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ABSTRACT 

Media evidence and previous research have established that geopolitical risk is an 

important driver of crude oil price volatility. In this paper, we assess whether the 

importance of geopolitical uncertainty is also "translated" into valuable predictive 

information for oil price volatility forecasts. To do so, we construct a "beauty contest" 

where we assess the incremental predictive content of geopolitical risk against several 

other highly important uncertainty indicators, for forecasting horizon up to 22-days 

ahead. Initially, we use a HAR model which is augmented by each of the uncertainty 

indicators. Subsequently, we develop a Dynamic Model Averaging (DMA) 

methodology, where we assess whether the combination of all uncertainty indices 

(DMA-all), vis-a-vis a DMA model without the geopolitical uncertainty index, exhibits 

superior predictive performance. Our findings show that geopolitical uncertainty offers 

superior predictive information when combined with other uncertainty indicators. More 

importantly, we show that the inclusion of geopolitical uncertainty in a DMA 

framework generates superior trading profits and risk management measures’ 

predictions, in comparison with benchmark models, especially in longer-run horizons. 

Several implications are drawn from these results. 
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1 Introduction

Crude oil plays a crucial role in the global economy since it is considered a key
commodity for all economies. According to Vo (2011), a rise in oil price impacts pro-
duction costs, which can, in turn, affect future inflation. Apart from its significant im-
pact on themacroeconomic environment, oil price shocks can affect financialmarkets
immediately. Furthermore, over the last two decades, the behaviour of oil price fluctu-
ations has changed massively making the market environment rather volatile. Such a
regime change in the oil market fluctuations, which affects policy decisions and finan-
cial stability, made researchers and policy makers to turn their attention to modelling
and forecasting oil price volatility (Ferderer, 1996; Baumeister and Kilian, 2016; Wang
et al., 2016; Charles and Darne, 2017; Degiannakis and Filis, 2017; Delis et al., 2022).
Coupled with this, the importance of forecasting oil price volatility has been also in-
tensified in recent years due to the financialization of oil market, which originated by
the fact that financial institutions to consider oil market as an important investment
asset and not a pure consumption asset (Silvennoinen and Thorp, 2013).

The abovementioned developments have also led to the need for a clear under-
standing of which are the main determinants and predictors of oil price volatility. In
this regard, it is widely known that crude oil is characterized by its special geopoliti-
cal nature, which differentiates it from other commodities and financial assets. This
key characteristic should be taken into account by the relevant stakeholders, namely
investors and policy makers.

There are several studies focusing on the impact of geopolitical risk on oil mar-
ket uncertainty (e.g. Miao et al., 2017; Brandt and Gao, 2019). The motivation of those
studies comes from the fact that geopolitical events affect both oil demand and sup-
ply, as well as, the uncertainty about the future availability of oil. More specifically,
geopolitical tensions, on one hand, can create oil supply shocks due to changes in oil
production by the oil producing countries, which result in higher oil price uncertainty
(Brown andHuntington, 2017; Bouoiyour et al., 2019; Zhang et al., 2023). From the de-
mand side, geopolitical risk could halt economic activity, leading to abrupt reduction
in oil demand and increased oil price volatility (Bouoiyour et al., 2019; Cunado et al.,
2020; Mignon and Saadaoui, 2024). Finally, sudden shifts in geopolitical uncertainty
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could also affect the precautionary demand for oil, which could create abrupt changes
in oil prices and volatility. Against this backdrop, this paper extensively examines the
predictive information that geopolitical risk offers to the crude oil uncertainty (or else
oil price volatility).

Studies on the relationship between geopolitical risk and the oil market have
flourished since Caldara and Iacoviello (2018) constructed the geopolitical risk index
(GPR)1 In our paper, we assess thepredictive power of theGPR index, alongwith its two
sub-indices of geopolitical threats and acts, for crude oil price volatility forecasts. In a
nutshell, we identifywhichGPR (indexor sub-index)provides themostuseful informa-
tion, and atwhich time-horizons, when generating oil price realized volatility forecasts
at short-, mid- and long-term horizons. To provide, though, a meaningful conclusion
on the predictive ability of GPR (and its sub-indices) for oil price volatility forecasting,
we create a "beauty contest" where additional uncertainty indices are evaluated in our
forecasting framework, such as the Economic Policy Uncertainty index (EPU), Finan-
cial Stress Index (FSI), the Aruoba-Diebold-Scotti (ADS) Business Condition index, as
well as, proxies of financial markets volatility indices (VIX, VXD and VXN). These in-
dices have been chosen as they are the most well–known indices that capture differ-
ent layers of uncertainty, namely, the uncertainty originating from economic policies,
the financial system, the real economy and the financial markets, which could drive
changes in the oil market (see, for instance, Apostolakis et al., 2021; Chen et al., 2022;
Cross et al., 2022; Fernandez-Perez and López, 2023). In addition, there is ample evi-

1The GPR index is based on articles of leading international newspapers covering geopolitical ten-
sions by counting the occurrence of all relevant words. More specifically, this index covers topics that
are associated with wars, acts of terrorism and any tension occurred between states, which affects the
international relations from a peace perspective. Furthermore, the availability of the GPR index is not
confined at the aggregates level. A disentanglement between the effects of adverse geopolitical events
from the effects of pure geopolitical risks has been conducted. This disentanglement results in the avail-
ability of two sub-indices, namely the geopolitical threats (GPR THREAT) and the geopolitical acts (GPR
ACT) indices. The construction of the GPR THREAT index relies on identification of words reflecting ex-
plicit mentions of geopolitical risk, military-related tensions, nuclear tensions, war threats and terrorist
threats. By contrast, the GPR ACT index is based on identification of words capturing actual adverse
geopolitical events, such as the beginning of a war or terrorist acts.
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dence of their forecasting ability on oil price volatility. 2. We note that our aim is not to
assess an extensive list of uncertainty indicators but rather to compare the predictive
power of the most commonly–used indicators against the GPR indices. We leave the
latter for future work.

Overall, this paper contributes to the literature in the following ways. First of all,
the main contribution of this paper is the investigation whether the GPR index and its
two sub-indices provide predictive power to oil price volatility forecasts. Second, we
extend the existing literature by assessing the performance of the GPR indices in an
integrated methodological framework, where a variety of uncertainty indicators have
been incorporated so to assess the predictive gains from the GPR indices vis-a-vis the
otherwell–knownuncertainty indicators, when forecasting oil price volatility. Further-
more, we assess the time-varying contribution of the GPR indices on oil price volatil-
ity forecasts, so as to identify the time periods when he highest predictive power is
obtained. In this regard, the contribution of the forecasting model specifications that
include GPR indices, through a DMA approach, will be assessed. Finally, the forecast
evaluation framework is not limited to statistical loss-functions, but economic and risk
management evaluations functions are also applied in order to examine the predictive
role of GPR indices on oil price volatility in real-world applications.

2For instance, EPU has been incorporated in themodelling framework of several forecasting exercis-
ing (e.g. Wei et al., 2017;Ma et al., 2019;Wang et al., 2022; Li et al., 2022), showing a superior predictabil-
ity of oil price volatility. The FSI index provides market-based snapshot of financial markets’ stress on
a daily basis. The index is constructed based on 33 financial market variables, such as yield spreads,
valuation measures and interest rates. According to Nazlioglu et al. (2015) oil market movements are
affected by financial stress through its impact on both economic activity and investor behavior. On the
one hand, increased financial stress causes economic activity to slow down, which leads to lower energy
demand, declining oil prices and higher volatility. On the other hand, increased financial stress seems
to cause investors to adjust their portfolios and, therefore, is likely to have an impact on oil price fluctu-
ations, given the financialization of the latter market (Gkillas et al., 2020). Furthermore, the ADS index
is designed to track real business conditions at high observation frequency, along with lower frequency
economic indicators, such asweekly initial jobless claims,monthly industrial production, quarterly real
GDP. Fluctuating business conditions tend to impact the demand for oil and hence the oil prices and its
volatility. Finally, motivated by several studies that use implied volatility measures to improve the pre-
dictive performance of their realized volatility models (Busch et al., 2011; Gong and Lin, 2018; Lv, 2018),
anddue to the strong interconnectednessbetweenoil and stockmarket volatilities (Boldanovet al., 2016;
Degiannakis and Filis, 2017), we enhance the list of uncertainty indices that are used as predictors of oil
price volatility with the most representative implied volatility indices of the US stock market, namely
the CBOE Volatility Index (VIX), the NASDAQ-100 Volatility Index (VXN) and the DJIA Volatility Index
(VXD).
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The findings of this paper indicate that the GPR indices generate more accu-
rate oil price volatility predictions, relatively to other uncertainty indicators, especially
for the mid- and long-run horizons. More importantly, though, our DMA framework
strongly suggests that the incorporation of the GPR indices, along with the remain-
ing uncertainty factors, is capable of enhancing the predictive accuracy for oil price
volatility. These improved forecasts are also useful for trading and risk management
purposes. For instance, the DMA model that incorporates the GPR indices (DMA-all
model) generates annualized cumulative trading returns that are approximately 7%
higher compared to theDMAmodel that excludesgeopolitical uncertainty (DMA-without
GPR model), in the long-run horizons. Finally, the magnitude of trading losses, given
the violation of the V aR, are materially lower when the V aR is measured based on the
oil price volatility forecasts from the DMA-all model.

