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ABSTRACT 

This paper investigates the impact of education on the Environmental Kuznets Curve 

(EKC) hypothesis using a balanced panel dataset of 167 countries over 21 years. By 

employing three econometric models with CO₂ emissions, NOx emissions, and total 

greenhouse gas emissions as dependent variables, we analyze the role of primary and 

secondary education in shaping environmental outcomes. Our results confirm the 

presence of an N-shaped EKC, suggesting that economic growth initially worsens 

environmental degradation, followed by an improvement, and later a potential rebound 

in emissions. More importantly, we find that education plays a significant role in 

environmental dynamics: higher enrolment in both primary and secondary education is 

associated with increased emissions, particularly in developing economies, possibly 

due to the expansion of industrial activity and energy consumption linked to a more 

skilled workforce. However, at higher levels of economic development, education may 

contribute to environmental awareness, innovation, and policy implementation that 

foster sustainable practices. These findings highlight the need for targeted educational 

policies that integrate environmental sustainability to ensure long-term ecological 

benefits. 
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1. Introduction 

In recent years, parametric and semiparametric panel data approaches have been 

used extensively to study the Environmental Kuznets Curve (EKC) hypothesis. These 

investigations have produced inconsistent and often contentious results (e.g., Apergis 

et al., 2017; Halkos, 2003; Cole, 2004; Millimet et al., 2003; Zaim and Taskin, 2000). 

The EKC claims that environmental deterioration first increases with economic 

development due to the "scale effect" of industrial expansion. However, after a certain 

income threshold, environmental degradation begins to decrease as cleaner technology 

and more efficient manufacturing processes emerge—known as the "technique" and 

"composition" impacts. 

However, education plays a key role in identifying these processes. The influence 

of educational enrollment on pollutant emissions can also be separated out using scale, 

technique, and composition impacts. Higher primary and secondary school enrollment 

may initially lead to higher emissions as economic activity increases ("scale effect"). 

However, higher levels of knowledge may incentivize companies to adopt more 

environmentally friendly manufacturing practices and support societal shifts toward 

sustainable practices ("technique" and "composition" impacts). Accordingly, the EKC 

hypothesis suggests that pollution will decrease as a result of the composition and 

method effects becoming more apparent at higher income levels while the scale impact 

predominates at lower income levels (Jayanthakumaran and Liu, 2012). 

Despite a variety of limitations, the EKC has been the focus of extensive research. 

First, many recent studies assume that random disturbances occur across panel 

dimensions or that variables are cross-sectionally independent. This assumption is 

commonly broken in macroeconomic datasets due to unobserved common causes, such 

as changes in environmental legislation worldwide, which results in biased and 

unreliable conclusions. Second, most studies do not explore the interplay between 

environmental outcomes, economic development, and education.  

As mentioned earlier, our study of the relationship between economic growth and 

education and environmental deterioration is framed by the Environmental Kuznets 

Curve (EKC) hypothesis. Similar to financial markets, education has a distinct impact 

on economic and environmental outcomes through processes such as "scale," 

"technique," and "composition" impacts. For instance, whereas secondary education 
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fosters creativity and abilities that support cleaner technologies and sustainable 

practices, primary education may promote industrialization and economic expansion, 

which could increase emissions. These intricate connections demonstrate how 

important it is to incorporate education into the EKC framework in order to understand 

its effects on the environment. 

This study aims to bridge these gaps by investigating the ways in which economic 

growth and educational enrollment impact the validity of the EKC hypothesis. Using a 

balanced panel dataset of 167 countries from 2000 to 2020, the study accounts for cross-

sectional dependence using econometric techniques such the Pesaran (2004) CD test. 

By including education factors into a static and dynamic EKC framework, this study 

seeks to uncover the intricate links between primary and secondary education and CO₂, 

NOₓ, and other greenhouse gas emissions. By providing a more comprehensive 

understanding of how education influences environmental outcomes in the context of 

economic development, the findings are meant to add to the broader discussion on 

sustainable growth and environmental policy. 

Research Questions 

RQ1: Does the Environmental Kuznets Curve (EKC) hypothesis hold for CO₂, 

NOₓ, and other greenhouse gas emissions across 167 countries from 2000 to 2020? 

RQ2: How do primary and secondary education enrollment levels affect the 

relationship between economic development and environmental degradation? 

Research Hypotheses 

H1: The EKC hypothesis is valid, with CO₂, NOₓ, and greenhouse gas emissions 

initially rising with GDP per capita but declining after a critical income threshold. 

H2: Higher primary and secondary education enrollment contribute to increased 

emissions due to "scale effects." 

The paper is organized as follows: Section 2 provides an extensive literature 

review on the impact of economic growth and education level on the Environmental 

Kuznets Curve Hypothesis.  Section 3 presents the data and the econometric 

methodology, while in Section 4 the empirical results and discussion are presented. 

Finally, in Section 5 some concluding remarks are summarized. 
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2. Literature review 

For their survival and development, humans depend on a wide range of 

environmental resources, such as oxygen from the atmosphere, food from aquatic and 

terrestrial ecosystems, and energy from coal, oil, and other natural resources. Even if 

these resources increase economic growth and raise living standards, one of the main 

environmental repercussions of their extraction is the emission of pollutants such as 

carbon dioxide (CO₂), nitrogen oxides (NOₓ), and other greenhouse gases (GHGs). 

Concern over climate change and global warming is increasing as a result of these 

emissions (Solomon et al., 2009; Jones et al., 2016; Jackson et al., 2019; Fuss et al., 

2014; Stocker et al., 2013). 

The intricate relationship between economic growth and environmental 

degradation has been studied using frameworks such as the Environmental Kuznets 

Curve (EKC), which suggests that environmental degradation initially rises as a 

country's income rises but eventually falls once a certain income threshold is reached. 

A nation may adopt cleaner technology and better environmental practices if it reaches 

a certain level of prosperity, which could result in a decrease in emissions like CO₂ and 

NOₓ, according to this inverted U-shaped relationship (Grossman & Krueger, 1995; 

Stern, 2004; Panayotou, 1993; Cole, Rayner, & Bates, 1997). However, this relationship 

is influenced by many factors outside of wealth. . Education is one of the most 

significant elements that can affect how societies engage with their environment. It can 

affect choices and actions related to pollution, resource use, and environmental 

conservation. In particular, education for sustainable development (ESD) emphasizes 

the need to integrate environmental considerations into educational curricula and 

practices to help people understand the long-term effects of their actions on the 

environment (Leicht, Heiss, & Byun, 2018; UNESCO, 2012, 2014, 2017; Sterling, 

2004; Tilbury, 2011; Hopkins & McKeown, 2002; Wals, 2007; Jickling & Wals, 2008; 

Orr, 1992). 

However, as education levels increase, people become more aware of 

environmental issues, leading to more sustainable consumption patterns and a greater 

willingness to support policies that reduce pollution and protect ecosystems (Zsóka et 

al., 2013; UNESCO, 2012; Stern & Dietz, 1994; Schultz & Zelezny, 2003; Poortinga et 

al., 2004). Education also promotes the development of eco-friendly practices and green 
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technologies on a personal and social level. In the past, economic growth as measured 

by GDP per capita has been associated with increased energy use and pollution. 

Growing income levels are typically linked to rising energy use, which raises CO₂, NOₓ, 

and other GHG emissions, especially in emerging countries with industrializing 

economies. However, when countries' incomes increase, they may have the resources 

and incentive to invest in more environmentally friendly technologies and enforce 

stricter environmental regulations. Education is essential throughout this shift since 

educated individuals are more likely to advocate for environmental sustainability and 

support laws intended to reduce emissions (Hines et al., 1987; O'Neill & Nicholson-

Cole, 2009; Stevenson, 2007). 

Educational attainment, particularly at the basic and secondary levels, can 

influence these processes by providing people with the knowledge and skills to make 

informed decisions for environmental preservation. Primary education increases 

awareness of environmental issues at a young age, whereas secondary education helps 

people get a deeper understanding of complex environmental challenges and solutions. 

