total.  

Now, as for the economic criterion we follow a simple, yet powerful trading rule 

best expressed by two conditions: 

           1. If      VIX𝑖,𝑡+ℎ|𝑡 > VIX𝑡   then we go long on VIX futures. 

           2. If     VIX𝑖,𝑡+ℎ|𝑡 < VIX𝑡   then we go short on VIX futures. 

Depending on the forecasted values, each day for the following day and up to 22 

days ahead, for the entire out-of-sample period, we reconstruct daily our portfolio by 

holding long or short positions on VIX futures. Short or long positions are translated 

into selling or purchasing VIX futures, respectively. Therefore, at the end of the entire 

out-of-sample we calculate the cumulative returns (CR), provided through: 

CR𝑖,ℎ =∑(I𝑖,𝑡 ×
(VIX𝑖,𝑡+ℎ − VIX𝑡)

VIX𝑡
)

T̃

𝑡=1

 and I𝑖,𝑡

= {
1 if VIX𝑖,𝑡+ℎ|𝑡 > VIX𝑡
−1 if VIX𝑖,𝑡+ℎ|𝑡 ≤ VIX𝑡 .

 

(37) 

4.2. Model confidence set  

A study that faces a multiple comparisons problem, deals with 32 models and 

diverse forecast horizons, would be diminished, if it did not employ a model selection 

procedure like the one proposed by Hansen et al. (2011), the model confidence set 

(MCS) test. MCS test, has turned out to be a valuable tool with several advances over 

 
22 GDP refers to the Gros Domestic Product. 
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other identical tests23. MCS test identifies the set of the best models, in terms of the 

evaluation criterion applied in a study and treats entire set of models equally without 

testing against the value of a benchmark model. Here we have the statistical loss 

function of MSE and the economic criterion. MCS test will provide the p-values that 

will tell of the set of the best performing models or the ones that inevitably will be 

excluded, depending on the prespecified significance level. Thus, in the tables of 

findings presented in section 6, we also report the p-values of the MCS test. 

4.3. Direction-of-Change  

In this study we employ two contradictive evaluation measures, a classic one and 

an economic criterion directly involving profits and losses. Therefore, the inclusion of 

an extra forecast evaluation technique, is essential. Direction-of-Change, (DoC), is a 

substantial feature, especially for trading exercises, in order to test the ability of a 

forecast to generate economic profit. Economic profits from long or short positions 

accelerate only when correctly predicting market’s direction. Sometimes what is critical 

is the ability to predict directional accuracy and not the exact forecast accuracy 

(Degiannakis and Filis, 2018). DoC reports a proportion, PR𝑖, denoting the percentage 

of days a forecast correctly predicted the direction of the actual implied volatility index:  

𝑃𝑖,𝑡,ℎ = {

   1  if   VIX𝑖,𝑡+ℎ|𝑡   >   VIX𝑡     and   VIX𝑡+ℎ   >   VIX𝑡
1  if   VIX𝑖,𝑡+ℎ|𝑡   <   VIX𝑡     and   VIX𝑡+ℎ  <   VIX𝑡

0 otherwise,                   

 (38) 

and  

PR𝑖,ℎ = T̃
−1∑P𝑖,𝑡,ℎ

T̃

𝑖=1

,  (39) 

where 𝑃𝑖,𝑡,ℎ, is a dummy variable that reports whether the forecast of model i (i=1, 

2…,32) correctly predicted the volatility’s upward or downward movement. Now, in 

order for the reported DoC rate to be significant, we need to be able to evaluate it. Thus, 

we also employ the non-parametric test of Pesaran and Timmerman (2009), which 

answers to the null hypothesis of no directional accuracy.  

 
23 Here we refer to the superior predictive ability test (SPA) of Hansen (2006) that again is used in 

identical studies, but it proceeds with its estimations for model selection, based on the values a 

benchmark model returned for a statistical or economic loss function.  
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4.4. Adjusting for the portfolio risk 

Trading practices, which claim excess returns, should be able to measure the 

risk they undertake and account for whether they are indeed profitable or not. There are 

two widely applied metrics to measure the risk-adjusted performance of a trade, 

amongst others, the Sharpe ratio that was introduced by William Sharpe (Sharpe, 1963) 

and the Sortino ratio named after Frank Sortino. Sharpe Ratio measures excess return 

of a portfolio per unit of volatility and is denoted by:  

𝑆ℎ𝑅𝑖,ℎ =
𝑅𝑖,ℎ − 𝑟𝑓

𝜎𝑖,ℎ
, (40) 

where, 𝑅𝑖,ℎ are the annualized daily returns of model i, 𝑟𝑓 is the risk-free rate that is 

conceived to be better represented by the 3-month T-bill rate and 𝜎𝑖,ℎ is the standard 

deviation of the returns of model i. The 𝑅𝑖,ℎ can be computed as √252T̃−1CR𝑖,ℎ or even 

better based on the log-returns as 𝑅𝑖,ℎ = √252T̃−1∑ I𝑖,𝑡 (𝑙𝑜𝑔(VIX𝑖,𝑡+ℎ) −
T̃
𝑡=1

𝑙𝑜𝑔(VIX𝑡)), for I𝑖,𝑡 = 1 if VIX𝑖,𝑡+ℎ|𝑡 > VIX𝑡 and I𝑖,𝑡 = −1 if  VIX𝑖,𝑡+ℎ|𝑡 ≤ VIX𝑡 . We 

select the second formulation although there are no qualitatively differences. Sortino 

and Price (1994) suggest instead of using the risk-free rate to use the average annual or 

monthly return of a market index (MAR).  

The Sortino ratio, on the other hand, is an extension of Sharpe ratio without 

though being a complete measure of risk, rather it was proposed to face some recorded 

limitations of the standard deviation metric (Sortino and Forsey, 1996) Thus, it was 

created guided by the realization that large positive performance deviations, should not 

be penalized in the same manner to negative deviations. That is the reason why there 

are different versions for measuring the ratio, here we use the following form: 

 

𝑆𝑜𝑟𝑅𝑖,ℎ =
𝑅𝑖,ℎ −𝑀𝐴𝑅

𝜎𝑖,ℎ
(−)

, (41) 

where MAR denotes the minimum accepted return; so, we stick to the risk-free 

rate and 𝜎𝑖,ℎ
(−)

 is the standard deviation of portfolio’s negative returns. A Sharpe or 

Sortino ratio over 2 are considered to be good for the trading strategy employed, but 

generally, common practise holds that the higher the rate the better, although it holds 

true that implied volatility indices and the linked assets come with rather low ratios, 

lower from unity.  
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5. Data description 

  Study is focused on implied volatility. We chose VIX index, the trademark of 

US stock market’s implied volatility. The index itself is not tradable but is an index that 

forms an expectation24 of markets’ volatility for the following 30-days and is the key 

factor for pricing VIX derivatives. It constitutes a major informative tool for 

implementing trading strategies with options and futures, while having a distinctive 

structure differentiated by other volatility measures.  As a result, is widely exploited by 

investors, policy makers, market makers etc. Here, we decompose, model and forecast 

VIX in order to invest in VIX futures, one of the major tradable instruments of VIX. 

