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ABSTRACT 

This paper mainly focuses on the approach taken at the Bank of Greece regarding the 

application of stochastic methods to debt sustainability analysis, providing also a 

discussion of alternative options. Caution is advised in the way that stochastic methods 

are made operational, as they are far from exact and rely on assumptions of various 

degrees of plausibility, which are often not stated explicitly. A Monte Carlo exercise 

reveals that under the approach taken by the European Commission, the measurement 

of dispersion can be subject to significant bias, ranging from an over-estimation by 45% 

to an under-estimation in excess of 80%, depending on the time-series properties of the 

data.         
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1.  Introduction 

Interest on stochastic debt sustainability analysis (SDSA) has increased in recent 

years with SDSA modules forming an integral part of most major international 

organizations’ toolkits. This is particularly relevant in the context of the European 

Union, as the new EU fiscal framework which has been in force since the end of April 

2024 explicitly provides for an elevated role for SDSA. In particular, under the new 

framework Member States’ fiscal targets will need to ensure that at the end of the 

medium term budgetary plans the debt to GDP ratio remains on a “plausibly downward 

path”, as assessed by the European Commission’s (EC) stochastic DSA approach.1 This 

places stochastic DSA at the heart of the policy-making process, which in turn, becomes 

subject to the relative merits and limitations of the methods employed. 

Debt sustainability analysis has traditionally relied on deterministic projections 

of debt to GDP in order to illustrate the sensitivity of the baseline scenario to changes 

in underlying assumptions about the evolution of debt drivers, such as fiscal outcomes, 

economic performance and borrowing cost. Stochastic DSA aims instead at providing 

a complete description of permissible outcomes, on the basis of historical experience. 

In the special case when the baseline arises as a forecast from an estimated econometric 

model, the task is reduced to a standard depiction of uncertainty around an econometric 

forecast. However, typically, in DSA analyses the baseline trajectory is itself 

deterministic in the sense that it is given exogenously, drawing on various different 

sources of information. Hence, the question arises of how to assign stochastic properties 

to a deterministic baseline? 

At the risk of over-simplifying, available options can be grouped into two broad 

categories. Table 1 provides an overview, summarizing the main features, including 

caveats and an indicative list of institutions that is by no means exhaustive. The first 

broad category is labelled “Model-based” and relies on the estimation of an empirical 

model of debt drivers. The estimated model is used in order to generate a simulated 

distribution of debt trajectories, the properties of which are applied around the 

deterministic DSA baseline. The model-based approach is followed by the UK Office 

for Budget Responsibility (OBR), who provide very clear documentation in OBR 

(2021) and Steel (2021). Their method constitutes the closest analogue to the approach 

 
1 Articles 6, point (a) and 10(1) of Regulation (EU) 2024/1263 and European Commission (2024), Annex II.1. 
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employed at the Bank of Greece. The UK OBR present also an interesting example in 

that they have recently switched over to the model-based approach as their primary 

method.  A similar approach is also employed by the ECB, albeit with the notable 

difference that the simulated distribution is not applied to an exogenously given 

deterministic baseline.2 The model-based approach is grounded on the residual-based 

bootstrap which has a long tradition in econometric practice.3 The validity of the 

method hinges on a sufficiently well-specified econometric approximation of the 

underlying data, typically a VAR. In multi-country applications it may not be 

straightforward to evaluate the extent to which differences in the simulated distributions 

across countries reflect genuine differences in uncertainty, or are driven by model 

specification. This can be an undesirable feature when the primary focus is on cross-

country comparison. Furthermore, the alignment of the simulated distribution with the 

deterministic baseline may rest on arbitrary assumptions.  

The second broad category is labelled “Raw data” and it uses available data points 

directly in order to obtain measures of uncertainty. The properties of these measures 

are next used in order to simulate a large number of representative shocks, which are 

then applied to the baseline in order to derive a distribution of debt trajectories. This is 

the general approach taken by the EC and the IMF, with more extensive documentation 

available for the former.4 In general, raw data can refer either to observations of past 

forecast errors, or to historical data on the actual series of macroeconomic and fiscal 

debt drivers. One practical limitation in using forecast errors is that they are typically 

available at relatively short horizons, whereas debt sustainability analyses usually 

stretch over several years. This limitation is particularly binding in the case of Greece, 

as the currently uniquely favourable debt structure demands that the analysis extend 

over several decades.5 Of the major international institutions that apply the raw data 

approach, the EC and the IMF have both opted for using actual data on debt drivers. 

This escapes the need for country-specific models and the method can be applied 

 
2 See Bouabdallah et al. (2017). 
3 For an early literature review see Li and Maddala (1996). 
4 See Annex A4, pp. 139-145 in European Commission (2024). 
5 As a legacy of the EU/IMF programmes the bulk of Greek public debt consists of official sector loans 

provided under concessional terms that include grace periods, long maturities and interest deferrals. 