Thus, primary and secondary school enrollment can directly impact national attitudes 

toward sustainability and indirectly contribute to lowering CO₂, NOₓ, and GHG 

emissions (Barro, 2001; Gylfason, 2003; Cole & Neumayer, 2004; Sato & Vörösmarty, 

2016; Adger & Kelly, 1999). 

Due in large part to international initiatives like the United Nations' Decade for 

Education for Sustainable Development (DESD) (2005-2014), the idea of education for 

sustainable development (ESD) has gained popularity in recent years. ESD aims to 

integrate sustainability into educational institutions worldwide so that future 

generations have the knowledge, values, and skills necessary to address environmental 

concerns. ESD encourages responsible behavior, fosters a deep understanding of 

environmental issues, and motivates individuals to take action to lower emissions and 

safeguard the environment (Tilbury, 1995; UNESCO, 2005; Hopkins & McKeown, 

2002; Wals, 2011). ESD's primary focus has historically been environmental education, 

but recent studies show that it also makes a substantial contribution to the creation of 

sustainable, carbon-emission-free economic growth.  

For instance, countries with greater levels of knowledge are more likely to switch 

to sustainable energy sources and use resources faster and more efficiently. By 

analyzing the relationship between education (primary and secondary enrollment rates) 
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and environmental indicators like CO₂, NOₓ, and GHGs (greenhouse gases), it is 

possible to assess how education contributes to sustainable development outcomes in 

different countries (Cole & Neumayer, 2004; Khan & Banu, 2017; Sato & Vörösmarty, 

2016). 

In conclusion, education for sustainable development must be integrated into 

national policy and educational systems in order to stop environmental degradation. 

Examining the impact of GDP per capita and basic and secondary education on 

environmental indicators such as CO₂, NOₓ, and GHGs (greenhouse gases) may provide 

additional insight into how education influences environmental outcomes in connection 

to economic growth. Higher education enrollment, particularly at the secondary level, 

is anticipated to be associated with reduced emissions, helping countries balance 

economic growth with environmental sustainability. 

 

3. Data and Methodology 

The econometric estimation in this study utilizes an unbalanced panel dataset 

encompassing 167 countries over a 21-year period (n = 167 and T = 21), spanning from 

[specific years, e.g., 2000–2020. The dependent variables—CO₂ emissions, NOₓ 

emissions, and GHG emissions (metric tons of CO₂ equivalent)—are sourced from the 

World Bank’s World Development Indicators Database, providing reliable and 

standardized environmental indicators (see Table 1). 

[Insert Table 1, here] 

The independent variables include educational metrics such as primary education 

enrollment (prmpul) and secondary education enrollment (secpup), alongside economic 

variables like GDP per capita (gdpc) and its higher-order terms (gdpc² and gdpc³) to 

capture potential nonlinear relationships between economic development, education, 

and environmental outcomes. 

The missing values of the variables of interest for the recent years of the time 

span under consideration were predicted using moving average, single, and double 

exponential smoothing techniques, while interpolation was employed when necessary, 

in the case of missing values. Accuracy metrics including Mean Absolute Percentage 

Error (MAPE), Mean Absolute Deviation (MAD), and Mean Squared Deviation (MSD) 

were used to help choose the best approach. Smaller values signify a better-fitting 
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model, and using these statistics allows us to compare various forecasting fits and 

smoothing techniques.  

While concerns may raise regarding the potential distortion of stationarity and 

cointegration properties due to interpolation, the scale of imputation in this study is 

minimal and unlikely to affect the results meaningfully. The panel consists of 21 years 

across 167 countries, yielding a total of 28,056 observations across eight variables. 

Before interpolation, we had 27,980 complete observations, meaning only 76 values 

(0.27%) were imputed. This negligible proportion ensures that any risk of artificially 

inducing trends, persistence, or biasing unit root and cointegration tests is virtually non-

existent. 

The use of a balanced panel allows for robust econometric analysis, avoiding 

issues of missing data that can complicate interpretations. This dataset, with its global 

coverage, enables a comprehensive examination of the interplay between education and 

emissions, offering new insights into how education might influence CO₂, NOₓ, and 

greenhouse gas dynamics at a cross-country level. 

In Table 2 we provide a summary of descriptive statistics for the dependent and 

explanatory variables, while in Table 3 the corresponding diagonal correlation matrix 

is presented.  

[Insert Table 2, here] 

With mean values of 204,946, 275,579, and 16,291 metric tons, respectively, CO₂ 

emissions, NOₓ emissions, and total greenhouse gas (GRHGAS) emissions show 

significant dispersion. With CO₂ emissions as high as 11 million metric tons, the huge 

standard deviations show that certain nations contribute disproportionately to global 

pollution, while others have comparatively low emission levels. The variation in 

greenhouse gas emissions points to significant differences in national economic 

systems, patterns of energy usage, and environmental regulations. NOₓ emissions, 

which are frequently linked to traffic and industrial activities, exhibit a similar trend, 

with some nations maintaining very low emissions and others surpassing half a million 

metric tons. 

The sharp difference between high- and low-income countries is demonstrated by 

the GDP per capita (GDPC), which can range from as low as $137 to over $204,000. 

The high standard deviation and mean GDP per capita of $19,065 indicate that 
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economic inequality may be a significant factor in determining emissions patterns and 

environmental policies. These disparities are further highlighted by education variables 

like primary school enrollment (PRMPUL) and secondary school enrollment 

(SECPUP). The wide variations in population size and educational access are reflected 

in the enrollment in primary education, which ranges from 1,235 students to 140 

million, and secondary education, which ranges from 508 students to 130 million.  

With correlation values of 0.996 between CO₂ and GRHGAS and 0.914 between 

CO₂ and NOₓ, it is predictably the case that CO₂ emissions, total greenhouse gas 

(GRHGAS) emissions, and nitrogen oxide (NOₓ) emissions are closely connected (see 

Table 3). The three pollutants appear to be closely associated, according to their strong 

positive correlations, suggesting that nations with high CO₂ emissions also have high 

NOₓ and other greenhouse gas emissions. The fact that CO₂ contributes significantly to 

total greenhouse gas emissions is probably the reason for the almost perfect correlation 

between CO₂ and GRHGAS. Similarly, the association between NOₓ and GRHGAS 

(0.938) supports the notion that shared industrial and economic activities are the source 

of several types of pollution. The robustness of these associations is confirmed by their 

statistical significance (p-values = 0.000). 

[Insert Table 3, here] 

However, there is a far smaller correlation between GDP per capita (GDPC) and 

emissions. GDPC and CO₂ have a correlation of just 0.0479, and NOₓ has an even lower 

correlation of 0.006, which is statistically insignificant (p = 0.688). The Environmental 

Kuznets Curve (EKC) hypothesis, which contends that emissions first increase with 

economic expansion before eventually declining at higher income levels, is consistent 

with this weak association. This non-linear relationship is not discernible using 

straightforward correlation analysis. It's interesting to note that there are significant 

positive relationships between emissions and education variables, specifically primary 

school enrollment (PRMPUL) and secondary school enrollment (SECPUP). There is a 

strong correlation between PRMPUL and SECPUP and GRHGAS (0.620 and 0.657), 

CO₂ (0.586 and 0.619), and NOₓ (0.732 and 0.793, respectively). 

These correlations imply that higher emissions are initially linked to higher 

educational enrollment, most likely as a result of the growth of economic and industrial 

activity that comes with greater literacy and labor force involvement. The notion that 
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education is a key factor in determining economic and environmental dynamics is 

supported by the substantial connection (0.919) between primary and secondary 

education, which shows that nations with high primary enrollment also have robust 

secondary education systems. The necessity for policies that combine education with 

sustainable environmental measures is further highlighted by the negative correlation 

between GDPC and education variables (-0.097 for PRMPUL and -0.096 for SECPUP), 

which indicates that higher education enrollment is more common in developing 

economies. 