The rest of the paper is structured as follows. Section 2 explains the estimation
procedure of the realized oi price volatility. Section 3 presents the data that are used in
this study, whereas Section 4 details themethodology, which is separated into the indi-
vidual HARmodels and DMA combination modelling framework. Section 5 describes
the evaluation framework and Section 6 analyses the findings of the study before we
conclude the paper in Section 7.

2 Estimating realized volatility

Realized volatility has been widely used as a proxy for the volatility based on the
use of intraday data. In our paper, the estimation of realized volatility is based on the
realized standard deviationmeasure due to its simplicity and the fact that the purpose
of this study is not to find the most accurate realized volatility measure. Therefore, we
use themost widely used and simplemeasure compared to alternativemeasures, such
as the realized kernel that is appropriate for capturing market microstructure noise.
Therefore, our analysis is based on tick-by-tick data that are aggregated at 10min sam-
pling frequency, which is sufficient to capture the actual but unobservable volatility of
the series, while minimizing the microstructure noise of the tick-by-tick data.

Let the returns calculated as rt , j = log
( pt , j

pt , j ´1

)
, where pt , j is the oil price, for j =
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1,2, . . . , M , denoting the time of observation within each day, and t = 1,2, . . . ,T repre-
sents the number of days. Thus, the daily realized standard deviation measure is cal-
culated as the sum of squared intraday returns:

RVt =
g

f

f

e

M
ÿ

j=1

r 2
t , j (1)

It is noted that the realized volatility converges to the integrated volatility as the sam-
pling frequency goes to zero and the number of intraday intervals (M) approaches in-
finity. In this paper, we are in line with Hansen and Lunde (2005) and we work with
annualized realized volatility, which is computed as:

ARVt = RVt

?
252. (2)

3 Data description

Our studyperiod runs fromJanuary 4, 2010 toAugust 30, 20193 and thenumberof
observations is 2494 (tradingdays). For the estimationof the realizedoil price volatility,
data of the front-month futures contracts for theWTI crude oil are used. The sampling
frequency of the dataset is chosen to be 10 minutes, since, according to the literature,
the issue of the autocovariance bias induced bymarket microstructure noise seems to
beminimized when working with such frequencies. The source of the retrieved data is
TickData.

In our work, we also use the oil price implied volatility index (OVX) as a key pre-
dictive variable, which enters in all models. A number of papers use OVX from the
Chicago Board Options Exchange (CBOE) in order to improve the oil price realized
volatility forecasts (Haugom et al., 2014; Dutta, 2017). These studies have shown that
OVX can explain and predict the future oil market uncertainty. Hence, the use of OVX
in the simple HAR model (HAR-OVX) is considered as our benchmark model, where
the augmented models are required to improve.

3The tick-by-tick WTI oil prices are available to the authors until August 2019. Hence, due to data
availability issues, the sample ends at that period.
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Figure 1 portrays the annualized realized volatility together with the OVX series,
given their close relationship. It is apparent that high values of volatility are observed
in 2011 and 2012, which is related to the geopolitical tensions that sparked due to the
Libyan uprising. Furthermore, during the 2015-2016 period we observe significant in-
crease in oil price volatility due to the oil price plunge at that period, which was trig-
gered by the global oil supply glut, the de-escalation of geopolitical concerns in the
Middle East, as well as, the weak global aggregate demand. Finally, the oil price volatil-
ity peaks in late 2018 and early 2019 are related to the US-China trade war, as well as,
conflicts between US and Iran. Hence, from Figure 1 we can immediately observe the
role of geopolitical tensions on oil price volatility during our sample period.

[FIGURE 1 HERE]

Besides the intraday data used for estimating the daily realized oil price volatil-
ity, our dataset includes the daily data of our predictive uncertainty indicators. Our
key variables of interest are the GPR index and its sub-indices (GPR THREAT and GPR
ACT), which have been retrieved by the relevant website4. As already mentioned in
the introduction, the GPR indices are based on automated text-search results of the
electronic archives of 11 national and international newspapers, which contain search
terms that are related to geopolitical risks on daily basis.

Figure 2 depicts theGPR index and its two sub-indices. It is rather interesting that
as wemove towards the end of our sample period, the GPR index and theGPRTHREAT
assumehigher values, whereas the reverse is true for theGPRACT. Inspecting both Fig-
ures 1 and 2 we can observe that indeed there seems to be some relationship between
the peaks inGPR indices andpeaks in oil price volatility, which could be translated into
predictive gains for the latter.

[FIGURE 2 HERE]

Asmentioned in Section 1, our additional predictors of oil price realized volatility
include themost well–known uncertainty indices. First, we consider the US Economic
Policy Uncertainty Index5 developed by Baker et al. (2016). Furthermore, we also con-

4See https://www.matteoiacoviello.com/gpr.htm for further details.
5The data are obtained from https://www.policyuncertainty.com/us_monthly.html.
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sider the US Financial Stress Index (FSI) as a potential predictor6. Our real-economy
uncertainty indicator is the Aruoba- Diebold-Scotti (ADS) Business Condition index
and the data are retrieved by the Federal Reserve Bank of Philadelphia7. Finally, we
use stock market implied volatility indices, as proxies of our financial markets uncer-
tainty, namely the OVX, VIX, VXN and VXD. This dataset is readily available at a daily
frequency and is obtained fromCBOE for the corresponding implied volatility indices.

Figure 3 displays all the above mentioned uncertainty indices, categorized per
related class. Interestingly enough, Figure 3 suggests that there are similar peaks in the
uncertainty indices and the oil price realized volatility, from Figure 1. For instance, the
high values of the FSI, EPU and implied volatility indices in 2011-2012 coincide with
the oil price volatility peaks of the same period. Similar observations can be made for
the 2015-2016 and 2018-2019 periods. Evenmore, the trough of the ADS index in early
2019 also coincides with the peak in oil price volatility. Hence, this eye-ball examina-
tions allows us to conclude that these uncertainty indices are also expected to provide
predictive gains for oil price volatility forecasts.

[FIGURE 3 HERE]

In Table 1 we present the descriptive statistics of all our variables. We observe
that almost none of the variables under consideration is normally distributed, since
all variables present positive skewness and excess kurtosis. The only exception is ADS,
which seems to be closer to the normal distribution. Another noteworthy point is that,
according to the coefficient of variation (CV), the RV seems to bemore dispersed com-
pared either to the OVX or the additional implied volatility indices.

[TABLE 1 HERE]
6The data is available for download from the Office of Financial Research,

https://www.financialresearch.gov/financial-stress-index/.
7The ADS index on the web page https://philadelphiafed.org/research-and-data/real-time-

center/business-conditions-index.
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4 Modelling framework

4.1 Näive and benchmarkmodels

In this paper, we use a simple Random Walk (RW) without a drift, as the most
näivemodel, similarly to the common practice of the related literature (see,Murat and
Tokat, 2009; Degiannakis and Filis, 2017; Dutta, 2017, among others). The RW is ex-
pressed as follows:

log (ARVt ) = log (ARVt´1)+εt , (3)

where ARVt is the annualised realized volatility of theWTI crude oil at day t and εt is a
white noise.

In addition to the RW, the simple HAR model (HAR-RV) is considered as one of
our benchmark models, which is based on the HAR model specification proposed by
Corsi (2009). There is a wealth of literature, already cited here, which confirms that the
simple HAR-RVmodel is indeed a benchmark model for oil price volatility forecasting
(Busch et al., 2011; Sévi, 2014; Gkillas et al., 2020; Degiannakis and Filis, 2022, to name
a few). In our study we choose to use the simple HAR model as a benchmark, for two
reasons. First, it is easy to be estimated and, second, according to the literature, it is
considered difficult to be beat by extended versions, when referring to the energymar-
kets (e.g., Sévi, 2014; Prokopczuk et al., 2016; Degiannakis and Filis, 2017). However, it
is important to note that recent years there have been proposed indeed very promising
extended versions of the HARmodel, such as that of Jawadi et al. (2020) who consider
trading volumes and jumps as significant volatility drivers or the HARQ by Bollerslev
et al. (2016) and the SHAR by Patton and Sheppard (2015). The use of such extended
versions of the simple HARmodel could be applied in future research.