Exposure to risk can be expected to increase as official loans get gradually re-financed on market terms. 

Due to the long maturities involved, this process will take several decades to complete, the final 

repayment being due in 2070.  
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uniformly across a large number of countries.6 One important caveat, however, is that 

macroeconomic time series are typically not white noise in that they tend to display 

high autocorrelation. This can complicate the simulation of representative samples and 

as is demonstrated in section 4b, it can introduce non-negligible bias.  

Table 1: Different approaches to stochastic DSA 
 

 
 

2. Specification and estimation of the empirical model  

2a. Debt accounting 

As a starting point consider the following fundamental debt accounting identity: 

Δ𝐷𝑡 ≡ −𝐵𝐵𝑡 + 𝐷𝐷𝐴𝑡                    (1) 

where 𝐷𝑡 is the stock of gross government debt in year t, Δ𝐷𝑡 = 𝐷𝑡 − 𝐷𝑡−1, 𝐵𝐵𝑡 

is the budget balance, which in turn is equal to the primary balance 𝑃𝐵𝑡 minus interest 

payments 𝐼𝑁𝑇𝑡, 𝐷𝐷𝐴𝑡 stands for deficit-debt adjustment, also frequently called ‘stock-

flow adjustment’ and all variables are measured in nominal terms (EUR millions). For 

simplicity we abstract from debt denominated in foreign currency, which can be 

considered negligible in the case of Greece and other euro area member states. The debt 

accounting identity simply states that changes in the stock of debt are either recorded 

through the budget balance (above the line) or through 𝐷𝐷𝐴𝑡 (below the line).  

Expressing this as a share of nominal GDP results in the familiar law of motion 

of the debt to GDP ratio:  

  Δ𝑑𝑡 = −𝑝𝑏𝑡 + 𝑑𝑑𝑎𝑡 + (
𝑖𝑖𝑟𝑡−𝑔𝑡

1+𝑔𝑡
) 𝑑𝑡−1   (2) 

where 𝑖𝑖𝑟𝑡 = 𝐼𝑁𝑇𝑡/𝐷𝑡−1 is the implicit interest rate, 𝑔𝑡  denotes the nominal 

GDP growth rate and remaining lower case letters denote division by nominal GDP. 

 
6 Working with forecast errors, instead, typically requires country-specific econometric estimates of the 

parameters of the underlying distribution (usually a 2-piece Normal).  
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This expression indicates that it suffices to know 𝑝𝑏𝑡, 𝑔𝑡, 𝑖𝑖𝑟𝑡 and 𝑑𝑑𝑎𝑡 in order to trace 

the evolution of 𝑑𝑡, which motivates the choice of the endogenous variables in the 

specification of the empirical model below. 

 

2b. A simple BVAR model of debt drivers 

Assuming that the debt drivers are stochastic processes with finite mean and 

variance, they are approximated by a finite order VAR of the following form: 

𝐲𝑡 = 𝐴1𝐲𝑡−1 + 𝐵0𝐱𝑡 + 𝐶0𝐳𝑡 + 𝐞𝑡   (3) 

where 𝐲𝑡 = [𝑝𝑏𝑡, 𝑔𝑡, 𝑖𝑖𝑟𝑡, 𝑑𝑑𝑎𝑡]′ is an endogenous vector containing the four debt 

drivers that define the law of motion of the debt to GDP ratio, namely: the primary 

balance as a share of GDP (𝑝𝑏𝑡), the nominal GDP growth rate (𝑔𝑡), the implicit interest 

rate (𝑖𝑖𝑟𝑡) and deficit-debt adjustment as a share of GDP (𝑑𝑑𝑎𝑡). Vector 𝐱𝑡 contains 

exogenous variables and deterministic terms controlling for country-specific features 

related to the EU/IMF financial assistance to Greece during the sovereign debt crisis. 

In particular, 𝐱𝑡 = [𝑝𝑠𝑖𝑡, 𝑏𝑎𝑛𝑘𝑖𝑛𝑔𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑡, 𝑘𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡, 𝑏𝑢𝑓𝑓𝑒𝑟𝑡, (𝑝𝑟𝑒_𝑀𝑜𝑈𝑡 ∗

𝑝𝑏𝑡−1)]’, where 𝑝𝑠𝑖𝑡 is a binary dummy variable controlling for the Private Sector 

Involvement in the sovereign debt restructuring in 2012,  𝑏𝑎𝑛𝑘𝑖𝑛𝑔𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑡 denotes 

the GDP share of public expenditure in support of the financial sector, 𝑘𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 

accounts for the imposition of capital controls in 2015, 𝑏𝑢𝑓𝑓𝑒𝑟𝑡 controls for the ESM 

loan for building the cash buffer in 2018 and 𝑝𝑟𝑒_𝑀𝑜𝑈𝑡 controls for the years prior to 

2010 and interacts with lagged primary balance in order to permit a regime shift in the 

dynamics of fiscal performance following the introduction of the EU/IMF programmes. 