No matter if index itself is more sensitive to market movements, by modelling VIX we 

avoid the frictions imposed by the constitution of VIX futures time series. Futures are 

characterized by jumps and discontinuities, since every month the tracked product 

alters, so it is not a proper instrument for modeling. Thus, VIX is more appropriate for 

the proposed framework and futures more fitted for volatility allocation practices.  

But, we did not naively go for the VIX futures series, nor did calculations that 

would result in misleading profits or losses. VIX futures are characterized of having 

unique return drivers (Moran and Dash, 2007) and unique properties (Szado, 2018) 

attributed to the fact that their returns are highly correlated to VIX, but negatively 

correlated with equites not necessarily the SP500 equites, but other equites of major 

stock indices as well. This fact makes then extremely alluring for investors and risk 

managers, who incorporate them daily for hedging, capitalization, or portfolio 

diversification in order to get protection against extreme negative movements. 

Moreover, there also exists the expiration and the roll, that raises the challenging bar, 

The third Tuesday of each month, the expiration of the present month contract takes 

place. The Wednesday that follows, the front month’s contract is set in action. There is 

when the roll cost or the roll yield occurs and can be a source of losses or gains, due to 

the difference in the price levels between the two contracts and the spot price of VIX. 

When the price of the contract that expires is lower than the next month’s contract 

(contango), then rolling comes with the cost of paying more in order to swap in the next 

month’s contract. When the price of the contract that expires is higher than the next 

 
24 VIX is a widely recognized index and the way it is calculated has been widely covered and analyzed 

in numerous studies and for practical reasons it is omitted from the present study. For the not so informed 

user, one can always resort to https://cdn.cboe.com/resources/vix/VIX_Methodology.pdf where there is 

extensive analysis on the methodology is being applied for index’s construction. 

https://cdn.cboe.com/resources/vix/VIX_Methodology.pdf
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month’s contract (backwardation), then rolling incurs gains due to the roll yield. Since 

VIX futures most of the times are in contango and only few in backwardation, investors 

entail a significant roll cost25. 

Table 1 presents the price of the active contract and the price of next month’s 

contract at the expiration date of the randomly chosen third week of the October of 

2022. The price of October’s contract is 30.86, while the one for November is 30.15. 

The following day the price of October’s contract appears in the official records, while 

November is the active one. So, no matter what the final outcome shall be, for an 

investor that chooses as a settlement day the final trading day for the asset, she/he 

should close her/his position on October’s contract and go for the November’s on 

Tuesday.  

[TABLE 1 HERE]  

In this tailored trading exercise, we consider the roll for the entire out of sample 

period, report the cumulative returns, account for the total losses or profits and manage 

to exploit the exact conditions under which VIX futures market operates and exposure 

is conducted. Daily data for both VIX and VIX futures were retrieved from CBOE26. 

The sample of VIX, consists of 2600 trading days spanning from 21st of August 2012 

up to 30th of November 2022, while for VIX futures, sample consists of 1600 trading 

days spanning from 12th of August 2016 up to 30th of November 2022, that is for the 

out-of-sample period.  

5.1. Descriptive statistics 

Table 2 reports the descriptive statistics of VIX, VIX futures, the logarithm of 

VIX and the correlation of VIX to VIX futures, which discloses the strong underlying 

relation (Daigler and Rossi, 2006; Szado 2009; Alexander et al., 2016), vital for the 

trade we engage in. Table 1 confirms the non-normal distribution of VIX, the positive 

skewness and the leptokurtic condition mainly attributed to extreme volatility 

movements (Degiannakis and Filis, 2022). Inspection also confirms another highlighted 

feature, the mean reverting property (Szado, 2020). But still there is another one 

recognizable feature this time concerning the logarithm of VIX. The logarithmic form 

 
25 An investor in order to get protection against extreme movements during the final settlement day and 

minimize the possible roll cost, has the ability to roll 5 or 6 days earlier.  
26 Data for VIX futures concerning the values of the first month contract at the day and the following day 

when settlement and roll takes place were retrieved from www.vixcentral.com.    

http://www.vixcentral.com/
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comes with better statistical properties compared to VIX, more suitable for modeling; 

hence, in our study we incorporate the logarithmic form of VIX to construct the 

frameworks, an action dictated not only from the improved features, but also from the 

fact that some decomposition methods operate optimally under the transformed version.  

[TABLE 2 HERE] 

6. Empirical Findings   

In a study, whose major aim and contribution lies in displaying the proper use of 

decomposition techniques, when forecasting and trading financial time series, analysis 

could not but start from the inspection of retrieved components. Figures 2 to 4, depict 

the components of two randomly chosen rolling samples of VIX for the methods of 

EMD, HVD and EWT, respectively. It is important to investigate, how the nature and 

trend of processes, completely alters through successive rolling samples27, since they 

will be used as the daily input for the in-sample estimation and later on for forecast 

generation of a completely unknown future path. Although this aspect raises a little the 

complexity of entire process, it is also the one that validates the economic significance 

of our findings. 

[FIGURE 2 HERE] 

[FIGURE 3 HERE] 

[FIGURE 4 HERE] 

At this point it would be helpful to reiterate how individual components were 

modeled so as there will not be any inconsistencies. All components are modeled 

according to the stochastic process they undergone. Each component holds a distinctive 

nature, a part of the original input and its inner characteristics. These are the ones to be 

unmasked during the decomposition process. We distinguish their nature by applying, 

at least for the parametric models, all statistical tests that would specify whether a 

component was simply an AR (1), AR (3), AR (4) and so on. We test all conditions that 

apply, in order to hold and recure to all relevant information criteria, Akaike 

information criterion (AIC), Schwarz information criterion (SIC) etc. For components 

 
27 The number of components for techniques that are not user specified alters between successive 

samplings. For the EMD and EEMD techniques, there were 5 components, while in others were 6. This 

of course adds a bit in computational difficulty but in that way, we replicate the exact way information 

arrives.   
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that are not stationary and generally exceed a more distinctive pattern, the LSTM or 

HW are employed. There are also components that exceed a white noise process thus, 

no modeling takes place on them. We have 28 decomposition-based models. In order 

to refrain from an extensive representation that would make narration rather tiresome, 

we have gathered all 28 models in Table A1, in the Appendix section. The fact that we 

experimented especially with the HW and went on to also model all components from 

all techniques with HW as well, it was something dictated by modern literature who 

find it be really efficient in generating profitable forecasts (Degiannakis et al., 2018). 

For a researcher that would desire to replicate proposed procedure a thing to bear in 

mind is that all depends firstly on the variable of interest, since decomposition unmasks 

all its inner characteristics and secondly on the appropriate tests that have to be 

conducted.  