More specifically, the HAR structure captures stylized facts of financial market
volatility such as long memory and was motivated by the heterogeneous market hy-
pothesis proposed byMuller et al. (1997). Thus, themain idea of theHAR specification
is to use realized volatility aggregated over different time horizons in order to disentan-
gle the information coming from the expectations of differentmarket participants (e.g.
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short-term traders and long-term traders). The HAR-RVmodel is written as follows:

log (ARVt ) = a(t )
0 +a(t )

1 log (ARV (d)
t´1)+a(t )

2 l og (ARV (w)
t´1)

+a(t )
3 log (ARV (m)

t´1)+εt ,
(4)

where εt is the error term and a(t )
0 , a(t )

1 , a(t )
2 , a(t )

3 are the parameters. Moreover, the com-
ponents of theHAR structure, namely the realized volatilities aggregated over different
time horizons, are calculated as follows: log (ARV (d)

t´1) = l og (ARVt´1); log (ARV (w)
t´1) =(

5´1
ř5

k=1 l og (ARVt´k )
)
; log (ARV (m)

t´1) =
(
22´1

ř22
k=1 log (ARVt´k )

)
, which is in linewith

Corsi and Renò (2012).

Despite the fact that the literature has nominated the HAR-RV model as a key
benchmark framework for oil price volatility forecasting, some show that the HAR-RV
that is augmentedwith theoil price implied volatility index (OVX) could yield improved
forecasts (see, Haugom et al., 2014; Dutta, 2017; Lv, 2018, for instance.). Thus, our
HAR-RVmodel is extended by including theOVX as the key exogenous predictor (HAR-
OVX)8. The HAR-OVX model is our second benchmark model and its specification is
written as:

log (ARVt ) = a(t )
0 +a(t )

1 log (ARV (d)
t´1)+a(t )

2 l og (ARV (w)
t´1)

+a(t )
3 log (ARV (m)

t´1)+β(t )
1 l og (OV X t´1)+εt ,

(5)

where log (OV X t´1) is the one lagged OVX in logarithmic transformation.

4.2 Augmenting the benchmarkmodel with the GPR indices

Existing studies (already discussed previously in this section) in their search for
improving forecasting accuracy, they typically augment a benchmark model with ad-
ditional predictive factors. Such an approach allows them to assess the incremental
predictive gains for each of their chosen predictors. Given that the HAR-OVX model
provides significant predictive information to oil price realized volatility, we opted to

8An alternative proxy toOVX for oil price volatility is theOPU index, developed by Abiad andQureshi
(2023). However, given the high correlation between these two indices, we opted to use OVX so that our
framework is closely related to the current literature that has considered the HAR-OVX model as a key
benchmark model for oil price volatility forecasting.
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augment eq.5 specification with the additional predictors that reflect the exogenous
information of the geopolitical risk9, such as:

log (ARVt ) = a(t )
0 +a(t )

1 log (ARV (d)
t´1)+a(t )

2 log (ARV (w)
t´1)

+a(t )
3 log (ARV (m)

t´1)+β(t )
1 log (OV X t´1)+β(t )

2 X (GP )
t´1 +εt ,

(6)

whereGP=GPR,GPR T HRE AT orGPR AC T 10.

4.3 Augmenting the benchmark model with the other uncertainty
indices

Our "beauty contest" requires the estimation of the HAR-OVX model that is ex-
tended to include the exogenous information from the remaining competing uncer-
tainty indicators (OT HER), which were mentioned in Section 1, such as:

log (ARVt ) = a(t )
0 +a(t )

1 log (ARV (d)
t´1)+a(t )

2 log (ARV (w)
t´1)

+a(t )
3 log (ARV (m)

t´1)+β(t )
1 log (OV X t´1)+β(t )

2 X (OT HER)
t´1 +εt ,

(7)

whereOT HER=EPU , ADS, F SI , l og (V I X ), l og (V X D) or log (V X N )11.

Note that the role of this "beauty contest" is to assesswhether the geopolitical un-
certainty provides superior predictive ability relatively to other well-known and com-
monly used uncertainty indicators, which capture different layers of economic and fi-
nancial uncertainty.

To summarize, we estimate 12 individual models (AR, HAR-RV, HAR-OVX and 9
HAR-OVX-Xmodels) andwe obtain their forecasts for 1- up to 22-days ahead horizons.
We note that our forecasting framework is not subject to forward-looking bias or any

9We reiterate that we augment the HAR-OVX (rather than the HAR-RV) with the GPR indices, given
that the literature has suggested that the former is rather superior to the simple HAR-RV.

10For robustness purposes, we examined for potential non-linearities and asymmetries in the GPR-
oil price volatility relationship. Should they have been existed they would be considered in the out-of-
sample forecasts. Nevertheless, our analysis did not find evidence on either a non-linear or an asym-
metric relationship.

11The logarithmic transformationhas been applied to the the implied volatility indices, since the han-
dling of the variables transformations is important to be consistent across all volatility indices (realized
or implied).
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data leakage, hence we generate out-of-sample forecasts which are always based on
the available information set at time t .

4.4 Dynamic model averaging (DMA) approach

The forecastingmodels that have been explained thus far assume that the predic-
tors which are included in each model remain constant over the study period. Hence,
having estimated the individualmodels, weproceedwith theuseof an integratedmod-
elling framework that combines the predictive information from the different uncer-
tainty indicators and allows the estimation of time–varying parameters in order to cap-
turepotential breaks inour series. Thus, aDMAframework, initiallyproposedbyRaftery
et al. (2010), is employed that allows for K models of different specifications to gener-
ate forecasts that are optimally aggregated over time. The state-spacemodel12 consists
then of the two following equations:

yt = x (k)
t α(k)

t +ε(k)
t for ε(k)

t „ N (0, H (k)
t ), (8)

α(k)
t =α(k)

t´1 +u(k)
t for u(k)

t „ N (04ˆ1,Σ(k)
ut

). (9)

wherek = 1, . . . ,K , yt denotes thedependent variable log (ARVt ),α(k)
t are the regression

parameters of three volatility components that constitute the simple HAR-RV model
specification and the errors ε(k)

t and u(k)
t are mutually independent. Moreover, if there

are m predictors in x (k)
t , the total number of possible combinations of these predic-

tors is K = 2m . According to the Eq. (8), which is based on the HAR-RV specification,
the number of combinations is K = 24 = 16. This model can be estimated by using the
Kalman filter method13. One key element that has to bementioned is that the approx-
imation of the forgetting factor λ, which is used in order to avoid estimating the state
covariance matrix Σ(k)

ut
is replaced by the standardized self-perturbed Kalman filter14

12This state space form is based on the simple HAR-RV model specification for simplicity reasons.
The state space model is of similar fashion for the other models that include uncertainty indicators as
predictors of the realized oil price volatility.

13More details for each step of the estimation of time-varying parametermodels and the combination
of those models through the DMA approach can be found in the Appendix.

14Thismethodological part ismotivatedby the study ofDelis et al. (2022), whichprovidesmore details
on this approximation.
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proposed by Grassi et al. (2017). This specific approach avoids the calibration of a de-
sign parameter as the perturbation term is scaled by the amount of the uncertainty in
the realized oil price volatility data. In this study, the main purpose is to explore the
incremental forecasting performance of the models that include both the GPR indices
and alternative uncertainty indicators, such as the economic policy uncertainty, con-
trary to those that do not contain any of the GPR indices. Thus, we implement a DMA
modelling approach, as follows:

DMA - without GPR:

yt = x (k)
t α(k)

t +x (k)
t ,OT HE Rβ

(k)
t +ε(k)

t for ε(k)
t „ N (0, H (k)

t ), (10)

DMA - all:

yt = x (k)
t α(k)

t +x (k)
t ,OT HE Rβ

(k)
t +x (k)

t ,GPγ
(k)
t +ε(k)

t for ε(k)
t „ N (0, H (k)

t ). (11)

An important advantage of this combinativemethodology is the ability to extract
theweights corresponding to the individualmodels that include specific group of vari-
ables (e.g., GPR indices) as predictors in the DMA-all model. More specifically, the ag-
gregation of these models’ weights provides evidence for a higher probability of these
specific explanatory variables to be included in the optimal combined forecast of oil
price volatility. Hence, through the DMA framework we aim to reveal the correspond-
ing weight of all uncertainty factors (but more importantly of the GPR indices) to oil
price volatility forecasts.

5 Forecast evaluation

5.1 Prediction settings

Our in-sampleperiod runs from January 4, 2010untilMarch 17, 2014. Theout-of-
sample periods start in March 18, 2014, leaving us with 1408 out-of-sample forecasts
for eachhorizon (1- up to 22-days ahead). Furthermore,weusedirectmulti-step ahead

14



forecasting approach 15, with 1000 days as our fixed-window length for the rolling es-
timations.