Similarly to other empirical studies (see for example Millimet et al., 2003; 

Apergis,2016), we first estimate separately the following (polynomial) panel data 

models in a static form. The degree of the polynomial for each equation has been 

determined by the maximum number of statistically significant powers. 

 

𝑪𝑶𝟐𝒊𝒕 = 𝑎𝑖 + 𝛽𝑡 + 𝑏0 + 𝑏1 𝐺𝐷𝑃𝐶𝑖𝑡 + 𝑏2 𝐺𝐷𝑃𝐶𝑖𝑡
2 + 𝑏3 𝐺𝐷𝑃𝐶𝑖𝑡

3 + 𝐶1 𝑃𝑅𝑀𝑃𝑈𝐿𝑖𝑡 +

𝐶2 𝑆𝐸𝐶𝑃𝑈𝑃𝑖𝑡 + 𝑒𝑖𝑡               (1)      

 

𝑵𝑶𝒙𝒊𝒕 = 𝑎𝑖 + 𝛽𝑡 + 𝑏0 + 𝑏1 𝐺𝐷𝑃𝐶𝑖𝑡 + 𝑏2 𝐺𝐷𝑃𝐶𝑖𝑡
2 + 𝑏3 𝐺𝐷𝑃𝐶𝑖𝑡

3 + 𝐶1 𝑃𝑅𝑀𝑃𝑈𝐿𝑖𝑡 +

𝐶2 𝑆𝐸𝐶𝑃𝑈𝑃𝑖𝑡 + 𝑒𝑖𝑡              (2)      

   

 

𝑮𝑹𝑯𝑮𝑨𝑺𝒊𝒕 = 𝑎𝑖 + 𝛽𝑡 + 𝑏0 + 𝑏1 𝐺𝐷𝑃𝐶𝑖𝑡 + 𝑏2 𝐺𝐷𝑃𝐶𝑖𝑡
2 + 𝑏3 𝐺𝐷𝑃𝐶𝑖𝑡

3 +

𝐶1 𝑃𝑅𝑀𝑃𝑈𝐿𝑖𝑡 + 𝐶2 𝑆𝐸𝐶𝑃𝑈𝑃𝑖𝑡 + 𝑒𝑖𝑡         (3) 

 

Where 𝐶𝑂2𝑖𝑡 , 𝑁𝑂𝑥𝑖𝑡  and 𝐺𝑅𝐻𝐺𝐴𝑆𝑖𝑡 are the in metric tons pollution in country  

𝑖 at time 𝑡; 𝛼𝑖 and 𝛽𝑡 are country and time fixed effects used in order to capture common 

factors across the cross-sectional element; 𝐺𝐷𝑃𝐶𝑖𝑡 is real GDP per capita (powers) for 

country  𝑖 at time 𝑡, and PRMPUL and SECPUL are the primary and secondary 

education enrollment (total number of pupils). Finally, 𝑒𝑖𝑡  are zero mean i.i.d. errors. 

The basic model of unobserved effects may be expressed as: 

 

𝒀𝒊𝒕 = 𝑋𝑖𝑡𝛽 + ⅆ𝑖 + 𝜀𝑖𝑡                   𝒕 = 1, 2, … , 𝑇        (4) 
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The first method used is the fixed effects (FE) estimator, allowing a different 

intercept for every country and treating the constants as regression parameters. 

To account for potential cross-sectional dependence (CD) in our panel dataset, 

we perform four widely used tests: Breusch-Pagan LM (1980), Pesaran Scaled LM 

(2004), Bias-Corrected Scaled LM (2008), and Pesaran CD (2004). Cross-sectional 

dependence arises when shocks affecting one country spill over to others, which is 

particularly relevant for global environmental and economic studies. Ignoring CD can 

lead to biased standard errors and misleading statistical inferences, making these tests 

crucial for ensuring the robustness of our econometric approach. 

The Breusch-Pagan LM (5) test is a classical test for CD, particularly suitable for 

panels with a large number of cross-sections (N) and a small-time dimension (T). It 

tests whether residuals are correlated across countries, with a significant test statistic 

indicating the presence of CD. However, this test has limitations in large panels, as it 

tends to over-reject the null hypothesis of cross-sectional independence. 

𝑳𝑴 =∑ ∑ �̂�𝑗𝑖
2

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

             (5) 

Where: 

• �̂�𝑗𝑖
. is the estimated correlation coefficient of residuals between cross-sectional 

units i and j. 

• N is the number of cross-sectional units. 

The test statistic follows a x2 distribution with 
𝑁(𝑁−1)

2
 degrees of freedom under 

the null hypothesis of no cross-sectional dependence. 

To address the shortcomings of the Breusch-Pagan LM test, we use the Pesaran 

Scaled LM (6) test , which adjusts for the number of cross-sections and ensures more 

reliable results in large panels. A statistically significant result confirms the presence of 

CD. Additionally, the Bias-Corrected Scaled LM (7) test further refines the Pesaran 

Scaled LM test by adjusting for bias in small samples. This correction improves the 
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accuracy of the test in finite samples, making it a more reliable indicator of cross-

sectional dependence. 

𝑳𝑴𝒔𝒄𝒂𝒍𝒆𝒅 =
1

𝑁(𝑁 − 1)
∑ ∑ (𝑇�̂�𝑗𝑖

2

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

− 1)               (6) 

Where: 

• �̂�𝑗𝑖
2  is the squared correlation coefficient of residuals. 

• T is the number of time periods. 

Under the null hypothesis,  𝐿𝑀𝑠𝑐𝑎𝑙𝑒𝑑 is asymptotically standard normal. 

𝑳𝑴𝑩𝑪 =
1

𝑁(𝑁 − 1)
∑∑[√𝑇�̂��̇��̇�

2 −
𝑇

𝑇 − 2
]

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=⊥

              (7) 

Where: 

• The bias correction term 
𝑇

𝑇−2
  improves small-sample performance. 

Under the null hypothesis LMBC follows a standard normal distribution asymptotically. 

Lastly, we apply the Pesaran CD (8) test, which is particularly effective for large 

panels and remains valid even when the time dimension is relatively small. Unlike the 

previous tests, which are based on sum-of-squared residual correlations, the Pesaran 

CD test is based on pairwise correlation coefficients of residuals. A statistically 

significant result suggests that CD is present across countries, indicating that 

environmental and economic shocks in one country influence others. 

𝑪𝑫 = √
2

𝑁(𝑁 − 1)
∑ ∑ �̂�𝑗𝑖

.

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

               (8) 

Where:  

• �̂�𝑗𝑖 is the pairwise correlation of residuals. 
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Under the null hypothesis of no cross-sectional dependence, CD is asymptotically 

standard normal. 

To examine the stationarity properties of our variables, we apply three panel unit 

root tests: Im, Pesaran, and Shin (IPS) W-stat, ADF - Fisher Chi-square, and PP - Fisher 

Chi-square. These tests allow us to assess whether the variables exhibit unit roots, 

ensuring the appropriateness of our econometric methods. 

The Im, Pesaran, and Shin (IPS) W-stat (9) test extends the traditional Dickey-

Fuller test to a panel setting by averaging individual unit root test statistics across cross-

sections. Unlike methods that assume a common autoregressive coefficient for all units, 

the IPS test allows for heterogeneity in the persistence of the series across countries. A 

rejection of the null hypothesis (which states that all series contain a unit root) suggests 

that at least some of the series are stationary. This flexibility makes IPS particularly 

useful in our dataset, given the differences in economic and educational development 

across the 167 countries in our sample. 

𝒘𝒕𝒃𝒂𝒓 =
1

𝑁
∑𝑡𝑖                 (9)

𝑁

𝑖=1

 

Where:  

• 𝑡𝑖 is the ADF t-statistic for each individual time series 𝑖. 

• 𝑁 is the number of cross-sectional units. 