The secondary scope of this study is to show that objective-based evaluation 

criteria are more informative rich compared to statistical loss functions, when trading 

profits, need to be evaluated. Table 3 reports the values of the MSE along the p-values 

of its respective MCS, for all forecast horizons. The reported MSE is the aggregated 

one, as emerges from the summation of the individual forecasts of the individual 

components for each of the 6 disaggregation techniques. MCS informs that amongst 

the best performing models are included, apart from some of the proposed frameworks, 

3 out of the 4 benchmark models. Outcome shows that especially for horizons of 5 to 

22 trading days ahead, there are infinitesimally small differences between benchmark 

models and the more sophisticated ones. Thus, we cannot claim any significant gain in 

predictive accuracy. The fact that the higher p-values of MCS are reported for the more 

sophisticated frameworks, remains only an indication that decomposition-based models 

from a statistical perspective, are efficient enough. But the verdict remains that simple 

models can compete equally well with the more advanced ones.  

[TABLE 3 HERE] 

Now, when considering the economic criterion, the statistically imposed equality 

amongst forecast models, suddenly debases. Table 4 reports the cumulative returns of 

models28 followed by the MCS test p-values at the right column of each forecast 

horizon. The measure clearly highlights how asymmetric outcome between the 

 
28 Cumulative returns reported in Table 4 are not expressed on % points. 
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statistical and the economic loss functions, can actually be. It also highlights how 

accuracy should be quantified while evaluating trading strategies. The reported 

cumulative returns at least for three of the proposed techniques, by far exceed those 

generated by the AR1, the HAR, the HW and the LSTM, something also confirmed by 

the reported MCS test p-values. Most of the EEMD-based and EMD-based models 

outperformed for horizons of 5 to 22 trading days ahead, followed by SSA-based 

models for the 1 and 5 trading days ahead horizon and HVD-HAR-AR, HVD-AR1-AR 

and HVD-LSTM-AR for the 5 days ahead. EEMD-HW-AR-HAR generated the highest 

cumulative returns that reach the value of 44.17 for the 5 days and the 41.53 for the 10 

days ahead horizon, that is 44 and 41 times the initial invested capital, respectively. 

EMD-based models follow, with significant cumulative returns ranging between 12.44 

to 39.93 for horizons of 5, 10 and 22 days ahead29.  

[TABLE 4 HERE] 

Tables 3 and 4 for the same models, demonstrate two contradictive outcomes, an 

outcome of no predictive gain and an outcome of accelerated economic significance. 

Thus, we raise an important issue, that statistic loss functions, who measure the distance 

of forecasts from the actual price level can possibly direct towards incremental losses, 

if they cannot successfully point out towards the most profitable model that correctly 

predicts the direction of the underlying asset, especially in cases when an investor or 

risk manager follows a model-based trading strategy. Table 5 that follows, reports the 

rates of the DoC evaluation test and validates recordings of Table 4, with which it is 

aligned. The EEMD-HW-AR-HAR model that recorded the highest value in 

cumulative returns, according to DoC, correctly predicted the direction of VIX index 

for the 82% of times in the out-of-sample period of the 1600 trading days for the 5 days 

ahead horizon and about 78% of the times for the 10 days ahead horizon. Significant 

rates, also, are reported for the models that performed a little lower but correctly 

predicted the directional movement of the implied volatility index in a range spanning 

from 55% to 77%. We further validate the significance of all overperforming models, 

by applying the Pesaran and Timmermann (2009) test. We find that for all models that 

 
29 We do not place much attention on the 1 day ahead forecast horizon for the cases of the EEMD and 

EMD-based models due to the way the two techniques are implemented. At sections 3.1 and 3.2 we 

specified that we used the zero-end cubic spline condition, so literally the last observation in every rolling 

sample of the components, is excluded as no decomposition takes place.  
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record rates 55% and over, for all forecasting horizons, the null hypothesis is rejected 

at 1% level of significance. 

[TABLE 5 HERE] 

Furthermore, DoC rates that high are unique in financial literature. Relative 

studies as Degiannakis and Filis (2018) and Delis et al. (2022) have reached DoC rates 

up to 68%. Generally, rates over 55% denote gains, so no matter if it is 55% or 65%, 

the models are profitable because they generate extra returns. When models do not 

correctly predict the direction of the market index, we end up with losses (DoC<50%). 

Moreover, there are also the two metrics the Sharpe and the Sortino ratios that 

we have also included in our study to account for the risk undertaken by reconstructing 

our position on a daily basis. Results for the monthly Sharpe and Sortino ratios are 

reported on Tables 6 and 7, respectively. We end with ratios way over 2 for all those 

models that outperformed, a number that signifies a balanced portfolio.  

[TABLE 6 HERE] 

[TABLE 7 HERE] 

Empirical findings of this study, as they are reported in this final section, 

conclude by justifying the multiple steps of this modeling architecture. Decomposition 

techniques boost the performance of even classic models, when incorporated in the 

various modelling combinations of the separate modes and enhance the final outcome 

of implemented strategy, as the diverse tests implemented, verify. Perhaps not all 

decomposition-based models generated remarkable excess returns, but the ones that 

did, were high enough. Thus, there are three points to be highlighted. The one is that 

from all the proposed decomposition techniques, EMD framework is the only one to be 

characterized complete (Huang et al., 1998). EEMD follows in resolution as is the one 

with the lowest MSE30 that of 0.02. For SSA this rate is 0.42, while for HVD it is 0.49. 

The MSE for the EWT is 1.2 and finally, for VMD, by using 5 components, it ends 

being 2.4. Thus, we comprehend especially for the user defined methods that the chosen 

number of components can seriously deteriorate process. A rate of 0.02 to a rate of 2.4 

of how close, the addition of individual components, approximates original input, is 

 
30 Here MSE is the same statistical loss function used in our data only here it measures the divergence 

each decomposing method had from actual values of original input signal. That is how close the 

aggregated values of the components, approximate the values of the rolling samples of VIX index. 
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significant for the forecasting procedure and especially when forecasts have to be 

evaluated compared to actual future values. Perhaps that is the reason for the mediocre 

or bad performance of EWT-based and VMD-based models in the diverse forecast 

horizons. These declines between methods, probably shape optimality of final 

forecasts. Figures 5 to 8, visualize the cumulative returns of the MCS models, along the 

benchmark models for the 1, 5, 10 and 22 trading days ahead forecast horizon, while 

Figure A1 at the appendix section, depict a mixture of most sophisticated models for 

the same horizons, where also the performance of EWT-based and VMD-based, is 

illustrated. Another point that could be highlighted and possibly plays a critical role, is 

the modelling combinations of the forecasted components of each of the six 

decomposition techniques. Let us consider Figures 6 and 8 for the 5 and 22 days ahead 

horizon, respectively, and concentrate on EMD-HW, EMD-LSTM-AR or EMD-HW-

AR models. For the case of EMD process, where all components are being modelled 

via HW framework, we notice cumulative returns to skyrocket at the rate of 38.78 for 

the 5 days ahead horizon. When the same components are modelled through a 

combination of the HW or LSTM and AR31, cumulative returns decrease to 21.71. 

Furthermore, these model combinations apart from resulting in decreased cumulative 

returns, seem to be affected during the COVID-19 pandemic outburst and steadily 

recover through the remaining modeling period. This could be an indication that trading 

strategy followed could be altered during the turmoil, but our intension was to keep 

process as simple as possible and naively trade VIX futures purely guided by the 

forecasted value of VIX index out of the presented models. Additionally, it could be an 

indication that the way, components of this disaggregation method, were modeled, 

although statistically correct was not efficient for trade in period covered by extreme 

turbulence. It could also simply imply that there was a wrong combination of the 

modeled components.  