Finally, 𝐳𝑡 = [1, 𝑦𝑒𝑎𝑟2020𝑡, 𝑦𝑒𝑎𝑟2021𝑡]′ includes the intercept and controls for the 

effects of the COVID-19 pandemic through self-explanatory 0/1 dummies.  The vector 

𝐞𝑡 collects the reduced-form residuals with  𝐸(𝐞𝑡) = 0 and 𝐸(𝐞𝑡𝐞𝑡′) = 𝛀 positive 

definite. 

A number of observations are in order. First, 𝑑𝑑𝑎𝑡 is frequently treated as a non-

stochastic process set to zero. The UK OBR do generate forecasts for 𝑑𝑑𝑎𝑡, but do not 

include it among the endogenous variables in their VAR model. The European 

Commission do not allow for uncertainty associated with 𝑑𝑑𝑎𝑡 and in general, the same 

applies also to the IMF.7 Our decision to explicitly include 𝑑𝑑𝑎𝑡 among the endogenous 

 
7 The IMF may exceptionally allow for uncertainty related to 𝑑𝑑𝑎𝑡 . See footnote 49, p. 46 in IMF (2022).  

https://www.imf.org/-/media/Files/Publications/PP/2022/English/PPEA2022039.ashx
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variables is guided by the fact that in the case of Greece 𝑑𝑑𝑎𝑡 has displayed sizeable 

variation and can be a considerable source of uncertainty, as pointed out also by the 

Hellenic Fiscal Council (2022).8 A more sinister argument in favour of treating 𝑑𝑑𝑎𝑡 

as an endogenous variable is that this would account also for the possibility that 𝑑𝑑𝑎𝑡 

is affected by incentives for window-dressing fiscal outcomes.9  

Second, the model does not include lagged debt, as suggested in the influential 

work by Favero and Giavazzi (2007). One reason is that in the case of Greece, there has 

been very little historical evidence of fiscal policy reacting to the level of debt. Chart 1 

provides a telling scatter plot of the primary balance (𝑝𝑏𝑡) against lagged debt (𝑑𝑡−1) 

for all available annual data points during 1996-2023. One further reason is that the 

inclusion of a debt feedback effectively imposes stationarity on the debt to GDP ratio. 

This is important in the context of policy evaluation, as it ensures well-behaved impulse 

responses. In the context of debt sustainability analysis, however, it makes little sense 

to a priori impose the very property one aims to assess. The UK OBR also do not 

include a debt feedback, although they do not explicitly discuss their decision.  

Lastly, it should be stressed that the model is not intended as a forecasting tool. 

At this stage it is assumed that there already exists a deterministic baseline representing 

one’s best guess of the evolution of the debt drivers. Instead, the purpose of the model 

is to shed light on the properties of the random shocks that have affected the 

determinants of public debt on the basis of past experience. In other words, the model 

essentially functions as a filter for removing the systematic, non-random element of the 

debt drivers 𝐲𝑡 in order to reveal the residual vector 𝐞𝑡.  

 

 

 

 

 

 

 

 

 
8 Special Feature V, p.114 (only available in Greek).  
9 See von Hagen and Wolff (2006). 
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Chart 1: Historical scatter plot of 𝑝𝑏𝑡 

against 𝑑𝑡−1 (1996-2023) 

Chart 2: Adjusted R2 as a function of the 

autoregressive hyper-parameter Mu1 

  
Notes: Correlation = 0.04 Notes: The vertical axis measures the simple average of 

the Adjusted R2  in the four BVAR equations 
 

The model is estimated over the whole set of available annual data points using 

Bayesian methods, which are less susceptible to the VAR ‘curse of dimensionality’. 

Data definitions and sources are summarized in Appendix 1. All estimation is carried 

out in Eviews12. We use Minnesota priors with all hyper-parameters at their default 

values, except for the AR(1) hyper-parameter Mu1, which is guided by the following 

considerations. Our priors, supported by unit root tests, clearly point to stationarity and 

we expect stronger mean-reversion in 𝑑𝑑𝑎𝑡, intermediate persistence in 𝑝𝑏𝑡 and 𝑔𝑡 and 

significant persistence in the slow-moving 𝑖𝑖𝑟𝑡. A choice for Mu1 in the region of 0.5 

seems appropriate for reflecting stationarity with persistence and appears also broadly 

consistent with an optimal average fit, as illustrated in Chart 2. The value of Mu1 was 

further fine-tuned to 0.47 to better align the long-term properties of the BVAR with 

baseline assumptions.10 Details on the estimated coefficients and the reduced-form 

residuals are provided in Table 2.   