5.2 Statistical loss functions

Initially we evaluate the forecasting performance of the competingmodels using
two well-known statistical loss functions, namely the Mean Squared Predicted Error
(MSPE) and the Mean Absolute Error (MAE), which are defined as:

MSPE (h) = 1

T1

T1
ÿ

t=1

(ARVt+h|t ´ ARVt+h)2, (12)

and

M AE (h) = 1

T1

T1
ÿ

t=1

| ARVt+h|t ´ ARVt+h |, (13)

where ARVt+h|t is the h-days-ahead realized volatility forecast, ARVt+h is the realized
volatility at day t +h and T1 is the number of the out-of-sample data points.

5.3 Model Confidence Set

Subsequently, we use the Model Confidence Set (MCS), developed by Hansen
et al. (2011), in order to further evaluate our forecasts, so as to identify the set of the
best models, based on a specific loss function (the MSPE is used in our study16).

By implementing theMCS test, we aim to conclude to the final set of the best per-
forming models. In greater detail, under an elimination algorithm, the MCS provides
us with the set of models that survive, at a predefined level of significance a. As an ini-
tial step, the entire list of models M = M0 = {1, . . . ,m0} has been used and the following

15For technical details, see Marcellino et al. (2006) and Buncic and Gisler (2016).
16We also implement the MCS test using MAE as a loss function, which provides qualitatively similar

results.
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null hypothesis of equal predictive ability has been repeatedly tested:

H0,M : E(di ,i ˚,t ) = 0, @ i , i ˚
P M , (14)

where di ,i ˚,t =Ψi ,t ´Ψi ˚,t is defined as the evaluation differential for @ i , i ˚ P M0 and
Ψi ,t = (ARV (i )

t+h|t
´ARV (i )

t+h)2, where ARVt+h|t denotes theh-days-aheadoil price volatil-
ity forecast produced by i model. As a next step, the process is repeated until the null is
not rejected any longer. Regarding the required MCS settings17, the predefined values
that we choose are a) the level of significance that we define as a = 0.1 and b) a block
bootstrap with 10,000 bootstrap replications.

5.4 Economic–based evaluation functions

Apart fromthe statistical evaluation,weassessour "beauty contest"usingeconomic-
based evaluation functions. The choice of these evaluation functions is motivated by
several studies that opted to use both economic-based and statistical loss-functions so
to provide a complete assessment of their forecasts (see, for instance Lux et al., 2016;
Degiannakis and Filis, 2017; Gkillas et al., 2020; Degiannakis and Filis, 2022).

5.4.1 Trading profits

The first economic-based evaluation function is based on the profits generated
by trading the USO18. Our trading strategy focuses on real-world asset trading and as
such the USO can be traded on information from the oil price volatility forecasts. The
strategy works as follows. We assume that the trader starts its trading at the last day of
our in-sample period. At that day she makes oil price volatility forecasts for up to 22-
days ahead, using each of the models detailed in Section 4. Her trading period ends at
the last day of our out-of-sample period. If the oil price volatility forecast ofmodel i for
time t +h based on information available at time t is higher than that of the actual oil
price volatility at time t , the trader takes a short position in USO. If the oil price volatil-
ity forecast of model i for time t +h is lower than that of the actual oil price volatility at

17For further details see Hansen et al. (2011).
18The USO is an exchanged-traded product (ETP) that predominantly holds short-term NYMEX fu-

tures contracts onWTI crude oil.
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time t , then the position that the trader takes is long. This idea is based on the inverse
relationship between the underlying asset and its volatility, which suggests that higher
(lower) volatility is related to negative (positive) returns. Hence, when the trader fore-
casts a higher (lower) volatility, she assumes that the USO will have a price decrease
(increase) and hence she takes a short (long) position in the USO. If the t +h forecast is
successful (unsuccessful) then shemakes a positive (negative) return, which amounts
to the difference between the price of theU SOt and theU SOt+h . This is repeated for
all the trading days of our out-of-sample period. Thus, the model’s i cumulative re-
turns, which is the metric for comparing the models, over the out-of-sample period is
measured as19:

r (i ) =
T1
ÿ

t=1

(
(U SOt+h ´U SOt )d (i )

t

U SOt

)
, (15)

where d (i )
t = 1 if ARV (i )

t+h|t
ď ARVt and d (i )

t =´1 if ARV (i )
t+h|t

> ARVt .

5.4.2 Risk management loss functions

Additionally, we utilize loss functions based on a risk management application
procedure20. As afirst step, andaccording toLopez (1999),wemeasure thedistancebe-
tween predicted Value–at–Risk (V aR) and actual loss, but only when the loss is greater
than the expected outcome according to our risk management measure. Before pro-
ceeding to the relevant risk management loss function, we recap what the V aR states.

V aR at a given probability level (1 ´ p), is the predicted amount of financial loss
of a portfolio over a given time horizon. If rt denotes the returns, then21 in a static
manner of thinking VaR is the value V aR(1´p)

t satisfies the condition:

p = P
(
rt ď V aR(1´p)

t

)= ż V aR
(1´p)
t

´8

1
?

2π
exp(´

1

2
r 2

t )drt . (16)

19In our study, we assume zero transaction costs because we are not focusing on the profits but in
comparing the models, which provide oil price volatility forecasts.

20Angelidis and Degiannakis (2008), Angelidis et al. (2007), Degiannakis et al. (2013), Sarma et al.
(2003), among others, have evaluated forecasting accuracy with risk management loss functions.

21Under the assumption of standard normally distributed log-returns.
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Naturally,V aR(1´p)
t is thep th percentile of theunderlyingdistribution, orV aR(1´p)

t

= ζp , where ζp is the percentile of the standard normal distribution. But, under a dy-
namic framework (which of course ismuch closer to the real world data) that incorpo-
rates the ability to predict realized volatility, we have p = P

(
rt ď V aR(1´p)

t

)=
1

σt
?

2π
exp(´

r 2
t

2σ2
t

)drt . Hence:

V aR(1´p)
t = ζpσt . (17)

Therefore, based on a forecasting model i , the h-days-ahead financial loss prediction
of a portfolio at a (1 ´ p) probability level is computed as:

V aR(i )(1´p)
t+h|t

= ζp
?

252
ARV (i )

t+h|t
. (18)

When a violation of V aR occurs, then we compute the magnitude of the violation as
the squareddifference betweenV aR prediction ofmodel i and the loss of our portfolio.
For the trading days that there is no violation of the V aR measure the loss is zero. So,
the proposed risk management loss function for day t+h is:

ψ(i )
V aR,t+h = (

1+ (rt+h ´V aR(i )(1´p)
t+h|t

)2)I
(
rt+h <V aR(i )(1´p)

t+h|t

)
, (19)

where I
(
rt+h <V aR(i )(1´p)

t+h|t

)
takes the value of 1 if the condition holds and 0 otherwise.

Hence, model’s i sum of penalty scores is computed as:

Ψ(i )
V aR =

T1
ÿ

t=1

ψ(i )
V aR,t+h , (20)

where T1 denotes the number of out-of-sample data points. The proposed loss func-
tion considers both the number of violations, in total, and the magnitude of the loss.

Regarding the second stepof the riskmanagement applicationprocedure, a simi-
lar approach is implemented for an alternative riskmanagementmeasure, namely the
Expected Shortfall (ES). In greater detail, the ES is calculated based on the study of

18



Degiannakis et al. (2014) using the following formula:

ES(i )(1´p)
t+h|t = k̃´1

k̃
ÿ

i=1

(V aR(i )(1´p+i p(k̃+1)´1)
t+h|t ) (21)

where k̃ is a largenumberof slices eachwith identical probabilitymass (k̃ = 1000). After
having obtainedES, weproceedwith the corresponding loss function that ismotivated
by a study of Angelidis and Degiannakis (2007). In this regard, the loss function based
on the ES measure for day t +h is computed as follows:

ψ(i )
ES,t+h = (

1+ (rt+h ´ ES(i )(1´p)
t+h|t

)2)I
(
rt+h <V aR(i )(1´p)

t+h|t

)
. (22)

and the final model’s i loss function for ES is computed as:

Ψ(i )
ES =

T1
ÿ

t=1

ψ(i )
ES,t+h . (23)

6 Out-of-sample results

6.1 Statistical loss functions results

6.1.1 Evaluating the predictive role of the GPR indices

We start out analysis with Table 2 that reports the first set of results, which depict
whether the GPR index and its sub-indices are capable of providing predictive gains,
relatively to the näive (RW) and benchmark models (HAR-RV and HAR-OVX) of our
study. Table 2 reports the actual forecast errors of theRWandHAR-RVmodels, whereas
the performance ratio of each correspondingmodel relative to the benchmarkHAR-RV
model is presented in the last four rows of the each loss-function. A ratio that takes a
value below 1 denotes that the corresponding model outperforms the HAR-RVmodel.