IPS shows that under the null hypothesis H0 all series have unit roots, the standardized 

W-stat follows a standard normal distribution: 

𝒛𝒕𝒃𝒂𝒓 =
√𝑁(𝑊𝑡𝑏𝑎𝑟 − 𝐸(𝑡𝑖))

√𝑉𝑎𝑟(𝑡𝑖)
~𝑁(0,1)             (10)   

Where 𝐸(𝑡𝑖) 𝑎𝑛ⅆ √𝑉𝑎𝑟(𝑡𝑖) are mean and variance of the ADF statistic under H0. 

• Null Hypothesis (H0): All series contain a unit root. 

• Alternative Hypothesis (H1): Some (but not necessarily all) series are stationary. 

The ADF - Fisher Chi-square (11) test, proposed by Maddala and Wu (1999), 

aggregates p-values from individual Augmented Dickey-Fuller (ADF) tests conducted 

for each country in the panel. This method does not require a balanced panel and is 

useful in accounting for cross-sectional heterogeneity. By combining information from 
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multiple independent unit root tests, the ADF-Fisher test provides a robust measure of 

stationarity. If the test rejects the null hypothesis, it indicates that at least one country 

in the sample has a stationary series, supporting the presence of stationarity in the 

dataset. 

𝑨𝑫𝑭-𝑭𝒊𝒔𝒉𝒆𝒓 = −2∑ln(𝑝𝑖)              (11)

𝑁

𝑖=1

 

Where:  

• 𝑝𝑖  is the p-value from the ADF unit root test for cross-section 𝑖. 

• Under the null hypothesis x2 follows a Chi-square distribution with 2N degrees 

of freedom. 

• Null Hypothesis (H0): All series have a unit root. 

• Alternative Hypothesis (H1): At least one series is stationary. 

 

Finally, the PP - Fisher Chi-square (12) test, based on the Phillips-Perron 

methodology, is similar in approach to the ADF-Fisher test but accounts for serial 

correlation and heteroskedasticity without requiring lag selection. It is particularly 

useful for handling structural breaks and heterogeneity in the data. Like the ADF-Fisher 

test, it combines the results of individual country-level Phillips-Perron tests to produce 

an overall test statistic for the panel. A significant result suggests that at least one of the 

panel series is stationary, reinforcing the conclusions drawn from the other unit root 

tests. 

𝑷𝑷 − 𝑭𝒊𝒔𝒉𝒆𝒓 = −2∑ln(𝑝𝑖)               (12)

𝑁

𝑖=2

 

Where:  

• 𝑝𝑖  is the p-value from the ADF unit root test for cross-section 𝑖. 

• Under the null hypothesis x2 follows a Chi-square distribution with 2N degrees 

of freedom. 

• Null Hypothesis (H0): All series have a unit root. 

• Alternative Hypothesis (H1): At least one series is stationary. 
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To investstigate the long-run relationship between economic development, 

education, and emissions, we employ the Pedroni (1999, 2004) cointegration tests, 

which extend the Engle-Granger framework to a panel data setting. These tests assess 

whether a stable long-run equilibrium exists among the variables, allowing for cross-

country heterogeneity. Specifically, we use four test statistics:  

The Panel PP-Statistic (13) and Panel ADF-Statistic (14) fall under the within-

dimension category, meaning they pool data across all countries. The Panel PP-Statistic, 

based on the Phillips-Perron (PP) test, accounts for serial correlation and 

heteroskedasticity in the residuals while testing for unit roots. A significantly negative 

test statistic provides evidence of cointegration, suggesting that emissions, education, 

and economic growth move together in the long run. Similarly, the Panel ADF-Statistic, 

based on the Augmented Dickey-Fuller (ADF) test, tests whether the residuals are 

stationary, offering an alternative measure of cointegration. A statistically significant 

result indicates that the variables maintain a stable relationship over time. 

𝑷𝑷𝑷𝒂𝒏𝒆𝒍 =
∑ ∑ (�̂�𝑖,𝑡−1Δ�̂�𝑖𝑡 − λ̂𝑖)

𝑇
𝑡=1

𝑁
𝑖=1

√∑ ∑ �̂�𝑖,𝑡−1
2𝑇

𝑡=1
𝑁
𝑖=1

                   (13) 

Where:  

• �̂�𝑖𝑡 : Residuals from the cointegrating regression for unit 𝑖 at time 𝑡 

• Δêit ∶ First difference of the residuals 

• �̂�𝑖  : Adjustment term for serial correlation in the residuals for unit 𝑖 

• N: Number of cross-sectional units. 

• T: Number of time periods. 

Under the null hypothesis (H0) all series contain a unit root, and the statistic follows a 

standard normal distribution asymptotically. 

𝑨𝑫𝑭𝑷𝒂𝒏𝒆𝒍 =
∑ ∑ �̂�𝑖,𝑡−1Δ�̂�𝑖𝑡

𝑇
𝑡=1

𝑁
𝑖=1

√∑ ∑ �̂�𝑖,𝑡−1
2𝑇

𝑡=1
𝑁
𝑖=1

                 (14) 

Where:  

• �̂�𝑖𝑡 : Residuals from the cointegrating regression for unit 𝑖 at time 𝑡 

• Δêit ∶ First difference of the residuals 

• �̂�𝑖  : Adjustment term for serial correlation in the residuals for unit 𝑖 
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• N: Number of cross-sectional units. 

• T: Number of time periods. 

The null hypothesis is that all panels have a unit root, while the alternative 

suggests stationarity. 

The Group PP-Statistic (15) and Group ADF-Statistic (16) fall under the between-

dimension category, meaning they allow for greater heterogeneity across countries. The 

Group PP-Statistic, like the Panel PP-Statistic, is derived from the Phillips-Perron 

methodology but treats each country separately rather than pooling them. A significant 

and negative value implies that at least one country exhibits cointegration. Similarly, 

the Group ADF-Statistic, based on individual ADF regressions for each country, 

provides further robustness by testing for unit roots in the residuals without assuming 

a common autoregressive coefficient across countries. If this test rejects the null 

hypothesis, it confirms the presence of cointegration in at least some cross-sections. 

𝑷𝑷𝑮𝒓𝒐𝒖𝒑 =∑

(

 
∑ (�̂�𝑖,𝑡−1Δ�̂�𝑖𝑡 − λ̂𝑖)
𝑇
𝑡=1

√∑ �̂�𝑖,𝑡−1
2𝑇

𝑡=1 )

                    (15)

𝑁

𝑖=1

 

Where 𝑃𝑃𝑖 is the Phillips-Perron statistic for each individual cross-section. 

• �̂�𝑖𝑡 : Residuals from the cointegrating regression for unit 𝑖 at time 𝑡 

• Δêit ∶ First difference of the residuals 

• �̂�𝑖  : Adjustment term for serial correlation in the residuals for unit 𝑖 

• N: Number of cross-sectional units. 

• T: Number of time periods. 

Under the null hypothesis (H0), all series have a unit root, while the alternative 

suggests at least some series are stationary. 

𝑨𝑫𝑭𝑮𝒓𝒐𝒖𝒑 =∑

(

 
∑ �̂�𝑖,𝑡−1Δ�̂�𝑖𝑡
𝑇
𝑡=1

√∑ �̂�𝑖,𝑡−1
2𝑇

𝑡=1 )

               (16)

𝑁

𝑖=1

 

Where 𝐴𝐷𝐹𝑖 is the ADF test statistic for each cross-section. 

• �̂�𝑖𝑡 : Residuals from the cointegrating regression for unit 𝑖 at time 𝑡 

• Δêit ∶ First difference of the residuals 

• �̂�𝑖  : Adjustment term for serial correlation in the residuals for unit 𝑖 
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• N: Number of cross-sectional units. 

• T: Number of time periods. 

Again, under H0, all series contain a unit root, while under H1, at least some are 

stationary. 

 

4. Results And Discussion 

Panel Cross-section Dependence Test 

In panel data models, it often seems that disturbances are cross-sectionally 

independent, particularly when the cross-section dimension is large. Nonetheless, there 

is strong evidence that panel regression settings frequently exhibit cross-sectional 

dependence. Ignoring cross-sectional dependency in estimate can have detrimental 

effects; if residual reliance is not taken into consideration, estimator efficiency will be 

lost, and test statistics will be deemed invalid. 