 

 

 

 

 

 

 
10 The long-term properties of the BVAR can be sensitive to choices in priors and model specification. 

While the alignment of the BVAR properties with baseline assumptions is a welcome feature, it is not a 

pre-requisite for the validity of the stochastic analysis. The sensitivity of the dispersion of the simulated 

distribution of debt to different choices of Mu1 is illustrated in Appendix 3.  
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Table 2: BVAR estimates 

 

 

3. Stochastic simulation of debt and Gross Financing Needs 

trajectories  

3a. Bootstrap design 

Stochastic simulations of debt and GFN trajectories are based on 100k bootstrap 

draws from the full-sample residuals 𝐞𝑡̂ recovered from equation (3). This avoids the 

need for arbitrary assumptions regarding the properties of the shocks. Despite 

accounting for a variety of country-specific influences, a number of sizeable outliers 

remain. As a result, the properties of the bootstrap draws can vary depending on the 

sample period. Generally, we find that restricting bootstrap draws to the more recent 

observations after the great financial crisis results in smaller dispersion compared to 

drawing from the full-sample. As such, our choice to draw from the full sample should 

be understood as a conservative choice that introduces higher uncertainty compared to 

the more recent track record. Having said that, the intercept dummies controlling for 

the COVID-19 pandemic in 2020 and in 2021 effectively exclude the estimated effect 

from the set of permissible future shocks. 
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The bootstrap simulation of debt and GFN trajectories consists of the following 

steps: 

Step 1: Estimate the BVAR model in equation (3) using the actual data in order 

to obtain the coefficient matrices 𝐴̂1, 𝐵̂0, 𝐶̂0 and the residual vector 𝐞̂𝑡. 

Step 2: Draw randomly with replacement from 𝐞̂𝑡 in order to generate a large 

number of simulated shocks 𝐞𝑡
(𝑖)

 for 𝑡 = 1, … , 𝑇 and 𝑖 = 1, … , 100𝑘. 

Step 3: Generate a large number of random draws  𝐴1
(𝑖)

, 𝐵0
(𝑖)

 and 𝐶0
(𝑖)

, 𝑖 =

1, … , 100𝑘 from the posterior distribution of the estimated BVAR coefficients in step 

1.  

Step 4:  Combine the simulated shocks in step 2 with the random draws from the 

BVAR coefficients in step 3 to generate a large number of simulated paths for debt 

drivers as: 𝐲𝑡
(𝑖)

= 𝐴1
(𝑖)

𝐲𝑡−1
(𝑖)

+ 𝐵0
(𝑖)

𝐱𝑡
(𝑖)

+ 𝐶0
(𝑖)

𝐳𝑡
(𝑖)

+ 𝐞𝑡
(𝑖) for 𝑡 = 1, … , 𝑇 and 𝑖 = 1, … , 100𝑘.  

Step 5: For each of the simulated 𝐲𝑡
(𝑖)

s in step 4 generate debt trajectories as: 

𝛥𝑑𝑡
(𝑖)

= −𝑝𝑏𝑡
(𝑖)

+ 𝑑𝑑𝑎𝑡
(𝑖)

+ 𝑑𝑡−1
(𝑖)

(𝑖𝑖𝑟𝑡
(𝑖)

− 𝑔𝑡
(𝑖)

)/(1 + 𝑔𝑡
(𝑖)

)   (4) 

GFN trajectories are similarly simulated under baseline assumptions for the maturity 

profile of new issuance11 and conditionally on information on the maturity of the 

historically accumulated debt stock. In particular: 

 𝑔𝑓𝑛𝑡
(𝑖)

= 𝑎𝑚𝑡
(𝑖)

+ 𝛥𝑑𝑡
(𝑖)

     (5) 

where 𝑔𝑓𝑛𝑡
(𝑖)

 is the GFN to GDP ratio generated using the i-th bootstrap draw and 𝑎𝑚𝑡
(𝑖)

 

is the GDP share of amortization payments, including the stock of short-term debt that 

is refinanced each year.  

 

3b. Simulated uncertainty around the baseline   

 Following steps 1-5 described above generates empirical distributions of 100k 

simulated debt and GFN trajectories that are representative of the historical track 

record, as described by the simple BVAR model. Chart 3, panel A plots the resulting 

fan charts along with the simulated mean (grey), median (green), a Kernel 

approximation of the mode (blue) and the deterministic baseline (black line).12 One 

observes that the simulated distributions are not symmetric, as the mean exceeds the 

 
11 The baseline assumption is that new issuance has an average maturity of approximately 6,5 years, which 
is broadly in line with the historical record before the Great Financial Crisis. 
12 The simulated trajectories of individual debt drivers can be found in Appendix 2. 
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median. This appears to be less important at short horizons, but becomes more 

pronounced over time. The reported histograms plot the simulated distributions for the 

year 2060, which are clearly positively skewed, reflecting sizeable positive outliers.  