[TABLE 2 HERE]

Evidently, the HAR-RV model can indeed outperform the RW model at all hori-
zons. However, as noted in Section 3, the HAR-OVX is indeed superior to the HAR-RV,
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showing that the OVX can provide predictive gains for the oil price realized volatility.
Our key interest, though, lies on the performance of theHAR-OVXmodels that are aug-
mented with the GRP index (HAR-OVX-GPR), and its sub-indices, namely, HAR-OVX-
GPRTHREATandHAR-OVX-GPRACT.We canobserve that although all three geopolit-
ical uncertainty indices improve the HAR-OVX model, it is mainly the HAR-OVX-GPR
and HAR-OVX-GPR THREAT mainly that seem to constantly offer predictive gains at
all horizons (at least based on theMSPE loss-function). Hence, Table 2 clearly provides
evidence in favour of the predictive information that is included in the geopolitical in-
dices and thus, the importance of geopolitical tensions on the behaviour of oil price
volatility.

6.1.2 Evaluating thepredictive roleof theGPR indices vis-a-visotherwell–known
uncertainty indices

However, asmentioned in Section 1, a key interest of the present study iswhether
the usefulness of geopolitical uncertainty indices on oil price volatility forecasts can
survive a "beauty contest" against other commonly-used uncertainty indices. Table 3
provides the statistical loss function values of the other competing uncertainty indi-
cators, which are compared to the respective ones of the HAR-OVX-GPRmodel. Thus,
valuesbelow1 suggest that a competingmodel outperforms theHAR-OVX-GPRmodel.

[TABLE 3 HERE]

Table 3 suggests that themajority of thosemodels present higherMSPE andMAE
values relative to the HAR-OVX-GPR model for almost all horizons, apart from the 1-
day ahead. Theonly exception is theHAR-OVX-EPU,which seems toperformbetter. In
addition, the HAR-OVX-VXD seems to perform marginally better at the 5-days ahead
horizon, as well. These findings suggest that the enhanced predictability of oil price
realized volatility, using information that reflects the US economic policy uncertainty,
might be statistically superior to theGPR information, whichwill be assessed using the
MCS test. In any case, the findings that EPU index seems to outperform theHAR-OVX-
GPR, is justified by the fact that EPU index does not only cover policy-related uncer-
tainty issues but it also covers concerns regarding geopolitical tensions.
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6.1.3 Evaluating the predictive role of the GPR indices in a DMA framework

Our final set of results concerns the DMA methodological framework that com-
bines information of the entire set of predictors. The results are shown in Table 4,
which once again reports the performance ratios of the DMA models relatively to the
HAR-OVX-GPR model. We observe that both DAM-without-GPR and DMA-all exhibit
improved forecasting power relatively to the HAR-OVX-GPR, for the horizons up to 10-
days ahead. Nevertheless, the DMA-all seems to be the model that outperforms all
other models in short- and mid-run horizons (especially in terms of MSPE). Compar-
ing two DMAmodels we note that the GPR indices are important in improving the oil
price volatility forecasts, even when all other uncertainty indices are also considered,
as the DMA-all is the best performing model. However, this better performance does
not hold for the 22-days ahead, where theHAR-OVX-GPR remains the best performing
model.

[TABLE 4 HERE]

6.2 Model Confidence Set procedure results

Having evaluated the competing models based on the MSPE and MAE, we pro-
ceed with the MCS results, which are reported in Table 5.

[TABLE 5 HERE]

It is evident fromTable 5 that the twoDMAmodels are the best performingmod-
els at almost the horizons up to 15-days ahead. The DMA-all maintains its position
among the best performing models for the 22-days ahead horizon. Furthermore, we
note that theHAR-OVXmodels that are augmentedwith the uncertainty indices, other
than the GPR, are among the set of the best performing models for the 15-days ahead
horizon. Nevertheless, the DMA-all is themodel with the highest probability across all
horizons, suggesting that a model that combines all uncertainty indicators, including
the GPR indices, provide indeed significant superior predictive ability.

Another interesting observation that is extracted from Table 5 is that the HAR-
OVX-GPR ACT is the only model with exogenous information that does not belong to
the best set of models at any forecasting horizon, which may suggest that the geopo-
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litical threats, as opposed to the acts, are more important in the behaviour and thus
forecast of oil price volatility, especially in the longer run horizons (22-days ahead).
Finally, concerning again the longer run horizon, we note that the economic policy
uncertainty is considered an important factor that provides superior predictions for
the oil price realized volatility.

Overall, the statistical evaluation of the competingmodels suggests that the GPR
indices are capable of offering important predictive information when combined with
other uncertainty indicators, for all horizons. Evenmore, the GPR index, as well as, the
GPR THREAT index also offer superior predictive ability in the 22-days ahead horizon.

6.3 DMAweights

Delving deeper on the impact of geopolitical uncertainty on oil price volatility, it
is important to extend the analysis of the DMA-all model focusing on the weights that
each group of uncertainty indices assumes in the model (as shown in eq.A.11), over
the out-of-sample forecasting period. Put it simply, it is important to identify the con-
tribution of the GPR indices (compared to the other uncertainty indices) to the DMA
model, which is computed by averaging all possible combinations of model specifica-
tions. Regarding the weight given to each individual model, it relies on the idea that a
model that had better forecasting performance in the past, receives higher weight at
time t . Therefore, after producing the model averaging during the out-of-sample pe-
riod, we aggregate the weights of the models that include GPR indices as explanatory
variables. Equivalently, we proceed with the weights calculation of the remaining un-
certainty indices, grouped as economic-based (EPU, ADS and FSI) and stock market-
based uncertainties (VIX, VXD and VXN). Figures 4 to 8 depict these weights for all
forecasting horizons.

[FIGURES 4 TO 8 HERE]

According to Figures 4–8, it is observed that the incorporation of the GPR indices
in the DMAmodel is time-varying with a large break occurred at the end of 2015 - be-
ginning of 2016, which is related to the de-escalation of the geopolitical tensions of
that period, as already mentioned in Figure 1. Nevertheless, a finding that repeats it-
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self across almost all horizons is that the GPR indices are the most important contrib-
utors at the DMA-all model during the period 2014-2015, as well as, in the middel of
2017. In both periods the global economy experienced a series of geopolitical tensions,
which explains this finding. For instance, in 2014 we experienced events such as the
Russian invasion in Crimea, tensions in Gaza Strip, civil unrest in Egypt, as well as, the
start of the second Libyan civil war. In addition, in 2017 we had a series of events in
theMiddle-East from ISIS, such as bombings in Tehran (Iran) and Karbala (Iraq) or the
battle of Mosul (Iraq), to highlight a few.

Regarding the remaining groups of uncertainty variables, we highlight the fact
that the stock market-related uncertainty group assumes very high weights in almost
all periods and across all forecast horizons, with the exception being the year 2017.
This is justified by the increased financialization of the crude oil market. Nevertheless,
the high aggregatedweight of the last group of uncertainty indices (EPU, ADS and FSI),
further confirms that uncertainty related to the oil market fundamentals continues to
provide important predictive information.

6.4 Economic–based evaluations functions - results

We extend our analysis through the use of two economic-based evaluation crite-
ria, a simple trading game and a risk management evaluation process, as presented in
Section 5.4.

6.4.1 Trading profits

Starting with the trading strategy, Tables 6 and 7 report the incremental prof-
its/losses of each different forecasting model vis-a-vis the HAR-RV and the HAR-OVX
models, respectively. Recall that if the oil price volatility forecast of model i for time
t +h is higher (lower) than that of the actual oil price volatility at time t , the trader
takes a short (long) position in USO.

[TABLES 6 AND 7 HERE]

It becomes clear that both DMA models (DMA-without GPR and DMA-all) ex-
hibit materially improved incremental profits compared to both HAR-RV and HAR-
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OVXmodels. This is particularly evident for the 1- and 5-days ahead forecast horizons,
when an investor that uses the forecasts from theDMAmodels for 1- and 5-days ahead
trading, can earn about 25% higher annualized profits relative to an investor that is us-
ing the HAR-RV or HAR-OVX models for her trading decisions. For the medium and
longer run horizons we observe that the superior DMA-all profitability diverges away
even compared to theDMA-withoutGPR,which is suggestive of the fact that this incre-
mental profitability is related to the incorporation of GPR indices in the DMA frame-
work. Furtheremore, the HAR-OVX-GPR model is also showing materially improved
profits at themediumand longer runhorizons (although comparable to theHAR-OVX-
EPU and the HAR-OVX-VXNmodels).

Next, Figures 9 to 13 show the cumulative profits fromUSO trading over the out-
of-sample period and across the different forecasting horizons. To avoid any complex-
ity we show the cumulative trading profits for the two DMA models, as well as, the
HAR-OVXmodels that are augmented with the GPR indices.