[FIGURE 5 HERE] 

[FIGURE 6 HERE] 

[FIGURE 7 HERE] 

[FIGURE 8 HERE] 

 
31 Not AR1 but for convenience we simply refer to as an AR process, since components whose process 

was a pure autoregressive one were found to exceed higher orders or combinations of it.  
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Finally, the 3rd point is the very own trading instrument, the VIX futures. VIX 

futures have some distinctive characteristics that allow for a close replication of a 

markets’ operation but at the same time allow for a profitable trade (Moran and Dash, 

2007; Szado, 2018). Despite the roll and despite the fact that for most of out-of-sample 

period, contract prices where in contango, indicating a loss by rolling to next month’s 

contract, process was not negatively deteriorated. We ended recording increased 

cumulative returns.  

 

7 .  Conclusion 

The original scope of this study is to showcase how decomposition techniques 

should be properly incorporated and utilized when engaging in trading practices of 

financial time series. In such cases efficient replication of real-life operations is desired 

and thus, refraining from data leakage and data snooping is the most critical step in 

order to successfully validate robustness of empirical findings. In this way we manage 

to contribute to this literature strand and propose a process that can be utilized for other 

financial time series as well. Afterall, financial time series are not plain data, they are 

core instruments of financial markets and therefore of the global financial system. They 

hold incremental information for traders, risk and portfolio managers, policy agencies, 

so research must be targeted to their utility, especially when forecast is involved. Hence, 

study also focusses on a secondary aim, which is to show that when forecasts serve a 

realistic economic purpose, their accuracy and performance, should be evaluated based 

to this purpose.  

Our study manages to serve this purpose and certify their profitability under 

economic standards. We produce useful for the market participant forecasts by pairing 

six decomposition techniques, the EMD, the EEMD, the SSA, the HVD, the EWT and 

the VMD, with parametric and non-parametric modelling frameworks, namely the AR, 

the HAR, the HW and the LSTM. On a daily basis in our rolling training sample, we 

decompose, model and forecast VIX index for 1, 5, 10 and 22 trading days ahead 

horizon and for an out of sample period of 1600 trading days. We record the profitability 

of forecasts by engaging in trading VIX futures, a dynamic tool in the hands of 

investors, used massively for hedging, diversification and even capitalization aims. 

There by reconstructing daily our position, solely depending on the forecasted value of 
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VIX we consider the cumulative returns recorded at the end of the out-of-sample period.  

Robustness of findings was verified by implementing a series of empirical tests.  

The EMD-based and the EEMD-based followed by the SSA-based models were 

amongst the best performing models, with EEMD-HW-AR-HAR by far exceeding 

expectations, returning 44 times the invested capital for the 5 days ahead horizon and 

41 times for the 10 days ahead. The fact that not all decomposition-based models 

performed equally well, only intensifies the different theoretical and empirical 

backgrounds that could take a toll when modelling financial data and reveal 

shortcomings of techniques that are disclosed only when properly incorporated in 

similar practices. 

Concluding, we point out that ensemble methods can be effectively utilized in a 

process of forecasting and trading practices when objective-based evaluation criteria 

are applied. We also stress that the modelling combinations of the produced modes out 

of the decomposition techniques, does play a critical role in the generated cumulative 

returns, but we definitely highlight the significance of taking into consideration the 

actual way markets operate and exposure is conducted. Future research can shed new 

light on above findings by incorporating different financial time series, different 

decomposition techniques, different forecasting frameworks or different objective-

based evaluation criteria.  
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Tables 

 

Table 1 . VIX futures contracts prices  

18/10/2022  Tuesday: Expiration date of October’s contract October’s contract: 30.86 

November’s contract: 30.15 

19/10/2022  Wednesday: First day of November’s contract October’s contract: 31.77 (expired) 

November’s contract: 30.40 (active)  

Note: Τable reports the prices of VIX futures contracts at the expiration and the following day of the 

expiration. In most studies October’s price is reported for both days, but especially for Wednesday where 

October’s have ceased to exist is more appropriate November’s to be officially reported since is the one 

traded. The values reported here, were retrieved from vixcentral.com.  

 
 

 

Table 2. Descriptive Statistics of VIX, the logarithm of VIX and VIX futures 

  VIX Log. VIX VIX futures 

Mean 

Median  

Max 

Min 

St. Dev 

Coef. Of Variation 

Skewness 

Kurtosis 

J-Bera 

ADF  

Corr. with VIX 

 19.27 

17.28 

82.69 

9.14 

8.52 

0.44 

2.21 

9.17 

6889.52 

-4.438* 

- 

2.88 

2.84 

4.41 

2.21 

0.38 

0.13 

0.52 

0.10 

73.29 

-4.769* 

- 

19.91 

18.17 

72.63 

9.88 

7.44 

0.37 

1.71 

5.94 

3135.72 

-3.943* 

0.95 

Note: Descriptive statistics for both VIX and VIX futures agree with the stylized facts of volatility. The 

correlation between VIX and VIX futures for the period under investigation also confirms their strong 

connection, crucial for trading exercises. The * denotes significance at the 1% level for the ADF, so both 

series do not exceed unit root issues. 
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Table 3. MSE values of forecasting models 