To obtain a distribution of risks around the baseline we align the simulated mean 

trajectory with the DSA baseline by mechanically shifting the simulated trajectories by 

the difference between the baseline and the simulated mean, so that 𝑎𝑙𝑖𝑔𝑛𝑒𝑑𝑡
(𝑖)

=

𝑛𝑜𝑡𝑎𝑙𝑖𝑔𝑛𝑒𝑑𝑡
(𝑖)

+ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑡 − 𝑚𝑒𝑎𝑛𝑡 for all 𝑖 = 1, … , 100𝑘. The decision to treat the 

baseline as a mean forecast differs from the OBR, who treat the baseline as a median 

forecast, instead.13 For a symmetric distribution of future outcomes the median would 

coincide with the mean, yielding an unbiased forecast with zero forecast errors on 

average. As was already established, however, the simulated distributions are not 

symmetric, but positively skewed. Given this asymmetry, treating the baseline as a 

median forecast would be equivalent to assuming that the baseline is systematically 

biased, in which case it would make more sense to revise the baseline. If one considers 

instead the baseline not to be systematically biased, the asymmetry of the simulated 

distributions requires that it represents the mean of future outcomes. In deciding to 

interpret the baseline as a mean forecast we draw confidence from the fact that it is 

already closely aligned with the simulated mean. This is however not a general result 

and we return to this in section 3c.  

In the context of a positively skewed distribution a mean forecast implies more 

frequent over-estimation of moderate size, in order to compensate for rare but sizeable 

tail events. This is reflected in the asymmetric placement of the baseline trajectories 

covering the greater mass of the distributions in Chart 3, panel B. The simulated 

distributions can be used in order to quantify a number of probability metrics. Table 3 

reports the evolution through time of the probability that specific adverse events 

materialize under baseline assumptions.   

 

 

 

 

 

 
13 The OBR differ also in employing a more sophisticated alignment method. See para. 3.20 in Steel (2021).  
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Chart 3: Simulated trajectories of debt/GDP (left) and GFN/GDP (right) 

A. Before aligning the simulated mean with the baseline 

  
 

B. After aligning the simulated mean with the baseline 

  

Notes: Based on 100k BVAR simulations. The histograms plot the simulated distributions in year 2060. 
 

Table 3: Probability metrics after alignment with baseline 

 

Notes: Row 1 reports the probability that debt/GDP does not decline year-on-year by at least 1pp when debt is above 90% of GDP 
and by at least 0.5pp when debt is between 60% and 90% of GDP. Rows 2-4 report the probability that debt/GDP exceeds (a) the 
latest historical value, (b) 90% and (c) 60%, respectively. Rows 5 & 6 report the probability that GFN/GDP exceeds 15% and 20%, 
respectively. The following colour code applies: <10%, 10-20%, 20-30%, 30-40%, 40-60%, 60-70%, 70-80%, 80-90%, > 90%. 
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3c. The baseline as a long-run steady state   

As argued above, the decision to treat the baseline as a mean forecast reflects the 

skewness of the simulated distribution, which would render a median forecast biased. 

Yet, the interpretation of the baseline as an unbiased forecast is in general arbitrary. In 

the particular case considered here, the mean forecast generated from the estimated 

BVAR is well-aligned with our baseline. This is a welcome feature demonstrating that 

the baseline can arise as an unbiased forecast under a plausible set of model 

specifications. However, this is not true for every plausible set of modelling choices. 

Indeed, small changes in the Bayesian hyper-parameters can lead to non-negligible 

deviations of the mean forecast from the baseline.  

Rather than aligning the baseline with a specific metric of the simulated 

distribution, such as the mean, or the median, one could interpret instead the baseline 

as a long-run steady state from which debt drivers are permitted to deviate due to the 

simulated random shocks. In particular, the simulated debt drivers 𝐲𝑡
(𝑖)

 generated in step 

4 of the bootstrap procedure described in section 3a would assume the following general 

form:             

𝐲𝑡
(𝑖)

= (𝐼 − 𝛬(𝑖))𝐲𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝛬(𝑖)𝐲𝑡−1

(𝑖)
+ 𝐞𝑡

(𝑖)
    (6) 

where vector 𝐲𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 collects the exogenously given values of the debt drivers 

under the deterministic baseline, 𝛬(𝑖) is an autoregressive parameter matrix which could 

be informed from the BVAR estimate of 𝐴̂1 in equation 3 and 𝐞𝑡
(𝑖)

 is a bootstrap draw 

from the BVAR residuals. The suggested specification escapes the need for aligning 

the baseline with a specific metric of the simulated distribution, thereby reducing the 

scope for arbitrary choices.    

 

4. Commentary on the EC and IMF methods  

4a. Normative overview  

Under the revised EU fiscal framework the EC’s stochastic DSA plays an 

important role in the design of national fiscal policies, as it is the method by which it is 

assessed whether the debt to GDP ratio remains on a “plausibly downward path” at the 

end of Member States’ medium term budgetary plans. The method, which is described 

in detail in Annex A4 in European Commission (2024), looks at the historical 
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correlations of the first differences of a number of variables that are required in order 

to trace the debt to GDP ratio, such as the GDP share of the primary balance (𝑝𝑏𝑡) and 

the GDP nominal growth rate (𝑔𝑡). Stochastic shocks are then generated as random 

draws from a multivariate normal distribution with variance-covariance matrix equal to 

the one observed historically for the differenced variables. These shocks are then 

applied to the baseline values of the debt-driving variables to generate a range of debt 

outcomes around the baseline. 