[FIGURES 9 TO 13 HERE]

Based on Figures 9 to 13 we can clearly observe that the DMA-all is the models
that constantly exhibits the higher cumulative trading profits, with the only exception
being the 1-day ahead trading, where theDMA-all shows amarginally lower profitabil-
ity compared to the DMA-without GPRmodel. Another interesting observation is that
aswemove towards the longer run horizons, theHAR-OVXwith theGPR indices seems
to outgrow the returns generated by theDMA-withoutGPRmodel. This finding further
confirms that theuseofGPR indices in aDMA framework is capable of offeringnot only
statistically superior forecasts but also superior tradingprofits, which also confirms the
added-value of the GPR indices in oil price volatility forecasting.

6.4.2 Risk management loss function results

In the final part of our analysis, we assess whether the superior performance of
the GPR indices, when these are incorporated in the DMA framework, is also apparent
in a risk management exercise. To do so, we employ both V aR and ES forecasting ex-
ercises of the daily oil price returns. These risk management loss functions, proposed
by Lopez (1999) and Angelidis and Degiannakis (2007), measure the magnitude of the
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distance between the predicted risk measure (V aR or ES) and the potential losses in
the events that theV aR is violated. Therefore, contrary to the tradingprofits evaluation
framework, the optimal values of this loss functions are the lowest, since the estimated
measures refer to investment losses. The results of the averageΨ(i )

V aR values, relative to
those of the HAR-RV and HAR-OVX models, over the entire out-of-sample period and
across the different forecasting horizons, are presented in Tables 8 and 9, whereas the
relevant results for ES are included in Tables 10 and 11.

[TABLES 8 AND 9 HERE]

[TABLES 10 AND 11 HERE]

From Tables 8 and 9 we note that the added-value of the DMA-all model, or of
the HAR-RV-GPRmodels is not evident for the 1- and 5-days horizons, since the HAR-
OVX models which are extended with other uncertainty indices exhibit better perfor-
mance from a risk management perspective. By contrast, from the 15- to the 22-days
ahead horizons the DMA-all exhibits the best risk management performance. Regard-
ing the Ψ(i )

ES values presented in Tables 10 and 11, the results can be interpreted in a
qualitatively similar manner. More specifically, the DMA model including GPR and
the other uncertainty indicators reduces the loss, compared to the remaining models,
at the longest horizon. Moreover, it is noted that the performance of the DMA-all is
better than that of the benchmark models, namely the HAR-RV and HAR-OVX, for all
forecasting horizons. To summarize, we conclude that the incorporation of the GPR
indices in a DMA forecasting framework is capable of improving the risk management
performance of the investors, at least in the longer run horizons.

Overall, thefindings fromtheeconomic-basedevaluation framework suggest that
the forecasts should be evaluated based on a specific criterion that serves the interest
of the end-user, rather than solely based on statistical-loss functions, which ignore the
purpose for generating the forecasts. Put it simply, should an end-user needs the oil
price volatility forecasts so to trade the USO, then she should focus on the DMA-all
model. By contrast, should she needs the oil price volatility forecasts for risk manage-
mentpurposes, then theDMA-allwouldonly serveher if shehas a long-run investment
horizon.
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These findings corroborate the results obtained by Degiannakis and Filis (2022)
who show that the evaluation of the oil price volatility forecasts is more economically
usefulwhen it is performedusing criteria thatmatch thepurpose of the forecasts. More
specifically, Degiannakis and Filis (2022) point out that a forecasting model may be
superior for a particular trading strategy (e.g., trading the asset) but itmaynot beuseful
for a different trading strategy (e.g., trading straddles on the asset).

7 Conclusion

Our study assesses the predictive content of the GPR index, and its sub-indices,
for oil price realized volatility forecasts, for horizons up to 22-days ahead. To do so, we
initially use aHARmodelwhich is augementedwith theGPR indices. However, to show
that the predictive information from the GPR indices is indeed valuable, we construct
a "beauty contest" where the forecasting performance is evaluated against the perfor-
mance of several other well-known uncertainty indicators that have been commonly
used for oil price volatility forecasting. Subsequently, we combine the information of
all uncertainty indicators, includingGPR indices, using aDMAmethodology (DMA-all)
andwecompare its performanceagainst aDMAmodelwhichdoesnot include theGPR
indices. Our evaluation framework includes both the use of statistical loss-functions,
as well as, economic-based criteria, namely, a trading game and a risk management
framework.

Our results suggest that geopolitical risk indices are important predictors for the
WTI crude oil price volatility, across all horizons. Put is simply, we show that the geopo-
litical tensions are functioning as early-warning triggers for oil price uncertainty. This
is particularly evident in the DMA-all model, where its performance is superior to the
HARmodels, but also to theDMA-without theGPR indicesmodel. Regarding the alter-
native uncertainty indicators’ performance, it is highlighted that EPU offers predictive
gains in the longer run horizons, which could be justified by the fact that EPU also
include information regarding geopolitical tensions. More importantly, though, our
economic-based evaluation criteria show that the DMA-all model generates the high-
est trading profits across all horizons, whereas the HAR-OVX-GPR also exhibits signif-
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icant profits in the longer run horizons. Finally, from a risk management perspective,
we find that the the incorporation of the GPR indices in a DMA forecasting framework
improves the V aR and ES predictions, at least in the longer run horizons.

Such findings have important implications for professional forecasters, investors
and risk managers that develop modelling and forecasting frameworks for oil price
volatility. Hence, end-users of oil price volatility forecasts should implement models
that use geopolitical uncertainty indices along with information extracted from a large
variety of uncertainty indicators, so that they can generate economically useful fore-
casts.

Some interestingdirections for future researchcould include the implementation
of additional combination techniques, whichmay improve the incremental predictive
content of theGPR indices. Another obvious direction is theuse of alternative geopolit-
ical uncertainty indicators (e.g. theBlackRockGeopoliticalRisk Indicatoror the indices
developed by BBVA Research) in similar forecasting frameworks, as well as, additional
economic-based evaluation criteria (e.g. different trading or hedging strategies), given
that these are important to the end-users of oil price volatility forecasts.
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Descriptive statistics

RV OVX GRP GRP THREAT GRP ACT

Mean 27.90 33.19 112.26 120.72 67.06
Median 25.31 31.68 90.07 93.59 43.53
Maximum 99.03 78.97 725.02 822.62 871.97
Minimum 4.38 14.50 0.00 0.00 0.00
Std. Dev. 12.59 10.31 82.08 93.87 98.62
Skewness 1.63 0.87 1.78 1.79 2.66
Kurtosis 6.92 3.93 8.24 7.91 13.55
Coeff. Var. 0.45 0.31 0.73 0.78 1.47
Observations 2494 2494 2494 2494 2494

EPU ADS FSI VIX VXD VXN

Mean 104.62 -0.09 -0.60 16.94 16.07 18.99
Median 89.60 -0.12 -0.66 15.58 14.82 17.55
Maximum 490.89 0.92 2.41 48.00 41.45 46.63
Minimum 3.32 -0.80 -1.81 9.14 7.58 10.31
Std. Dev. 60.86 0.30 0.79 5.70 4.86 5.40
Skewness 1.56 0.39 1.03 1.71 1.76 1.56
Kurtosis 6.58 3.21 4.07 6.70 6.88 5.98
Coeff. Var. 0.58 -3.41 -1.33 0.34 0.30 0.28
Observations 2494 2494 2494 2494 2494 2494

Table1:Descriptive statistics of the variables. This tablepresents thedescriptive statis-
tics of the variables that have been used in the empirical analysis for forecasting real-
ized oil price volatility. RV = WTI oil price realized volatility, OVX = CBOE oil implied
volatility, GPR = geopolitical risk index, GPR THREAT = geopolitical risk threats index,
GPR ACT = geopolitical risk acts index, EPU = US Economic policy uncertainty index,
ADS = Aruoba-Diebold-Scotti Business Condition index, FSI = US Financial stress in-
dex, VIX = S/P500 implied volatility index, VXN = Nasdaq100 implied volatility index,
VXD = DJIA implied volatility index.
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MSPE

Days-ahead 1 5 10 15 22

RW 74.928 112.953 141.735 153.329 187.927
HAR-RV 58.720 87.505 106.993 121.403 143.100

HAR-OVX 0.910 0.944 0.960 0.968 0.964
HAR-OVX-GPR 0.906 0.930 0.952 0.955 0.953
HAR-OVX-GPR THREAT 0.907 0.931 0.952 0.957 0.956
HAR-OVX-GPR ACT 0.906 0.943 0.962 0.964 0.958