Model      

  FORECASTING HORIZON 

 
1 day 5 days 10 days 

 22 

days 

 MSE MCS MSE MCS MSE MCS MSE MCS 

AR1 

HAR 

HW 
LSTM 

EMD-HW 

EMD-HW-AR 
EMD-LSTM-AR 

EMD-LSTM-HW-

AR 
EEMD-HW 

EEMD-HW-AR 

EEMD-HW-AR-

HAR 

EEMD-LSTM-AR 
EEMD-LSTM-AR-

HAR 

SSA-LSTM-AR 
SSA-LSTM-HAR 

SSA-LSTM-HW 

SSA-HW 
SSA-HW-HAR 

SSA-HW-AR  

HVD-HW 
HVD-HW-AR 

HVD-HAR-AR 

HVD-AR1-AR 
HVD-LSTM-AR 

EWT-HW 

EWT-HW-AR 
EWT-LSTM-HW 

EWT-LSTM-AR 

VMD-HW 
VMD-HW-AR 

VMD-LSTM-AR 

VMD-LSTM-HW 

4.342 

4.317 

4.257 
14.039 

3.144 
4.145 

6.703 

5.146 
3.145 

3.269 

3.468 
7.094 

8.145 

4.121 
4.106 

4.139 

4.047 
4.063 

3.971 

6.781 
6.615 

5.658 

4.676 
13.826 

6.802 

6.445 
6.583 

4.728 

9.553 
9.934 

11.155 

10.659 

0.000 

0.000 

0.000 
0.000 

1.000* 

0.000 

0.000 

0.000 
0.652* 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 

16.960 

16.775 

111.609 
15.978 

32.803 
18.618 

16.197 

20.675 
33.892 

16.791 

28.476 
20.948 

27.667 

15.671 
16.683 

16.045 

16.413 
16.229 

15.455 

83.256 
32.464 

18.946 

16.187 
26.867 

20.778 

25.071 
20.636 

25.813 

19.876 
22.630 

24.055 

21.282 

0.815* 

0.845* 

0.000 
0.901* 

0.000 
0.607* 

0.887* 

0.004 
0.000 

0.845 

0.000 
0.004 

0.000 

0.901* 

0.843* 

0.901* 

0.867* 

0.891* 

1.000* 

0.000 
0.000 

0.580* 

0.901* 

0.000 

0.004 

0.000 
0.004 

0.000 

0.045 
0.004 

0.000 

0.004 

30.91 

30.37 

1042.20 
29.523 

185.492 
45.175 

33.393 

50.346 
94.862 

47.860 

88.862 
38.448 

81.486 

28.007 
30.676 

29.098 

30.547 
29.025 

27.722 

779.544 
558.121 

39.863 

35.712 
244.755 

37.577 

44.505 
37.778 

46.461 

32.956 
39.041 

42.385 

34.560 

0.422* 

0.422* 

0.000 
0.773* 

0.000 
0.001 

0.156* 

0.000 
0.000 

0.000 

0.000 
0.075 

0.000 

0.773* 

0.422* 

0.773* 

0.422* 

0.773* 

1.000* 

0.000 
0.003 

0.060 

0.103* 

0.000 

0.089 

0.003 
0.089 

0.001 

0.231* 

0.060 

0.003 

0.156* 

53.12 

51.28 

2553.5
9 

59.150 

297.84
4 

119.97

3 
71.294 

96.308 

197.16

5 

139.84
9 

150.10

4 
63.780 

82.054 

49.665 
53.296 

65.104 

66.653 
52.227 

49.555 

4818.4
52 

2461.5

66 
82.434 

99.441 

272.67
7 

76.215 

89.045 
81.528 

89.040 

66.874 
78.114 

89.704 

69.392 

0.836* 

0.859* 

0.000 
0.715* 

0.000 

0.000 
0.461* 

0.004 

0.000 
0.000 

0.000 

0.617* 

0.371* 

0.901* 

0.836* 

0.598* 

0.598* 

0.859* 

1.000* 

0.000 
0.000 

0.371* 

0.715* 

0.000 

0.461* 

0.063 
0.371* 

0.063 

0.598* 

0.461* 

0.063 

0.483* 

Note: Τable reports the MSE. Forecast horizon spans from 1, 5 10 to 22 days ahead, respectively. With * and bold 

writing we denote the models that belong to the MCS. The choice of the models for the MCS test, depends on the 

threshold significant level we choose, as well other parameters involving MCS test framework. In this study we use 

the 0.15 level. The MSEs reported are for the aggregated forecasts that were generated after the summation of the 

individual forecasts of the components of each decomposition technique. Each model in the table denotes a different 

aggregated forecast combination. For instance, EMD-HW model denotes an aggregated forecast composed of 

forecasts of components of EMD, where all were forecasted via HW framework.  

We deduce, that based on MSE in the MCS of the best performing models do belong the AR1, the HAR and the 

LSTM for the 5, 10 and 22 days ahead horizons. 
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Table 4. Cumulative returns of forecasting models 

Model     

 FORECAST HORIZON 

 1 day 5 days 10 days 22 days 

 Cum. 

Returns 
MCS 

Cum. 

Returns 
MCS 

Cum. 

Returns 
MCS 

Cum. 

Returns 
MCS 

AR1 

HAR 

HW 

LSTM 

EMD-HW 

EMD-HW-AR 

EMD-LSTM-AR 

EMD-LSTM-HW-AR 

EEMD-HW 

EEMD-HW-AR 

EEMD-HW-AR-HAR 

EEMD-LSTM-AR 

EEMD-LSTM-AR-HAR 

SSA-LSTM-AR 

SSA-LSTM-HAR 

SSA-LSTM-HW 

SSA-HW 

SSA-HW-HAR 

SSA-HW-AR  

HVD-HW 

HVD-HW-AR 

HVD-HAR-AR 

HVD-AR1-AR 

HVD-LSTM-AR 

EWT-HW 

EWT-HW-AR 

EWT-LSTM-HW 

EWT-LSTM-AR 

VMD-HW 

VMD-HW-AR 

VMD-LSTM-AR 

VMD-LSTM-HW 

2.691 

3.249 

0.247 

3.238 

33.038 

32.593 

-10.921 

4.029 

34.400 

27.528 

30.171 

1.461 

0.647 

14.247 

12.409 

10.486 

8.219 

9.149 

10.143 

1.316 

4.099 

4.789 

3.221 

7.603 

2.115 

5.134 

3.034 

3.124 

1.432 

2.349 

2.641 

3.437 

0.005 

0.005 

0.000 

0.005 

0.973* 

0.953* 

0.000 

0.011 

1.000* 

0.937* 

0.950* 

0.001 

0.000 

0.223* 

0.223* 

0.223* 

0.053 

0.053 

0.233* 

0.001 

0.011 

0.011 

0.005 

0.053 

0.005 

0.011 

0.005 

0.005 

0.001 

0.005 

0.005 

0.005 

3.915 

4.692 

3.505 

0.188 

38.783 

38.347 

12.442 

21.707 

35.990 

24.686 

44.417 

9.252 

38.731 

5.241 

3.295 

1.097 

7.077 

6.940 

9.660 

0.160 

1.856 

5.603 

9.881 

22.198 

1.448 

0.761 

1.247 

3.724 

0.544 

0.296 

2.025 

1.099 

0.090 

0.099 

0.085 

0.000 

0.615* 

0.615* 

0.488* 

0.507* 

0.615* 

0.507* 

1.000* 

0.470* 

0.615* 

0.162* 

0.087 

0.036 

0.162* 

0.150* 

0.470* 

0.000 

0.036 

0.162* 

0.470* 

0.507* 

0.036 

0.000 

0.036 

0.090 

0.000 

0.000 

0.085 

0.036 

3.969 

5.446 

-2.462 

2.140 

38.616 

36.935 

13.342 

27.202 

38.043 

32.704 

41.530 

11.527 

37.077 

8.594 

6.725 

6.265 

6.191 

9.488 

8.830 

-0.591 

0.104 

4.652 

3.854 

10.623 

0.812 

3.040 

2.081 

2.847 

-0.160 

1.396 

2.636 

0.487 

0.000 

0.000 

0.000 

0.000 

0.145* 

0.145* 

0.013 

0.145* 

0.145* 

0.145* 

1.000* 

0.013 

0.145* 

0.004 

0.004 

0.004 

0.004 

0.004 

0.004 

0.000 

0.000 

0.000 

0.000 

0.004 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

4.319 

5.558 

3.511 

-2.372 

37.028 

31.839 

18.634 

28.065 

36.264 

31.281 

34.360 

19.608 

22.734 

6.225 

5.076 

5.787 

4.174 

9.105 

12.233 

0.602 

0.579 

3.069 

1.103 

6.876 

0.110 

-0.217 

-0.792 

1.377 

-0.115 

1.473 

2.415 

-0.722 

0.006 

0.021 

0.000 

0.000 

1.000* 

0.427* 

0.144* 

0.217* 

0.463* 

0.427* 

0.463* 

0.144* 

0.186* 

0.060 

0.021 

0.021 

0.015 

0.060 

0.098 

0.000 

0.000 

0.000 

0.000 

0.021 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Note: Table reports the cumulative returns of trading VIX futures (are not expressed in % points) for 1, 5, 10 and 

22 days ahead forecast horizon along with the p-values of the MCS test. With * and bold writing we denote the 

models that belong to the MCS. The choice of the models for the MCS test, depends on the threshold significance 

level we choose, as well other parameters involving MCS test framework. In this study we use the 0.15 level. 