Darvas et al. (2023) recently noted a number of caveats, including the lack of 

clarity regarding the treatment of outliers and the potentially low number of random 

draws.14 The Hellenic Fiscal Council has pointed out that the EC approach does not 

allow for the stochastic treatment of dda, which could be an additional important source 

of uncertainty in the case of Greece.15 Yet, a more fundamental caveat seems to have 

escaped notice. The EC approach rests on the assumption that the first differences of 

variables such as 𝑝𝑏𝑡 and 𝑔𝑡 are random variables that are jointly normally distributed. 

This is equivalent to assuming that the levels of these variables are random walks, i.e. 

unit root processes denoted I(1).16 Such a property implies unbounded variance, which 

is very difficult to defend in the case of 𝑝𝑏𝑡, 𝑔𝑡, or interest rate variables, all routinely 

treated as stationary I(0) processes instead. The first difference of a stationary process 

– unlike that of a unit root process – is not white noise, and as such, it cannot be treated 

as a random draw from a normal distribution. 

The IMF method escapes this problem by drawing blocks of consecutive 

observations with replacement directly from the available historical series.17 This 

process is known as block bootstrap and is aimed at retaining (part of) the 

autocorrelation structure. Yet, given that the time series on debt drivers are widely 

considered to be stationary, the procedure is subject to the critique of Politis and 

Romano (1994) that a block bootstrap of a stationary process is not itself stationary. 

Hence, simulating debt drivers by using the block bootstrap for resampling the actual 

data series will not retain a key statistical property observed in the historical record.18   

 
14 See Annex A.4.1.2, p. 58 in Darvas et al. (2023).  
15 Hellenic Fiscal Council (2022), Autumn Report, Special Feature V, p.114 (only available in Greek).  
16 For the n-vector xt that includes variables like pbt  and gt the EC assumes that Δxt = εt, with εt ~ 

N(0,Σ), which is equivalent to assuming that xt is a random walk since xt = xt-1 + εt. 
17 See section VI. para. 59 and footnote 51 in IMF (2022). 
18 The ‘stationary bootstrap’ developed by Politis and Romano (1994) is the earliest example of a more 

complex procedure that can address this limitation of the block bootstrap. 

https://www.bruegel.org/sites/default/files/2023-09/WP%2016_3.pdf
https://www.hfisc.gr/sites/default/files/fthinoporini_ekthesi_2022_0.pdf
https://www.imf.org/-/media/Files/Publications/PP/2022/English/PPEA2022039.ashx
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Sampling directly from time-series data poses a number of challenges to which 

model-based methods offer a comparatively simple solution. The main appeal of the 

raw-data approach is that it escapes the need for country-specific models and permits a 

uniform application across countries. This is an attractive feature in the context of cross-

country comparisons, which lie at the core of the work of the EC and the IMF. The 

price, however, can be non-negligible, as indicated in the following subsection. 

 

4b.  Quantification of the dispersion bias in the EC method   

As mentioned above, the European Commission’s definition of the random 

shocks as the first difference of the debt drivers is equivalent to assuming that the debt 

drivers are unit root processes, which can be very difficult to defend in the case of 𝑝𝑏𝑡, 

𝑔𝑡, or interest rate variables, routinely treated as stationary processes, instead. To 

illustrate why this can be a source of bias, consider the case of a single debt driver 𝑥𝑡 

given by the following AR(1) process:  

𝑥𝑡 = (1 − 𝜌)𝑥̅ + 𝜌𝑥𝑡−1 + 𝜀𝑡     (7) 

where 0 ≤ 𝜌 ≤ 1, 𝑥̅ is a constant steady-state and 𝜀𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎2). In the 

extreme case when 𝜌 = 0 the AR(1) process collapses to 𝑥𝑡 = 𝑥̅ + 𝜀𝑡. Applying the 

European Commission’s definition of a shock as 𝛥𝑥𝑡 results in 𝛥𝑥𝑡 = 𝜀𝑡 − 𝜀𝑡−1. In this 

case 𝑉𝑎𝑟(𝛥𝑥𝑡) = 2𝜎2, which clearly leads to an over-estimation of the true variance 

𝜎2 of the random shocks 𝜀𝑡. This bias is eliminated for 𝜌 = 1 in which case 𝑥𝑡 becomes 

a random walk with 𝛥𝑥𝑡 = 𝜀𝑡 and 𝑉𝑎𝑟(𝛥𝑥𝑡) = 𝑉𝑎𝑟(𝜀𝑡) = 𝜎2.  