MAE

Days-ahead 1 5 10 15 22

RW 6.102 7.434 8.354 8.648 9.631
HAR-RV 5.191 6.357 6.998 7.515 8.209

HAR-OVX 0.954 0.958 0.980 0.983 0.970
HAR-OVX-GPR 0.956 0.959 0.982 0.985 0.974
HAR-OVX-GPR THREAT 0.956 0.958 0.982 0.987 0.975
HAR-OVX-GPR ACT 0.955 0.961 0.980 0.981 0.969

Table 2:MSPE andMAE results across all forecasting horizons - bechmark model and
geopilitical uncertainty indices. The first two rows of each panel report the MSPE and
MAE loss functions for RW and HAR-RV. The remaining four rows report the loss func-
tions of the remaining models relatively to the HAR-RV. A ratio below 1 suggests that
the respective model outperforms the HAR-RVmodel, in terms of MSPE andMAE, re-
spectively.
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MSPE

Days-ahead 1 5 10 15 22

HAR-OVX-EPU 0.987 1.000 0.980 0.987 0.984
HAR-OVX-ADS 1.004 1.018 1.018 1.027 1.026
HAR-OVX-FSI 0.993 1.012 1.015 1.028 1.030
HAR-OVX-VIX 0.995 1.007 1.004 1.019 1.025
HAR-OVX-VXD 0.993 0.995 1.005 1.015 1.022
HAR-OVX-VXN 0.995 1.009 1.001 1.012 1.010

MAE

Days-ahead 1 5 10 15 22

HAR-OVX-EPU 0.992 0.998 0.985 0.990 0.983
HAR-OVX-ADS 0.998 1.002 1.005 1.009 1.006
HAR-OVX-FSI 0.996 1.003 1.002 1.006 1.006
HAR-OVX-VIX 0.988 0.998 1.006 1.009 1.015
HAR-OVX-VXD 0.987 0.990 0.995 1.005 1.008
HAR-OVX-VXN 0.993 1.003 1.008 1.009 1.013

Table 3: MSPE and MAE results across all forecasting horizons - uncertainty indices.
Values represent the loss functions (MSPE and MAE) of each model relative to the to
theHAR-OVX-GPR. A ratio below 1 suggests that the respectivemodel outperforms the
HAR-OVX-GPRmodel, in terms of MSPE andMAE, respectively.

MSPE

Days-ahead 1 5 10 15 22

DMA-without GPR 0.935 0.891 0.926 0.967 1.007
DMA-all 0.931 0.879 0.912 0.959 1.009

MAE

Days-ahead 1 5 10 15 22

DMA-without GPR 0.971 0.959 0.966 0.980 1.007
DMA-all 0.971 0.962 0.967 0.980 1.023

Table 4:MSPE andMAE results across all forecasting horizons - DMA framework. Val-
ues represent the loss functions (MSPE and MAE) of each model relative to the to the
HAR-OVX-GPR. A ratio below 1 suggests that the respective model outperforms the
HAR-OVX-GPRmodel, in terms of MSPE andMAE, respectively.
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MCS test

Days-ahead 1 5 10 15 22

RW 0.000 0.000 0.000 0.000 0.000
HAR-RV 0.000 0.001 0.000 0.002 0.000
HAR-OVX 0.014 0.007 0.005 0.003 0.025
HAR-OVX-GPR 0.015 0.007 0.013 0.005 0.226
HAR-OVX-GPR THREAT 0.015 0.007 0.013 0.067 0.177
HAR-OVX-GPR ACT 0.015 0.007 0.003 0.067 0.079
HAR-OVX-EPU 0.027 0.007 0.029 0.104 1.000
HAR-OVX-ADS 0.015 0.006 0.000 0.104 0.002
HAR-OVX-FSI 0.024 0.007 0.000 0.153 0.000
HAR-OVX-VIX 0.027 0.007 0.013 0.244 0.025
HAR-OVX-VXD 0.027 0.007 0.013 0.244 0.025
HAR-OVX-VXN 0.027 0.007 0.013 0.408 0.079
DMA-without GPR 0.532 0.270 0.102 0.443 0.079
DMA-all 1.000 1.000 1.000 1.000 0.226

Table 5: The results of the MCS test for different forecasting horizons. Figures in bold
denote the model that belongs to the confidence set of the best performing models.

36



Incremental annualized cumulative returns vs the HAR-RV (%)

Days-ahead 1 5 10 15 22

RW -11.212 -21.742 -16.033 -14.530 -8.297
HAR-OVX 0.575 -3.713 -2.192 -0.507 2.545
HAR-OVX-GPR 8.665 -1.147 1.214 3.417 4.457
HAR-OVX-GPR THREAT 6.652 -3.147 1.321 2.077 3.810
HAR-OVX-GPR ACT 4.847 -1.661 -2.088 0.523 4.845
HAR-OVX-EPU 8.645 -3.452 -0.476 2.391 5.039
HAR-OVX-ADS -1.938 -4.737 -4.604 -3.156 -1.132
HAR-OVX-FSI 5.341 0.745 -3.549 -5.559 -0.002
HAR-OVX-VIX 0.261 2.271 -1.348 0.879 1.011
HAR-OVX-VXD 4.153 -0.242 -0.995 0.956 0.615
HAR-OVX-VXN 7.466 -0.291 0.160 2.290 5.368
DMA-without GPR 25.746 7.110 0.360 -2.057 2.088
DMA-all 23.889 8.008 2.159 4.960 9.670

Table 6: The annualized cumulative trading returns when implementing a trading
strategy on USO. The numbers refer to the incremental annualized cumulative trad-
ing returns relative to the HAR-RVmodel.
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Incremental annualized cumulative returns vs the HAR-OVX (%)

Days-ahead 1 5 10 15 22

RW -11.787 -18.029 -13.841 -14.023 -10.842
HAR-RV -0.575 3.713 2.192 0.507 -2.545
HAR-OVX-GPR 8.090 2.566 3.406 3.924 1.912
HAR-OVX-GPR THREAT 6.077 0.566 3.513 2.584 1.265
HAR-OVX-GPR ACT 4.272 2.051 0.103 1.030 2.301
HAR-OVX-EPU 8.071 0.261 1.716 2.899 2.494
HAR-OVX-ADS -2.513 -1.024 -2.412 -2.649 -3.677
HAR-OVX-FSI 4.767 4.458 -1.357 -5.051 -2.547
HAR-OVX-VIX -0.314 5.984 0.844 1.386 -1.534
HAR-OVX-VXD 3.578 3.471 1.197 1.463 -1.929
HAR-OVX-VXN 6.891 3.422 2.352 2.797 2.823
DMA-without GPR 25.171 10.823 2.551 -1.550 -0.457
DMA-all 23.314 11.721 4.350 5.467 7.126

Table 7: The annualized cumulative trading returns when implementing a trading
strategy on USO. The numbers refer to the incremental annualized cumulative trad-
ing returns relative to the HAR-OVXmodel.
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VaR loss function vs HAR-RV

Days-ahead 1 5 10 15 22

RW 0.075 0.046 -0.139 -0.552 0.136
HAR-OVX -0.197 -0.179 -0.063 -0.146 0.021
HAR-OVX-GPR -0.214 -0.203 -0.051 -0.262 -0.076
HAR-OVX-GPR THREAT -0.244 -0.186 -0.069 -0.236 -0.067
HAR-OVX-GPR ACT -0.178 -0.139 -0.085 -0.195 -0.034
HAR-OVX-EPU -0.182 -0.163 -0.026 -0.148 -0.058
HAR-OVX-ADS -0.210 -0.142 -0.085 -0.177 0.106
HAR-OVX-FSI -0.170 -0.140 -0.106 -0.101 0.028
HAR-OVX-VIX -0.296 -0.312 -0.115 -0.095 -0.025
HAR-OVX-VXD -0.307 -0.422 -0.107 -0.226 0.049
HAR-OVX-VXN -0.331 -0.269 -0.055 -0.106 0.056
DMA-without GPR -0.160 -0.360 -0.313 -0.315 -0.056
DMA-ALL -0.213 -0.345 -0.297 -0.326 -0.120

Table 8: The values refer to the magnitude of trading losses,Ψ(i )
V aR (see eq.20), of each

model relative to the HAR-RV. The lower the number the lower the losses that a HAR-
OVX-X model suffers relatively to the HAR-RV
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VaR loss function vs HAR-OVX

Days-ahead 1 5 10 15 22

RW 0.272 0.225 -0.076 -0.405 0.115
HAR-RV 0.197 0.179 0.063 0.146 -0.021
HAR-OVX-GPR -0.017 -0.024 0.012 -0.116 -0.097
HAR-OVX-GPR THREAT -0.047 -0.007 -0.006 -0.090 -0.088
HAR-OVX-GPR ACT 0.019 0.040 -0.022 -0.049 -0.055
HAR-OVX-EPU 0.014 0.016 0.037 -0.002 -0.079
HAR-OVX-ADS -0.013 0.038 -0.022 -0.031 0.085
HAR-OVX-FSI 0.027 0.039 -0.043 0.045 0.007
HAR-OVX-VIX -0.099 -0.132 -0.052 0.051 -0.046
HAR-OVX-VXD -0.111 -0.243 -0.044 -0.079 0.029
HAR-OVX-VXN -0.134 -0.090 0.008 0.040 0.035
DMA-without GPR 0.037 -0.181 -0.250 -0.168 -0.077
DMA-ALL -0.017 -0.166 -0.234 -0.179 -0.140