According to the objective-based evaluation criterion, none of the AR1, HAR, HW and LSTM, considered to be the 

benchmark models, do belong to the set of the best-performing models. 
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Table 5. Direction of Change rates of forecasting models  
 Direction of Change    

Model 1 day  5 days   10 days 22 days 

AR1 

HAR 

HW 

LSTM 

EMD-HW 

EMD-HW-AR 

EMD-LSTM-AR 

EMD-LSTM-HW-AR 

EEMD-HW 

EEMD-HW-AR 

EEMD-HW-AR-HAR 

EEMD-LSTM-AR 

EEMD-LSTM-AR-

HAR 

SSA-LSTM-AR 

SSA-LSTM-HAR 

SSA-LSTM-HW 

SSA-HW 

SSA-HW-HAR 

SSA-HW-AR  

HVD-HW 

HVD-HW-AR 

HVD-HAR-AR 

HVD-AR1-AR 

HVD-LSTM-AR 

EWT-HW 

EWT-HW-AR 

EWT-LSTM-HW 

EWT-LSTM-AR 

VMD-HW 

VMD-HW-AR 

VMD-LSTM-AR 

VMD-LSTM-HW 

0.474 

0.486 

0.450 

0.485 

0.743* 

0.616* 

0.397 

0.493 

0.749* 

0.704* 

0.723* 

0.445 

0.427 

0.608* 

0.581* 

0.575* 

0.544 

0.551* 

0.572* 

0.441 

0.497 

0.499 

0.485 

0.511 

0.469 

0.489 

0.482 

0.482 

0.459 

0.463 

0.468 

0.491 

 0.491 

0.502 

0.479 

0.446 

0.768* 

0.703* 

0.553* 

0.642* 

0.754* 

0.670* 

0.821* 

0.534 

0.766* 

0.505 

0.488 

0.469 

0.536 

0.513 

0.541 

0.455 

0.474 

0.518 

0.542 

0.651* 

0.473 

0.450 

0.469 

0.479 

0.444 

0.441 

0.467 

0.455 

 0.488 

0.510 

0.405 

0.476 

0.755* 

0.670* 

0.564 

0.688* 

0.769* 

0.712* 

0.778* 

0.538 

0.722* 

0.520 

0.512 

0.508 

0.501 

0.528 

0.520 

0.411 

0.451 

0.487 

0.479 

0.516 

0.430 

0.465 

0.453 

0.459 

0.423 

0.442 

0.455 

0.411 

0.509 

0.512 

0.489 

0.387 

0.766* 

0.680* 

0.602* 

0.710* 

0.756* 

0.704* 

0.731* 

0.608* 

0.667* 

0.523 

0.511 

0.517 

0.508 

0.530 

0.541 

0.456 

0.466 

0.479 

0.461 

0.499 

0.440 

0.411 

0.402 

0.453 

0.404 

0.458 

0.470 

0.399 

Note: The DoC is the extra forecast evaluation test we adopted for our study, since the MCS test of cumulative 

returns, highlighted the outperformance of some ensemble frameworks. DoC rates do confirm the superiority and 

the ability of some techniques to effectively predict VIX’s correct directional movement. With bold writing and * 

we specify the models with rates over 55%. Their significance is gauged by employing the Pesaran and Timmermann 

(2009) test, under the null hypothesis of no directional accuracy. We find that for all models of proportion of 55% 

and above and for the relevant forecast horizons, the null hypothesis is rejected at 1% level of significance. 
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Table 6. Trading profitability: The Sharpe Ratio 
 Sharpe Ratios    

Model 1 day  5 days  10 days 22 days 

AR1 

HAR 

HW 

LSTM 

EMD-HW 

EMD-HW AR 

EMD-LSTM AR 

EMD-LSTM HW AR 

EEMD HW  

EEMD HW AR HAR 

EEMD HW AR 

EEMD LSTM AR 

HAR 

EEMD LSTM AR 

EWT HW 

EWT HW AR 

EWT LSTM AR 

EWT LSTM HW 

HVD LSTM AR 

HVD HAR AR 

HVD AR1 AR  

HVD HW 

HVD HW AR 

VMD HW AR 

VMD HW 

VMD LSTM AR 

VMD LSTM HW 

SSA LSTM AR 

SSA HW HAR 

SSA HW AR 

SSA LSTM HAR 

SSA LSTM HW 

SSA HW 

0.833 

0.653 

0.036 

0.479 

5.738  

 4.344  

-1.600  

 0.896  

 5.306  

 4.595  

 4.163  

 0.186  

 0.378  

 0.315  

 0.758  

 0.463  

 0.438  

 1.121  

 0.707  

 0.477  

 0.280  

 0.420  

 0.344  

 0.210  

 0.387  

 0.503  

 2.103  

 1.344  

 1.491  

 1.828  

 1.542  

 1.206 

 0.659 

0.835 

0.027 

0.554 

5.780 

4.714 

1.816 

3.227 

7.135 

5.590 

1.361 

6.069 

3.655 

0.212 

0.111 

0.546 

0.183 

3.323 

0.822 

1.454 

0.023 

0.272 

0.043 

0.080 

0.297 

0.161 

0.776 

1.022 

1.425 

0.490 

0.164 

1.043 

 0.643 

0.796 

0.314 

-0.390 

5.711 

4.132 

1.981 

4.125 

1.702 

5.793 

5.965 

5.036 

6.602 

0.119 

0.446 

0.418 

0.306 

1.268 

0.683 

0.566 

-0.087 

0.162 

0.205 

-0.024 

0.387 

0.071 

1.267 

1.299 

1.396 

0.987 

0.921 

0.908 

0.721 

0.703 

-0.376 

0.634 

5.817 

3.585 

4.287 

4.088 

5.681 

4.822 

5.348 

2.940 

3.430 

0.016 

-0.032 

0.203 

-0.117 

0.680 

0.453 

0.149 

0.089 

0.233 

-0.017 

0.356 

0.217 

-0.107 

0.918 

1.348 

1.819 

0.748 

0.803 

0.615 

Note: Table reports the Sharpe ratios of each model. Generally, a ratio above 2 is considered to be good signal for 

the profitability of an investment. The Sharpe ratio actually adjusts portfolio’s returns based on the risk they 

undertake and evaluates them, Here each model denotes a univariate portfolio constructed by naïvely following 

trading VIX futures. We calculate ratio by subtracting the risk-free rate from the annualized portfolio returns and 

then dividing by portfolio’s standard deviation. Risk free rate is set to be the 3-month T-Bill. Here, we observe ratios 

to follow the performance of models as it was recorded at Table 4.  