There is, however, one additional source of bias related to the way that the shocks 

are applied to the deterministic baseline. Consider the simulated driver 𝑥𝑡
𝑠𝑖𝑚 which is 

constructed as follows:  

𝑥𝑡
𝑠𝑖𝑚 = 𝑥𝑡

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝜀𝑡
𝑠𝑖𝑚      (8) 

where 𝑥𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the exogenously given value of 𝑥𝑡 under the deterministic 

baseline and 𝜀𝑡
𝑠𝑖𝑚 is a random draw from a normal distribution with variance equal to 

𝑉𝑎𝑟(𝛥𝑥𝑡).19 The absence of a lagged term means that 𝑥𝑡
𝑠𝑖𝑚 permits no persistence 

 
19 The European Commission uses quarterly observations of 𝑥𝑡 in order to generate the annual shocks 

𝜀𝑡
𝑠𝑖𝑚 entering the simulation of 𝑥𝑡

𝑠𝑖𝑚, which is itself carried out at annual frequency. For simplicity it is 

assumed here that actual and simulated observations of 𝑥𝑡 are of the same frequency. 
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which introduces the following trade-off. In order for the simulated shocks 𝜀𝑡
𝑠𝑖𝑚 to have 

a variance equal to the true variance 𝜎2, the driver 𝑥𝑡 needs to be a random walk with 

full persistence, i.e. 𝜌 = 1. Yet, the more this is the case, the less representative 

becomes the simulated 𝑥𝑡
𝑠𝑖𝑚, which by construction exhibits no persistence and thus 

under-states the true size of uncertainty.  Hence, for 𝜌 = 0 the persistence of the shocks 

is simulated accurately but their variance is over-estimated, while for 𝜌 = 1 the 

variance of the shocks is accurately measured but their persistence is under-estimated. 

The following Monte Carlo exercise has been carried out in order to quantify the 

bias involved in the measurement of dispersion of the simulated distribution.  

Step 1: Generate a large number of AR(1) processes of length 𝑇 as 𝑥𝑡
(𝑖)

=

(1 − 𝜌)𝑥̅ + 𝜌𝑥𝑡−1
(𝑖)

+ 𝜀𝑡
(𝑖)

, where 𝑖 = 1, … , 100𝑘 and 𝜀𝑡
(𝑖)

 is a random draw from a 

𝑁(0, 𝜎2). The starting value is set at 𝑥0
(𝑖)

= 1 and the parameters 𝑥̅ = 1 and 𝜎2 = 0.01. 

The total number of observations is set at 𝑇 = 66, of which the first 𝑇ℎ𝑖𝑠𝑡 = 29 

observations are treated as historical values. This corresponds to the length of the 

available historical record of annual data points for Greece spanning 1995-2023 and 

allows for a forecast horizon covering 2024-2060.  

Step 2: For 𝑡 > 𝑇ℎ𝑖𝑠𝑡 compute 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛_𝑥𝑡 as the difference between the 90th 

and the 10th percentiles of the empirical distribution of 𝑥𝑡
(𝑖)

 in step 1. This is the ‘true’ 

dispersion in line with the data generating process.  

Step 3: For 𝑡 ≤ 𝑇ℎ𝑖𝑠𝑡 compute the historical shocks as 𝛥𝑥𝑡
(𝑖)

 and for 𝑡 > 𝑇ℎ𝑖𝑠𝑡 

generate the simulated shocks 𝜀𝑡
𝑠𝑖𝑚,(𝑖)

 as random draws from a normal distribution with 

variance equal to 𝑉𝑎𝑟(𝛥𝑥𝑡
(𝑖)

). 

Step 4: For 𝑡 > 𝑇ℎ𝑖𝑠𝑡 generate the simulated drivers 𝑥𝑡
𝑠𝑖𝑚,(𝑖)

= 𝑥𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +

𝜀𝑡
𝑠𝑖𝑚,(𝑖)

, where 𝜀𝑡
𝑠𝑖𝑚,(𝑖)

 is provided in step 3 and 𝑥𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is an exogenously given 

baseline, which in this case is set equal to the mean of the empirical distribution of 𝑥𝑡
(𝑖)

 

in step 1. 

Step 5: Compute the simulated 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛_𝑥𝑠𝑖𝑚𝑡 as the difference between the 

90th and the 10th percentiles of the empirical distribution of 𝑥𝑡
𝑠𝑖𝑚,(𝑖)

 in step 4 and 

calculate 𝑏𝑖𝑎𝑠𝑡 =
𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛_𝑥𝑠𝑖𝑚𝑡

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛_𝑥𝑡
− 1, using 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛_𝑥𝑡 from step 2. 



17 
 

Step 6: Repeat steps 1-5 for different values of the autoregressive parameter 𝜌. 

In this case, steps 1-5 have been repeated 101 times starting from 𝜌 = 0 and reaching 

𝜌 = 1 in increments of 0.01. 