The potential correlation between the variables or random disturbances across the 

panel dimension is one of the extra issues that come up when working with panel data 

as opposed to the pure time-series situation. The assumption that there was no CD was 

made in the early literature on unit root and cointegration tests. This assumption is 

frequently broken by macro-level data, though, which causes poor power and size 

distortions in tests that rely on cross-sectional independence. For instance, widespread 

unobserved effects of changes in national environmental laws may be the cause of CD 

in our data. Thus, we check for CD before moving on to the unit root and cointegration 

tests. We use the CD tests proposed by Breusch-Pagan (1980) LM, Pesaran (2004) 

scaled LM, Baltagi, Feng, and Kao (2012) bias-corrected scaled LM and Pesaran. The 

tests are based on the estimation of the linear panel model of the form  

 

𝒀𝒊𝒕 = 𝑎𝑖 + 𝑏𝑖
′𝑥𝑖𝑡 + 𝑢𝑖𝑡,      𝒊 = 1,… ,𝑁 ;   𝒕 = 1,… , 𝑇           (17) 

 

where T and N are the time and panel dimensions respectively, 𝛼𝑖 the country-

specific intercept, 𝑥𝑖𝑡 𝑎 𝑘 ×  1 vector of regressors and 𝑢𝑖𝑡 the random disturbance 

term.  

The null hypothesis in both tests assume the existence of cross-sectional 

correlation: 𝐶𝑜𝑣(𝑢𝑖𝑡, 𝑢𝑗𝑡) = 0 𝐶𝑜𝑣(𝑢𝑖𝑡, 𝑢𝑗𝑡) =  0 for all t and for all 𝑖 ≠ 𝑗. This is 
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tested against the alternative hypothesis that 𝐶𝑜𝑣(𝑢𝑖𝑡, 𝑢𝑗𝑡) ≠ 0 for at least one pair of 

𝑖 𝑎𝑛ⅆ 𝑗. The Pesaran (2004) tests are a type of Lagrange multiplier test that is based on 

the errors obtained from estimating Equation (20) by the OLS method.  

In consideration of the previously stated, we conduct the initial empirical analysis 

by looking into the existence of CD.  Considering the statistical significance of the CD 

statistics, all tests provide evidence of CD in the data by strongly rejecting the null 

hypothesis of cross-sectional independence (P-value = 0.000) for all models. Given this 

data, we use tests that are resistant to CD (referred to as "second generation" tests) to 

determine whether unit roots exist (see Table 4). 

[Insert Table 4, here] 

With P-values of 0.000 for all models, all tests significantly reject the null 

hypothesis of cross-sectional independence, suggesting that the data contains cross-

sectional dependence (CD). This conclusion implies that our models' residuals are not 

cross-sectionally independent, which is essential for guaranteeing the validity of our 

findings. We use tests specifically designed to be robust to cross-sectional dependency, 

called ‘second generation,' tests, to investigate the existence of unit roots given the 

statistical significance of the CD statistics. By taking into consideration the detected 

cross-sectional dependence, these tests enable more trustworthy conclusions about the 

data's stationarity. 

 

Panel Unit Root Tests 

Panel unit root tests both under the assumption of cross-section independence and 

allowing for cross-section dependence. We perform panel unit root tests under both the 

assumption of cross-section independence and allowing for cross-section dependence. 

Specifically, we apply three independent cross-section panel unit root tests: Pesaran 

and Shin (2003), Fisher-type tests using ADF and PP tests (Maddala and Wu, 1999; 

Choi, 2001), and Hadri (2000). 

To assess the stationarity properties of the variables in our models, we utilize the 

‘second-generation’ unit root tests for panel data. This approach is particularly suited 

for handling non-linear functions of I (1) variables, as is the case in our study where 

GDP is included both in its level and in quadratic and cubic forms (Apergis, 2016). For 
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this purpose, we employ the Fisher test, as proposed by Maddala and Wu (1999), which 

accounts for cross-sectional dependence in an unbalanced panel dataset. This 

methodology is based on the p-values of individual unit root tests and assumes that all 

series are non-stationary under the null hypothesis, with the alternative hypothesis 

positing that at least one series in the panel is stationary. 

Unlike the Im–Pesaran–Shin (1997) test, the Fisher test does not require a 

balanced panel, making it well-suited for our dataset. This flexibility ensures that the 

unit root testing results are robust and reliable, even in the presence of an unbalanced 

panel structure. 

 

Panel unit root test: Summary 

The presence of unit roots across all sample variables is confirmed by the panel 

unit root tests that were performed, specifically the PP-Fisher Chi-square, the ADF-

Fisher Chi-square, the Im, and the Pesaran and Shin W-statistic (see Table 5). None of 

the variables are integrated of an order greater than one I (1), according to these tests, 

which offer strong evidence that the variables under investigation only show 

stationarity after first differencing. The validity of further econometric estimations is 

guaranteed, and the trustworthiness of this conclusion is strengthened by the 

consistency of these results across various testing techniques. The findings allay 

worries about false regression problems that could occur from non-stationary data by 

verifying the lack of higher-order integration. Additionally, the validation of I (1) 

integration is consistent with common assumptions in panel data econometrics, 

allowing for the proper use of estimate methods that depend on stationarity following 

differencing, including fixed effects or dynamic panel models. These results are 

essential for guaranteeing the methodological soundness and empirical validity of the 

connections examined between economic factors, educational indicators, and 

environmental consequences. Overall, the panel unit roots tests confirm that all sample 

variables have a unit root. Stated otherwise, the test findings indicate that none of the 

variables are integrated to a level higher than one (I-1). 

[Insert Table 5, here] 
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Estimation of regressions  

Moment estimators for the unconditional variances are used in place of residuals 

in the subsequent techniques, which are improved versions of the original White 

statistics. These methods, which are based on the Panel Corrected Standard Error 

(PCSE) technique first presented by Beck and Katz (1995), are intended to handle 

unconditional variance matrices with no limits while placing further limitations on 

conditional variance matrices. The conditional variances matching the unconditional 

variances is a sufficient, but not a necessary, criterion for using PCSE methods. 

Furthermore, the variance structures must be constant across cross-sections and time 

periods, much like with the SUR estimators. Only the diagonal elements of the cross-

section and period covariance matrices are used by the diagonal versions of these 

estimators, known as Cross-section weights (PCSE). These estimators are not made to 

deal with general residual correlation, even though they are resilient against 

heteroskedasticity across cross-sections or periods. Lastly, the non-degree-of-freedom-

corrected variants of these estimators further customize them to particular panel data 

sets by streamlining the calculation by eliminating the leading term involving the 

number of observations and coefficients. The regression results according to Cross-

section weights (PCSE) are presented in Tables 6,7,8. 

 

CO₂ Emissions (CO₂) Regression Analysis 

The GDP per capita (GDPC) coefficient is positive and statistically significant (β 

= 7.048, p = 0.001), indicating that at lower levels of income, economic growth 

contributes to rising CO₂ emissions (see Table 6). However, the squared (GDPC²) and 

cubic (GDPC³) terms of GDP per capita are also significant, with GDPC² having a 

negative coefficient (β = -0.0001, p = 0.000) and GDPC³ having a positive coefficient 

(β = 3.69E-10, p = 0.0001). This confirms the presence of an N-shaped Environmental 

Kuznets Curve (EKC), where emissions first rise with economic growth, then decline, 

but eventually increase again at higher income levels. This suggests that economic 

development alone does not guarantee long-term environmental sustainability, as 

emissions may rise again after surpassing a certain income threshold. 