 

 

 



44 
 

 

 

 

 

 

Table 7. Trading profitability: The Sortino Ratio 
 Sortino Ratios    

Model 1 day                                  5 days                     10 days           22 days                           

AR1 

HAR 

HW 

LSTM 

EMD-HW 

EMD-HW AR 

EMD-LSTM AR 

EMD-LSTM HW AR 

EEMD HW  

EEMD HW AR HAR 

EEMD HW AR 

EEMD LSTM AR 

HAR 

EEMD LSTM AR 

EWT HW 

EWT HW AR 

EWT LSTM AR 

EWT LSTM HW 

HVD LSTM AR 

HVD HAR AR 

HVD AR1 AR 

HVD HW 

HVD HW AR 

VMD HW AR 

VMD HW 

VMD LSTM AR 

VMD LSTM HW 

SSA LSTM AR 

SSA HW HAR 

SSA HW AR 

SSA LSTM HAR 

SSA LSTM HW 

SSA HW 

1.254 

1.683 

-0.012 

0.787 

7.356 

6.418 

-2.324 

1.250 

8.135 

7.000 

5.647 

-0.198 

0.381 

0.794 

2.188 

0.923 

1.031 

2.015 

1.858 

0.872 

0.589 

0.691 

0.624 

0.506 

0.701 

1.029 

4.017 

2.001 

2.283 

3.469 

2.884 

1.934 

 2.321 

3.950 

0.534 

1.618 

8.504 

6.347 

3.323 

5.125 

14.419 

16.719 

12.438 

19.283 

3.763 

2.076 

0.935 

5.230 

2.001 

6.030 

1.422 

3.684 

0.434 

0.534 

0.993 

0.671 

3.633 

1.530 

3.771 

1.909 

4.375 

3.308 

1.690 

3.042 

 1.175 

1.452 

-0.476 

1.006 

9.703 

6.032 

4.243 

5.335 

8.697 

9.181 

7.733 

9.804 

2.387 

0.443 

0.513 

0.831 

0.749 

1.999 

1.011 

1.336 

0.048 

0.350 

0.398 

0.007 

1.041 

0.119 

2.680 

-1.408 

2.787 

2.027 

1.468 

1.368 

1.194 

1.655 

-0.567 

1.361 

10.869 

6.875 

6.212 

5.473 

8.240 

7.221 

6.895 

6.391 

4.827 

0.443 

0.513 

0.831 

0.749 

0.543 

0.963 

0.686 

0.374 

1.064 

-0.231 

0.726 

0.044 

-0.455 

1.825 

3.846 

2.870 

1.503 

1.231 

2.616 

Note: The Sortino ratio although is not a complete measure of risk, it considers some aspects of behavioral finance, 

that argues that large negative shocks do not produce the same feeling as large positive shocks. Thus, ratio being an 

extension of Sharpe ratio, replaces the portfolio’s standard deviation at the denominator of Sharpe ratio to the 

standard deviation of portfolio’s negative returns, penalizing the negative returns that are the ones that seriously 

deteriorate a portfolio’s performance. We notice that Sortino follows the Sharpe ratios recorded at Table 7. Ratios 

above 2 are a good indication for our portfolio profitability. That said, models that outperformed based on the 

recordings of cumulative returns of Table 4, were the ones to record higher Sortino ratios.   
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Figures 

 

Figure 1. Decomposition, modelling and forecasting process  

 
Note: Figure illustrates the rolling samples of the logarithm of VIX that consist of a fixed window of 1000 

observations. On a daily basis the 1000 observations are used as the training data set that is decomposed, modelled 

and forecasted in order to get the aggregate forecasts of VIX for forecast horizons spanning from 1, 5, 10 and 22 

days ahead for the out of sample period of the 1600 trading days, used as the test data set. Evaluation is then 

conducted based on statistical and economic criteria. From the above, i stands for the number of components, j = 

{EMD, EEMD, SSA, HVD, EWT, VMD} and h is the forecast horizon, with h = {1,5,10,22} days ahead.  
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Figure 2a. Components of EMD from two different samples (sample number 1) 

 
Note: At the top of the figure the VIX process of the chosen sample is depicted in order to present how 

radically components alter through succussive samples and how unknown the future process becomes, 

something challenging for the forecasting frameworks that follow decomposition step. Here are the 6 

components of the 1st rolling sample of the EMD process. 
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Figure 2b. Components of EMD from two different samples (sample number1000) 

 
Note: At the top of each figure the VIX process of the chosen sample is depicted in order to present how 

radically components alter through succussive samples and how unknown the future process becomes, 

something challenging for the forecasting frameworks that follow decomposition step. Above are 

presented the 6 components of the 1100th rolling sample of the EMD method. 
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Figure 3a. Components of HVD from two different samples (sample number 1) 

 
Note: HVD process terminates when the difference of the standard deviation between two iterations 

becomes minimum and that plays significant role during the approximate reconstruction of original time 

series. At the top is the VIX process. Above are the 5 components of the 1st rolling sample. 
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Figure 3b. Components of HVD from two different samples (sample number 800) 

 
Note: HVD process terminates when the difference of the standard deviation between two iterations 

becomes limited and that plays significant role during the approximate reconstruction of original time 

series. At the top is the VIX process and below VIX are presented the 5 components of the HVD process 

of the 800th rolling sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

 

 

Figure 4a. Components of EWT from two different samples (sample number 1) 

 
Note: EWT is the method that the user must specify the segments of the Fourier spectrum. The correct 

choice of boundaries will return components that, when reconstructed give an optimum approximation 

of initial data. Components follow the wavelet theory and decomposition begins from the lowest energy 

component towards the highest. The top graph is the VIX process and underneath VICX follow the 4 

components of the EWT for the 1st rolling sample 
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Figure 4b. Components of EWT from two different samples (sample number 500) 

 
Note: EWT is the method that the user must specify the segments of the Fourier spectrum. The correct 

choice of boundaries will return components that, when reconstructed give an optimum approximation 

of initial data. Components follow the wavelet theory and decomposition begins from the lowest energy 

component towards the highest. At the top is the VIX process followed by the 4 components of the EWT 

method of the 500th rolling sample. 
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Figure 5. Cumulative returns of 1 day ahead horizon 

 
Note: Cumulative returns of the best performing models, according to MCS, along with the ones of the 4 benchmark 

models, for the 1 day ahead forecast horizon. All 4 benchmark models have mediocre or negative returns, compared 

to EMD-based, EEMD-based and SSA-based models, which moved with increasing rates during the period under 

investigation. The effect on cumulative returns based on the model combination is noticeable, but more noticeable 

is in the Figure 1a of Appendix section. The values reported in the y-axis are not in % points. 