Chart 4 offers two alternative presentations of the results. Panel A plots the 

dispersion bias as a function of the forecast horizon, each horizontal line corresponding 

to a different value of the autoregressive parameter 𝜌. The bias in the measurement of 

dispersion remains broadly constant over different forecast horizons, but, as anticipated 

by the earlier discussion, it varies significantly with 𝜌. This is more clearly illustrated 

in panel B, which is a scatter plot of the dispersion bias over all horizons plotted against 

𝜌. The bias is highest for 𝜌 = 0 when dispersion is over-estimated by approximately 

45%. As 𝜌 increases the positive bias declines at an accelerated pace, turning negative 

for 𝜌 > 0.58. When 𝜌 = 1 dispersion is under-estimated by more that 80%. This is in 

line with the earlier discussion on the trade-off between over-estimation of the variance 

and under-estimation of persistence. Depending on their underlying statistical 

properties, debt drivers can be subject to very different bias.  

 

Chart 4 – European Commission dispersion bias 

A. As a function of the forecast horizon. B. As a function of ρ. 

  
Notes: Dispersion is measured as the difference between the 90th and the 10th percentiles. Bias measures percentage 
deviation from ‘true’ dispersion. Rho is the autoregressive coefficient of the underlying AR(1) data generating process.  

 

5. Concluding remarks  

The primary aim of this paper is to present the approach taken at the Bank of 

Greece in applying stochastic methods to debt sustainability analysis, offering explicit 

discussion of the main conceptual and technical issues. Additionally, a discussion is 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35

Bi
as

 

forecast horizon

rho=0

rho=0.1

rho=0.2

rho=0.3

rho=0.4

rho=0.5

rho=0.6

rho=0.7

rho=0.8

rho=0.9

rho=1
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Fitted polynomial

RHO

B
IA

S



18 
 

provided of alternative methods employed by major institutions. Particular emphasis is 

placed on the European Commission method, motivated by its elevated role under the 

new EU fiscal framework and facilitated by the availability of detailed documentation. 

A Monte Carlo exercise reveals that the EC measurement of dispersion can be subject 

to significant bias, ranging from an over-estimation by 45% to an under-estimation in 

excess of 80%, depending on the time-series properties of the data. An important 

takeaway is that stochastic DSA is far from exact, which calls for caution in the way 

that such methods become operational for the purpose of policy assessment. 
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Appendices 

 
Appendix 1: Data sources and definitions 

Frequency: Annual 
Sector: General Government 
Vintage: Autumn 2024 EDP 

 
Description 

 
Source 

 
Availability 

 
Primary data (in EUR million) 

   

𝐷𝑡 Gross public debt Eurostat 1995-2023 
𝐵𝐵𝑡 Budget balance Eurostat 1995-2023 
𝐼𝑁𝑇𝑡 Interest expenditure Eurostat 1995-2023 
𝑃𝐵𝑡 = 𝐵𝐵𝑡 + 𝐼𝑁𝑇𝑡 Primary balance Eurostat 1995-2023 
𝐷𝐷𝐴𝑡 = 𝐷𝑡 − 𝐷𝑡−1 + 𝐵𝐵𝑡 Deficit-debt adjustment Eurostat 1996-2023 
𝐵𝐴𝑁𝐾𝐼𝑁𝐺𝑆𝑈𝑃𝑃𝑂𝑅𝑇𝑡 Banking support Eurostat* 2007-2023** 
𝐺𝐷𝑃𝑡 Nominal GDP Eurostat 1995-2023 
𝐴𝑀𝑡 Amortization PDMA 2024-2070 
 
Variable transformations 
𝑖𝑖𝑟𝑡 =100* 𝐼𝑁𝑇𝑡/𝐷𝑡−1 
𝑝𝑏𝑡 = 100 ∗ 𝑃𝐵𝑡/𝐺𝐷𝑃𝑡 
𝑑𝑑𝑎𝑡 = 100 ∗ 𝐷𝐷𝐴𝑡/𝐺𝐷𝑃𝑡 
𝑔𝑡 = 100 ∗ (𝐺𝐷𝑃𝑡 − 𝐺𝐷𝑃𝑡−1)/𝐺𝐷𝑃𝑡−1 
𝑏𝑎𝑛𝑘𝑖𝑛𝑔𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑡 = 100 ∗ 𝐵𝐴𝑁𝐾𝐼𝑁𝐺𝑆𝑈𝑃𝑃𝑂𝑅𝑇𝑡/𝐺𝐷𝑃𝑡 
𝑎𝑚𝑡 = 100 ∗ 𝐴𝑀𝑡/𝐺𝐷𝑃𝑡 
* Supplementary tables on government interventions to support financial institutions 
** Set to zero before 2007. 

 
  

https://ec.europa.eu/eurostat/web/government-finance-statistics/excessive-deficit-procedure/government-interventions-support-financial-institutions
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Appendix 2: BVAR forecasts of debt drivers 
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Appendix 3: Sensitivity of dispersion to the autoregressive hyperparameter Mu1 
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