[Insert Table 6, here] 
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Education has a noteworthy effect on CO2 emissions as well. Higher primary 

school enrollment is linked to higher CO₂ emissions, most likely as a result of the scale 

effects of economic expansion, according to the strong positive and highly significant 

influence of primary education enrollment (PRMPUL) on emissions (β = 0.017, p = 

0.000). Although there is a positive correlation between emissions and secondary 

education enrollment (SECPUP), the magnitude and statistical significance of this 

relationship are smaller (β = 0.002, p = 0.055). This could suggest that secondary 

education has a more complicated or delayed effect on emissions, either as a result of 

policy participation, technological developments, or heightened environmental 

consciousness. With an R-squared of 0.943, the overall model fit is strong. However, 

this high explanatory power is largely driven by the inclusion of country fixed effects, 

which control for unobserved heterogeneity across countries. While the explanatory 

factors contribute to the variation in CO₂ emissions, the fixed effects play a crucial role 

in capturing structural differences across countries. 

 

Nitrogen Oxide Emissions (NOX) Regression Analysis 

The coefficient for GDP per capita (GDPC) is positive but statistically 

insignificant (β = 0.041, p = 0.460), indicating that at lower income levels, economic 

growth does not have a clear effect on NOₓ emissions (see Table 7). However, the 

squared term (GDPC²) is negative and marginally significant (β = -1.19E-06, p = 

0.094), suggesting that emissions may decline at higher income levels. The cubic term 

(GDPC³) is positive and significant (β = 5.01E-12, p = 0.042), reinforcing the presence 

of an N-shaped Environmental Kuznets Curve (EKC) for NOₓ emissions. This implies 

that while emissions initially increase with economic growth, they eventually decrease 

before rising again at higher levels of development, similar to the pattern observed for 

CO₂. However, the weaker significance levels of the GDP-related variables suggest that 

the EKC effect for NOₓ may be less pronounced than for CO₂. 

[Insert Table 7, here] 

NOₓ emissions are strongly and consistently impacted by education 

characteristics. Higher education levels are linked to higher NOₓ emissions, as seen by 

the positive and very significant enrollments in both primary (PRMPUL) and secondary 

(SECPUP) schools (β = 0.0003, p = 0.000; β = 0.0004, p = 0.000). This implies that 

economic and industrial activity grow as educational attainment increases, which adds 
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to pollution. With an R-squared of 0.989, the overall model fit is remarkably high. 

However, this is largely attributed to the inclusion of country fixed effects, which 

account for unobserved heterogeneity across countries. While the explanatory factors 

contribute to explaining variations in NOₓ emissions, the fixed effects significantly 

enhance the model's ability to capture structural differences across countries. 

Nonetheless, the low Durbin-Watson statistic (0.439) suggests that the residuals may 

be autocorrelated. 

 

Greenhouse Gas Emissions (GRHGAS) Regression Analysis 

The coefficient for GDP per capita (GDPC) is positive and statistically significant 

(β = 7.696, p = 0.001), indicating that as economies grow, emissions tend to rise (see 

Table 8). However, the squared term (GDPC²) is negative and highly significant (β = -

0.0001, p = 0.0002), suggesting that emissions begin to decline after reaching a certain 

income threshold. The positive and significant cubic term (GDPC³) (β = 4.01E-10, p = 

0.0001) further supports the presence of an N-shaped EKC, implying that after an initial 

decline, emissions may rise again at higher levels of economic development. This 

suggests that while economic progress can lead to reductions in emissions through 

technological improvements and policy measures, sustained growth may eventually 

reverse these gains, potentially due to increased consumption and energy-intensive 

activities. 

[Insert Table 8, here] 

Variables related to education consistently and significantly affect greenhouse 

gas emissions. Emissions and primary school enrollment (PRMPUL) are strongly 

positively correlated (β = 0.018, p = 0.000), suggesting that as economic activity 

intensifies due to increased educational access, emissions rise. Higher education levels 

are linked to both industrial expansion and energy consumption, as seen by the positive 

and substantial influence of secondary school enrollment (SECPUP) (β = 0.003, p = 

0.019). While the low Durbin-Watson statistic (0.279) raises the possibility of 

autocorrelation issues, the high R-squared value (0.954) should be interpreted with 

caution, as it is largely influenced by the inclusion of country fixed effects. These fixed 

effects capture unobserved heterogeneity across countries, contributing to the model’s 

explanatory power beyond the included variables. 
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Cointegration Testing 

The concept of non-stationary time series analysis was developed as a result of 

the finding that a unit root may be present in many macroeconomic time series. 

According to Engle and Granger (1987), two or more non-stationary series could be 

linearly combined to create a stationary series. The non-stationary time series are 

regarded as cointegrated when there is such a stationary linear combination. A long-

term equilibrium relationship between the variables is represented by the stationary 

combination, often known as the cointegrating equation. Using the approach of Pedroni 

(1999) and Pedroni (2004), we apply cointegration tests in a panel data framework in 

this section. These tests are designed to assess the presence of cointegration among the 

variables, allowing us to examine whether there is a long-run equilibrium relationship 

between the economic indicators in our models. 

We apply two residual cointegration tests following Pedroni (1999, 2004) and 

Kao (1999), which take into consideration cross-sectional dependence (CD) and 

assume weakly exogenous regressors, as stated by Demetriades and James (2011), to 

investigate whether a long-run equilibrium relationship exists among the variables in 

our three models. It should be noted that unless all explanatory variables are very 

exogenous, estimating the cointegrating connections using simple OLS would result in 

skewed coefficient estimates. Furthermore, because they assume cross-sectional 

independence, alternative OLS estimators that seek to mitigate endogeneity bias—such 

as the dynamic OLS or fully modified OLS are inappropriate for our data.  

 

Pedroni (Engle-Granger based) Cointegration Tests 

The basis for the Engle-Granger (1987) cointegration test is a review of the 

residuals of an I(1) variable spurious regression. The residuals should be I(0) if the 

variables are cointegrated. Conversely, the residuals will be I (1) if the variables are not 

cointegrated. The Engle-Granger paradigm is extended to tests involving panel data by 

Pedroni (1999, 2004) and Kao (1999). Pedroni suggests a number of cointegration tests 

that take into account different trend coefficients and intercepts across cross-sections.  

CO2 Model: The CO2 model's Pedroni Residual Cointegration Test yields 

conflicting results about cointegration. With a probability of 0.054 and a value of -

1.602, the Panel PP-Statistic indicates poor evidence against the null hypothesis of no 
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cointegration. This value is around the 0.05 significance level. With a probability of 

0.000 and a value of -9.669, the Panel ADF-Statistic is far more significant and shows 

compelling evidence for cointegration. Cointegration is also suggested by the Group 

PP-Statistic and Group ADF-Statistic, which have respective values of -3.683 

(probability 0.0001) and -2.879 (probability 0.002). These findings suggest that the 

CO2 model's series most likely show cointegration or long-term correlations, with the 

group statistics offering more convincing support (see Table 9).  

[Insert Table 9, here] 

NOX Model: In the case of common AR coefficients, the NOX model's results 

show a stronger argument against cointegration. The null hypothesis is strongly rejected 

by the Panel PP-Statistic of -14.681 (probability 0.000), which indicates that the 

residuals are probably stationary and that the series are cointegrated. There is no 

substantial evidence for cointegration based on this test, nevertheless, as indicated by 

the Panel ADF-Statistic of 4.136 with a probability of 1.000. With probability of 0.000 

for both, the Group PP-Statistic and Group ADF-Statistic offer compelling evidence 

against the absence of cointegration. It is more difficult to draw firm conclusions about 

the existence of cointegration in the NOX model because, whereas the Panel PP statistic 

points to cointegration, the ADF statistic offers contradictory data (see Table 10). 

[Insert Table 10, here] 

GRHGAS Model: The findings broadly support the existence of cointegration in 

the GRHGAS model. The null hypothesis of no cointegration is strongly rejected by 

the Panel PP-Statistic of -4.841 probability 0.000) and the Panel ADF-Statistic of -3.893 

(probability 0.000), indicating that the series are cointegrated. The existence of a long-

term relationship between the variables is further supported by the Group ADF-Statistic 

of -2.740 (probability 0.0031) and Group PP-Statistic of -2.796 (probability 0.002). 