Figure 6. Cumulative returns of 5 days ahead horizon 

 
Note:  For five days ahead forecast horizon, the cumulative returns earned by the trading strategy we implemented, 

do seem to diverge substantially between the ensemble models and the benchmark models. Of course, there were a 

few more models included in the MCS, but their cumulative returns were closely enough with others and their 

presentation would be rather messy, so we refrained from their inclusion. The values reported in the y-axis are not 

in % points. 
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Figure 7. Cumulative returns of 10 days ahead horizon 

 
Note: For the forecast horizon of ten days ahead fewer models were included in the MCS, but the ones that did, 

come with significant gains compared to benchmark models. The values reported in the y-axis are not in % points. 

 

Figure 8. Cumulative returns of 22 days ahead horizon 

 
Note: All EMD-based and EEMD-based models were the only ones to be included in the MCS for the forecast 

horizon of the 22 days ahead. Generally, most of the EMD-based and EEMD-based models were amongst the best 

performing models for most horizons with significant increased cumulative returns, while benchmark models 

performed mediocre with HW being the one with systematically negative returns for entire period under 

investigation. On the other hand, EMD-HW and EEMD-HW, whose all components were modelled and forecasted 

via the HW framework, were the best performing. The values reported in the y-axis are not in % points. 
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Appendix 

 

Table A1. Decomposition-based models, their components, and their forecasting 

techniques. 

Model # Components Forecasting Technique 

EMD HW 5-6 Components 

Component 1: HW 

Component 2: HW 

Component 3: HW 

Component 4: HW 

Component 5: HW 

EMD HW AR 5-6 Components 

Component 1: HW 

Component 2: HW 

Component 3: AR (3) 

Component 4: AR (2) 

Component 5: AR (1) 

EMD LSTM AR 5-6 Components 

Component 1: LSTM 

Component 2:  LSTM 

Component 3: AR (3) 

Component 4: AR (2) 

Component 5: AR (1) 

EMD-LSTM HW AR 5-6 Components 

Component 1: LSTM 

Component 2:  HW 

Component 3: HW 

Component 4: AR (2) 

Component 5: AR (1) 

EEMD HW 5-6 Components 

Component 1: HW 

Component 2: HW 

Component 3: HW 

Component 4: HW 

Component 5: HW 

EEMD HW AR HAR 5-6 Components 

Component 1: HW 

Component 2: HW 

Component 3: HAR 

Component 4: HAR 

Component 5: AR (1) 

EEMD HW AR 5-6 Components 

Component 1: HW 

Component 2: HW 

Component 3: AR (3) 

Component 4: AR (3) 

Component 5: AR (1) 

EEMD LSTM AR HAR 5-6 Components 

Component 1: LSTM 

Component 2: LSTM 

Component 3: HAR 

Component 4: HAR  

Component 5: AR (1) 
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EEMD LSTM AR 5-6 Components 

Component 1: LSTM 

Component 2: LSTM 

Component 3: AR (3) 

Component 4: AR (2) 

Component 5: AR (1) 

SSA-LSTM-AR 4 Components 

Component 1: LSTM 

Component 2: AR (2) 

Component 3: AR (1) 

SSA-LSTM-HAR 4 Components 

Component 1: LSTM 

Component 2: HAR 

Component 3: HAR 

SSA-LSTM-HW 4 Components 

Component 1: LSTM 

Component 2: HW 

Component 3: HW 

SSA-HW 4 Components 

Component 1: HW 

Component 2: HW 

Component 3: HW 

SSA-HW-HAR 4 Components 

Component 1: HW 

Component 2: HAR 

Component 3: HAR 

SSA-HW-AR 4 Components 

Component 1: HW 

Component 2: AR (2) 

Component 3: AR (1) 

HVD LSTM AR 5 Components  

Component 1: LSTM 

Component 2: AR (1) 

Component 3: AR (2) 

Component 4: AR (5) 

Component 5: AR (5) 

HVD HAR AR 5 Components 

Component 1: HW 

Component 2: AR (1) 

Component 3: AR (2) 

Component 4: AR (5) 

Component 5: AR (5) 

HVD AR1 AR 5 Components 

Component 1: AR (1) 

Component 2: AR (1) 

Component 3: AR (2) 

Component 4: AR (5) 

Component 5: AR (5) 

HVD HW 5 Components 

Component 1: HW 

Component 2: HW 

Component 3: HW 

Component 4: HW 

HVD HW AR 5 Components 

Component 1: HW 

Component 2: AR (1) 

Component 3: AR (2) 

Component 4: AR (5) 

Component 5: AR (5) 
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EWT HW 4 Components 

Component 1: HW 

Component 2: HW 

Component 3: HW 

Component 4: HW 

EWT HW AR 4 Components 

Component 1: HW 

Component 2: AR (1) 

Component 3: AR (1) 

Component 4: HAR 

EWT LSTM AR 4 Components 

Component 1: LSTM 

Component 2: AR (1) 

Component 3: AR (1) 

Component 4: AR (1) 

EWT LSTM HW 4 Components 

Component 1: LSTM 

Component 2: HW 

Component 3: HW 

Component 4: HW 

VMD-HW 5 Components 

Component 1: HW 

Component 2: HW 

Component 3: HW 

Component 4: HW 

Component 5: HW 

VMD-HW-AR 5 components 

Component 1: HW 

Component 2: AR (1) 

Component 3: AR (1) 

Component 4: AR (2) 

Component 5: AR (2) 

VMD-LSTM-AR 5 components 

Component 1: LSTM 

Component 2: AR (1) 

Component 3: AR (1) 

Component 4: AR (2) 

Component 5: AR (2) 

VMD-LSTM-HW 5 components 

Component 1: LSTM 

Component 2: HW 

Component 3: HW 

Component 4: HW 

Component 5: HW 
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Figure A1a. Cumulative returns of 1 day ahead 

 
Note: Figure presents in two groups the cumulative returns of some of the various forecasting models 

for the 1 day ahead forecast horizon. Here we can see clearly how modelling the separate components of 

the six diverse techniques, with alternating combinations of AR, HAR, HW and LSTM frameworks, 

results in completely different outcomes, even for the same technique. The values reported in the y-axis 

are not in % points.  

 

Figure A1b. Cumulative returns of 5 days ahead 

 

Note: The cumulative returns of some of the proposed models, for the 5 days ahead forecast horizon, 

appear in two groups. We definitely observe how outcome alters among different combinations and 

perhaps that is the purpose of experimentation, to find the optimal modelling combinations of 

components, belonging to the same decomposition technique. The optimal combination is the one that 

will boost returns. The values reported in the y-axis are not in % points.  
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Figure A1c. Cumulative returns of 10 days ahead 

 

Note: Different model combinations, result in different cumulative returns. Here the model combinations 

with higher cumulative returns are more restricted. For the 10 days ahead horizon as for 5 days ahead, 

EEMD-HW-AR-HAR was the best performing model. Due to space and presentations limitations, we 

include only few of the 32 models in total. The values reported in the y-axis are not in % points.  

 

Figure A1d. Cumulative returns of the 22 days ahead 

 

Note: Even for the 22 days ahead horizon the group of the best performing models consists of the EEMD-

based and EMD-based models. The models that belong to each of the two groups presented here, are 

randomly chosen between the 32 models. It was impossible to include all proposed models in above 

figures. The values reported in the y-axis are not in % points. 
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