Overall, the evidence points to cointegration in the GRHGAS model, however the 

weighted statistics reveal more conflicting findings, with the Panel PP-Statistic being 

positive (see Table 11). 

[Insert Table 11, here] 
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Environmental Kuznets Curves 

Using the fixed-effects regression model with cross – section covariance error, 

the Figure 1 shows an N-shaped association between GDP per capita and CO2 

emissions. To account for the non-linear dynamics, the model includes GDP per capita, 

CO2 (the dependent variable), its squared term (gdpc2), and its cubed term (gdpc3). 

Plotting the projected values (co2_hat) against GDP per capita showed that CO2 

emissions first climb as economies expand, then fall after a certain income threshold, 

and finally rise at higher income levels. This N-shaped curve indicates that although 

environmental laws and technology improvements may initially lower emissions, 

higher economic growth at later stages may raise CO2 emissions, maybe as a result of 

rising energy demand and consumption. 

[Insert Figure 1, here] 

In Figure 2, nitrogen oxide (NOx) emissions as a percentage of GDP per capita 

are shown on an N-shaped Environmental Kuznets Curve. Plotting the predicted values 

(nox_hat) against GDP per capita was done using the same regression, NOx (dependent 

variable), with gdpc, gdpc2, and gdpc3. The curve indicates that NOx emissions 

increase as economic development progresses, primarily due to urbanization and 

industrialization. Emissions peak when income levels rise and subsequently fall as a 

result of better technologies and more stringent environmental laws. However, NOx 

emissions start to increase once more at very high-income levels, possibly as a result of 

increased industrial and transportation activities in developed economies. 

[Insert Figure 2, here] 

In Figure 3, which also follows an N-shaped curve, looks at the connection 

between GDP per capita and total greenhouse gas (grhgas) emissions. The projected 

values (grhgas_hat) were plotted versus GDP per capita using the same methods, using 

grhgas (dependent variable) and gdpc, gdpc2, and gdpc3. The graph shows that when 

economies embrace cleaner technology and regulations, greenhouse gas emissions first 

rise with economic expansion, peak at a particular income level, and then start to fall. 

Emissions do, however, increase with affluence, most likely as a result of rising energy 

use, agricultural production, and industrial operations in wealthier countries. 

[Insert Figure 3, here] 
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5. Conclusions 

The study's conclusions show that education and environmental outcomes have a 

complicated and ever-changing relationship.  This should not be construed as a criticism 

of educational development, even if our study shows a statistically significant positive 

association between emissions and primary and secondary school enrollment across all 

three models.  Instead, it reflects the fact that, in the early phases of economic growth, 

more access to education stimulates economic expansion and industrial activity, both 

of which can raise emissions.  However, via heightened awareness, technological 

innovation, and civic involvement, education also has enormous revolutionary potential 

for long-term environmental sustainability. The unit root and cointegration tests 

confirm the long-run relationship between emissions, growth, and education, 

underscoring the necessity of long-term policy planning that aligns educational 

development with environmental goals. 

Integrating environmental education into primary and secondary school curricula 

must be a top priority for policymakers in order to reduce the immediate environmental 

costs linked to educational expansion.  In order to truly integrate ideas like climate 

change, biodiversity, sustainability, and environmental justice into fundamental topics, 

this integration should go beyond cursory education.  To develop a generation of 

environmentally conscious citizens, it is important to encourage experiential learning, 

critical thinking, and active involvement in environmental projects.  In order to 

guarantee that sustainability is a cornerstone of the educational system, governments 

must simultaneously implement comprehensive national programs that link education 

with development and climate policy.  This covers curriculum change, teacher 

preparation, and standardized tests that take environmental competencies into account. 

Furthermore, funding for training and vocational education programs that are 

adapted to the demands of a green economy is crucial.  This covers classes on 

environmental management, energy-efficient building, sustainable agriculture, and 

renewable energy.  Education may immediately aid in the shift to low-carbon industries 

and lower emissions linked to traditional economic growth paths by giving young 

people green skills.  In order to make schools into role models for environmental 

responsibility and climate resilience, governments should require green building 

standards for schools that incorporate sustainable materials, solar energy, and efficient 

waste management systems. 
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Additionally, stronger cross-sectoral cooperation is essential.  To guarantee policy 

coherence, especially when extending educational systems in emerging nations, the 

ministries of labor, education, the environment, and the economy must cooperate.  By 

combining environmental protections with educational expansion, coordinated 

measures can avoid the unexpected result of increased emissions.  In order to dissociate 

economic growth from environmental deterioration, governments need also enact more 

comprehensive economic policies like carbon pricing, emissions caps, and incentives 

for the adoption of clean energy. These policies can all be used in conjunction with 

education.  International collaboration and knowledge exchange are necessary to 

support these initiatives, especially when it comes to helping developing nations adopt 

sustainable education practices without sacrificing their development objectives. 

Finally, future studies should investigate the causal pathways by which education 

affects environmental outcomes, particularly when considering institutional 

transformation, behavioral change, and technology innovation.  Education must be 

acknowledged by policymakers as a long-term lever for sustainability as well as a short-

term source of emissions during early development.  The conflicting effects of 

education on emissions may be balanced, and a fair, sustainable transition for all 

economies can be ensured, with the backing of a deliberate, forward-looking 

educational strategy that encourages green innovation, clean technology adoption, and 

global environmental citizenship. 
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TABLES AND FIGURES SECTION 

 

Table 1. Variables’ Definitions 
 
Variable Name Variable Description 

CO2 
CO₂ emissions (total metric tons of CO₂ equivalent), sourced from the 

World Bank. 

NOX 
NOₓ emissions (total metric tons of CO₂ equivalent), sourced from the 

World Bank. 

GRHGAS 
Greenhouse gas (GHG) emissions (total metric tons of CO₂ 

equivalent), sourced from the World Bank. 

GDPC 
GDP per capita (current USD), representing economic development 

levels in each country. 

GDPC2 
Square of GDP per capita, capturing nonlinear effects of economic 

growth on emissions. 

GDPC3 
Cube of GDP per capita, capturing higher-order nonlinear 

relationships between economic growth and emissions. 

PRMPUL 
Primary education enrollment (total number of pupils), reflecting 

participation in basic education. 

SECPUP 
Secondary education enrollment (total number of pupils), reflecting 

participation in secondary education. 

     Source: World Bank 
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Table 2. Descriptive Statistics 
    

Variable N Mean Standard deviation Min. Max. 

Dependent Variables   
   

CO2 3,507 204946.3 777439.9 6.6 1.10E+07 

GRHGAS 3,507 275579.1 946736.7 19.690 1.30E+07 

NOX 3,507 16291.22 47492.37 0.362 551683 

Explanatory 

variables 
     

GDPC 3,507 19065.9 25224.01 137.182 204097 

PRMPUL 3,507 3377524 1.19E+07 1235 1.40E+08 

SECPUP 3,507 3529175 1.10E+07 508 1.30E+08 

Source: Authors’ calculations 
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Table 3. Correlation Matrix 
      

 
CO2 GRHGAS NOX GDPC PRMPUL SECPUP 

       
CO2 1      

 
      

       

GRHGAS 0.996 1     

 
0.000      

       

NOX 0.914 0.938 1    

 
0.000 0.000     

       

GDPC 0.047 0.038 0.006 1   

 
0.004 0.022 0.688    

       

PRMPUL 0.586 0.620 0.732 -0.097 1  

 
0.000 0.000 0.000 0.000   

       

SECPUP 0.619 0.657 0.793 -0.096 0.919 1 

 
0.000 0.000 0.000 0.000 0.000  

              

The values bellow the coefficients indicate the significance level 

Source:  Authors’ calculations 

 

Table 4. Residual Cross-Section Dependence Test 

Variable 

Breusch-

Pagan 

LM 

Prob. 

Pesaran 

Scaled 

LM 

Prob. 

Bias-

Corrected 

Scaled 

LM 

Prob. 
Pesaran 

CD 
Prob. 

             

CO2 98,787.53 0.000 510.071 0.000 505.896 0.000 125.524 0.000 

NOX 102,635.70 0.000 533.184 0.000 529.009 0.000 117.758 0.000 

GRHGAS 91,221.82 0.000 464.631 0.000 460.456 0.000 86.5261 0.000 

Null hypothesis: No cross-section dependence (correlation) in residuals 

Source: Authors' Calculations 
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Table 5. Panel Unit Root Tests 

  
Im, Pesaran and 

Shin W-stat  

ADF - Fisher Chi-

square 

PP - Fisher Chi-

square 
    

Variable Statistic Prob.** Statistic Prob.** Statistic Prob.** 
Cross-

sections 
Obs 

CO2  3.080  0.999  339.637  0.374  365.195  0.101  167  3240 

D(CO2) -28.06  0.000  1478.02  0.000  1924.17  0.000  167  3101 

NOX  1.462  0.928  364.706  0.119  366.132  0.109  167  3256 

D(NOX) -40.222  0.000  2020.40  0.000  4114.51  0.000  167  3069 

GRHGAS  2.878  0.998  376.882  0.052  339.874  0.400  167  3221 

D(GRHGAS) -30.517  0.000  1548.82  0.000  1775.99  0.000  167  3123 

GDPC  0.840  0.790  317.295  0.736  385.328  0.027  167  3284 

D(GDPC) -23.927  0.000  1194.17  0.000  1179.29  0.000  167  3138 

PRMPUL -34.37  0.997  1157.19  0.054  758.342  0.054  162  3105 

D(PRMPUL) -45.432  0.000  2497.48  0.000  7546.81  0.000  161  2924 

SECPUP -8.824  0.996  697.572  0.053  1063.92  0.053  167  3227 

D(SECPUP) -45.914  0.000  2359.23  0.000  8545.62  0.000  166  3025 

Source: Authors’ estimations 
      

** Probabilities for Fisher tests are computed using an asymptotic Chi-square 

distribution. All other tests assume asymptotic normality. 
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Table 6. Panel fixed effects regression results with PCSE  

(cross – section covariance error) (Dependent variable: CO2)  

Effects specification: Cross – section fixed (dummy variables), Period fixed (dummy 

variables) 

 
        

Dependent Variable: CO2 

Variable Coefficient Std. Error t-Statistic Prob.   

GDPC 7.048443 2.156 3.268 0.001 

GDPC^2 -0.000103 2.72E-05 -3.803 0.000 

GDPC^3 3.69E-10 9.48E-11 3.892 0.000 

PRMPUL 0.017284 0.00079 21.735 0.000 

SECPUP 0.0026 0.00135 1.914 0.055 

C 73583.17 24211.94 3.039 0.002 

     
Root MSE 185198.9     R-squared 0.943 

Mean dependent var 204946.3     Adjusted R-squared 0.939 

S.D. dependent var 777439.9     S.E. of regression 190486.6 

Akaike info criterion 27.205     Sum squared resid 1.2E+14 

Schwarz criterion 27.543     Log likelihood -47513.3 

Hannan-Quinn criter. 27.326     F-statistic 288.405 

Durbin-Watson stat 0.274     Prob(F-statistic) 0.0000 

Source: Authors’ estimations 
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Table 7. Panel fixed effects regression results with PCSE  

(cross – section covariance error) (Dependent variable: NOX)  

Effects specification: Cross – section fixed (dummy variables), Period fixed (dummy 

variables) 

 
        

Dependent Variable: NOX 

Variable Coefficient Std. Error t-Statistic Prob.   

GDPC 0.041885 5.68E-02 0.737 0.460 

GDPC^2 -1.19E-06 7.11E-07 -1.671 0.094 

GDPC^3 5.01E-12 2.46E-12 2.031 0.042 

PRMPUL 0.000363 2.10E-05 17.249 0.000 

SECPUP 0.000461 3.54E-05 13.029 0.000 

C 13384.6 637.5883 20.992 0.000 

     
Root MSE 4981.549     R-squared 0.988 

Mean dependent var 16291.22     Adjusted R-squared 0.988 

S.D. dependent var 47492.37     S.E. of regression 5123.781 

Akaike info criterion 19.974     Sum squared resid 8.70E+10 

Schwarz criterion 20.311     Log likelihood -34833.05 

Hannan-Quinn criter. 20.094     F-statistic 1559.693 

Durbin-Watson stat 0.439     Prob(F-statistic) 0.000 

Source: Authors’ estimations 
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Table 8. Panel fixed effects regression results with PCSE  

(cross – section covariance error) (Dependent variable: GRHGAS)  

Effects specification: Cross – section fixed (dummy variables), Period fixed (dummy 

variables) 

          

Dependent Variable: GRHGAS 

Variable Coefficient Std. Error t-Statistic Prob.   

GDPC 7.696222 2.35848 3.263 0.001 

GDPC^2 -0.000113 2.97E-5 -3.786 0.000 

GDPC^3 4.01E-10 1.04E-10 3.867 0.000 

PRMPUL 0.018837 0.000872 21.600 0.000 

SECPUP 0.003489 0.001489 2.343 0.019 

C 129780.3 26487.28 4.899 0.000 

     
Root MSE 203457.6     R-squared 0.953 

Mean dependent var 275579.1     Adjusted R-squared 0.951 

S.D. dependent var 946736.7     S.E. of regression 209266.7 

Akaike info criterion 27.393     Sum squared resid 1.45E+14 

Schwarz criterion 27.731     Log likelihood -47843.03 

Hannan-Quinn criter. 27.514     F-statistic 358.340 

Durbin-Watson stat 0.278     Prob(F-statistic) 0.000 

Source: Authors’ estimations 
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Table 9. Pedroni Residual Cointegration Test Results (CO2 Model) 

Alternative Hypothesis: Common AR Coefficients (within-dimension) 

Statistic Value Probability Weighted Statistic Value 

Panel PP-Statistic -1.602 0.054 0.968 0.833 

Panel ADF-Statistic -9.669 0.000 2.431 0.992 

 

Alternative Hypothesis: Individual AR Coefficients (between-dimension) 

Statistic Value Probability 

Group PP-Statistic -2.879 0.002 

Group ADF-Statistic -3.683 0.0001 

Source: Authors’ estimations 

 

 

Table 10. Pedroni Residual Cointegration Test Results (NOX Model) 

Alternative Hypothesis: Common AR Coefficients (within-dimension) 

Statistic Value Probability Weighted Statistic Value 

Panel PP-Statistic -14.68128 0.000 -2.358 0.009 

Panel ADF-Statistic 4.136051 1.000 -0.571 0.283 

Alternative Hypothesis: Individual AR Coefficients (between-dimension) 

Statistic Value Probability 

Group PP-Statistic -8.227 0.0000 

Group ADF-Statistic -7.063 0.0000 

 Source: Authors’ estimations 
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Table 11. Pedroni Residual Cointegration Test Results (GRHGAS Model) 

Alternative Hypothesis: Common AR Coefficients (within-dimension) 

Statistic Value Probability Weighted Statistic Value 

Panel PP-Statistic -4.841 0.000 1.745 0.959 

Panel ADF-Statistic -3.893 0.000 3.564 0.999 

Alternative Hypothesis: Individual AR Coefficients (between-dimension) 

Statistic Value Probability 

Group PP-Statistic -2.796 0.002 

Group ADF-Statistic -2.740 0.003 

Source: Authors’ estimations 

 

 

Figure 1. Environmental Kuznets Curve (CO2-GDP per capita) 

 

Source: Authors’ estimations 
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Figure 2. Environmental Kuznets Curve (NOX-GDP per capita) 

 

Source: Authors’ estimations 

 

Figure 3. Environmental Kuznets Curve (Green House Gases-GDP per capita) 

 

Source: Authors’ estimations 
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