Table 9: The values refer to the magnitude of trading losses,Ψ(i )
V aR (see eq.20), of each

model relative to theHAR-OVX. The lower the number the lower the losses that a HAR-
OVX-X model suffers relatively to the HAR-OVX.
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ES loss function vs HAR-RV

Days-ahead 1 5 10 15 22

RW 0.116 0.083 -0.076 -0.281 0.173
HAR-OVX -0.112 -0.096 -0.033 -0.113 -0.029
HAR-OVX-GPR -0.122 -0.108 -0.026 -0.136 -0.059
HAR-OVX-GPR THREAT -0.119 -0.108 -0.026 -0.136 -0.048
HAR-OVX-GPR ACT -0.108 -0.090 -0.035 -0.107 -0.053
HAR-OVX-EPU -0.096 -0.076 -0.021 -0.088 -0.097
HAR-OVX-ADS -0.109 -0.077 -0.023 -0.125 -0.003
HAR-OVX-FSI -0.092 -0.058 -0.045 -0.090 -0.028
HAR-OVX-VIX -0.161 -0.152 -0.098 -0.133 -0.118
HAR-OVX-VXD -0.159 -0.197 -0.127 -0.196 -0.077
HAR-OVX-VXN -0.168 -0.171 -0.080 -0.141 -0.072
DMA-without GPR -0.134 -0.209 -0.185 -0.181 -0.056
DMA-ALL -0.134 -0.198 -0.167 -0.172 -0.097

Table 10: The values refer to the magnitude of trading losses,Ψ(i )
ES (see eq.23), of each

model relative to the HAR-RV. The lower the number the lower the losses that a HAR-
OVX-X model suffers relatively to the HAR-RV
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ES loss function vs HAR-OVX

Days-ahead 1 5 10 15 22

RW 0.229 0.179 -0.044 -0.168 0.203
HAR-RV 0.112 0.096 0.033 0.113 0.029
HAR-OVX-GPR -0.010 -0.011 0.007 -0.023 -0.030
HAR-OVX-GPR THREAT -0.007 -0.012 0.007 -0.023 -0.019
HAR-OVX-GPR ACT 0.004 0.006 -0.002 0.005 -0.023
HAR-OVX-EPU 0.016 0.020 0.012 0.025 -0.067
HAR-OVX-ADS 0.003 0.020 0.010 -0.012 0.026
HAR-OVX-FSI 0.020 0.038 -0.012 0.023 0.001
HAR-OVX-VIX -0.048 -0.056 -0.065 -0.020 -0.089
HAR-OVX-VXD -0.046 -0.101 -0.094 -0.084 -0.048
HAR-OVX-VXN -0.055 -0.075 -0.047 -0.029 -0.042
DMA-without GPR -0.021 -0.113 -0.152 -0.068 -0.027
DMA-ALL -0.022 -0.102 -0.134 -0.059 -0.068

Table 11: The values refer to the magnitude of trading losses,Ψ(i )
ES (see eq.23), of each

model relative to theHAR-OVX. The lower the number the lower the losses that a HAR-
OVX-X model suffers relatively to the HAR-OVX.
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Figure 1: Realized and implied volatility of WTI crude oil prices.

Figure 2: Geopolitical risk indices. GPR = geopolitical risk index, GPR THREAT =
geopolitical risk threats index, GPR ACT = geopolitical risk acts index.
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Figure 3: These figures depict the alternative uncertainty indicators, namely the EPU,
ADS and FSI as well as the VIX, VXD and VXN, which are the major implied volatility
indices of the US stock market. EPU = US Economic policy uncertainty index, ADS =
Aruoba-Diebold-Scotti BusinessCondition index, FSI =USFinancial stress index, VIX=
S/P500 implied volatility index, VXN =Nasdaq100 implied volatility index, VXD =DJIA
implied volatility index.
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Figure 4: DMA weights for 1-day ahead horizon. This figure shows the aggregation
of the weights that correspond to the model specifications with the set of explanatory
variables to include at least one of each category’s indicators.

Figure 5: DMA weights for 5-days ahead horizon. This figure shows the aggregation
of the weights that correspond to the model specifications with the set of explanatory
variables to include at least one of each category’s indicators.
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Figure 6: DMA weights for 10-days ahead horizon. This figure shows the aggregation
of the weights that correspond to the model specifications with the set of explanatory
variables to include at least one of each category’s indicators.

Figure 7: DMA weights for 15-days ahead horizon. This figure shows the aggregation
of the weights that correspond to the model specifications with the set of explanatory
variables to include at least one of each category’s indicators.
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Figure 8: DMA weights for 22-days ahead horizon. This figure shows the aggregation
of the weights that correspond to the model specifications with the set of explanatory
variables to include at least one of each category’s indicators.

Figure 9: Cumulative trading returns when forecasting oil price realized volatility - 1-
day ahead horizon.
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Figure 10: Cumulative trading returns when forecasting oil price realized volatility -
5-days ahead horizon.
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Figure 11: Cumulative trading returns when forecasting oil price realized volatility -
10-days ahead horizon.
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Figure 12: Cumulative trading returns when forecasting oil price realized volatility -
15-days ahead horizon.
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Figure 13: Cumulative trading returns when forecasting oil price realized volatility -
22-days ahead horizon.
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Appendix DMA approach

In this part, we concentrate on the one-step ahead forecasting procedure in or-
der to show the updating steps of the DMA approach in detail. Regardingmulti-period
ahead forecasting, the idea is similar because the whole framework of the DMA ap-
proach is based on the Eq. (17), which describes how the direct forecasts are obtained.

Themainmethodological approach of the updating equations of the TVPmodel
is based on the Kalman filter, which begins with the result:

(αt´1 | y t´1) „ N (α̂t´1,Σt´1|t´1), (24)

The Kalman filtering process proceeds as follows:

(αt | y t´1) „ N (α̂t´1,Σt |t´1), (25)

where Σt |t´1 =Σt´1|t´1 +Σut .

Since we are motivated by the approach that Grassi et al. (2017) proposed, the
updating equation ofΣt |t´1 is perturbedby a function of the squaredprediction errors,
which is shown in the updating steps. At this step, we assume the following:

Σt |t´1 =Σt´1|t´1. (26)

At this point, we have to mention that due to the fact that we use the aforemen-
tioned approach, we no longer have to estimate Σut . Kalman filter procedure is com-
pleted by the updating equation:

(αt | y t ) „ N (α̂t ,Σt |t ), (27)

where

α̂t |t = α̂t |t´1 +Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1(yt ´ xt α̂t´1), (28)
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and

Σt |t =Σt |t´1 ´Σt |t´1x 111
t (Ĥt +xtΣt |t´1x 111

t )´1xtΣt |t´1 +β ¨ max
[

0,F L
( ε2

t

Ĥt
´ 1

)]
¨ I , (29)

where εt = yt ´xt α̂t´1 and the estimated error variance is calculatedby the following22:

Ĥt = κĤt´1 + (1 ´κ)ε2
t . (30)

Recursive forecasting is implemented by using the predictive distribution,

(yt | y t´1) „ N (xt α̂t´1, Ĥt +xtΣt |t´1x 111
t ). (31)

After having estimated each individual model of the K combinations under the
TVP approach, which is explained analytically in the previous part, the DMA averages
the forecasts obtained by the individualmodels usingπt |t´1,k asweights for k = 1, . . . ,K

over the out-of-sample period. Those DMA forecasts can be expressed as:

E(yt | y t´1) =
K

ÿ

k=1

πt |t´1,k x (k)
t´1α̂

(k)
t´1 (32)

where α̂(k)
t´1 are the Kalman filter estimates of the state-space model at time t ´ 1.

At this point, probability in the forecasting model has to be determined. As pro-
posed by Raftery et al. (2010), the relation between πt |t´1,k and πt´1|t´1,k is described
as:

πt |t´1,k =
πα

t´1|t´1,k
řK

l=1π
α
t´1|t´1,l

(33)

where 0 <αď 1 is a forgetting factor23, which is constant and smaller than 1.
22The design parameters β and κ are set as 1e-10 and 0.94, respectively.
23In this study, we follow Koop and Korobilis (2012) in setting α= 0.99.
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The updating equation is defined as follows:

πt |t ,k =
πt |t´1,k fk (yt | y t´1)

řK
l=1πt |t´1,l fl (yt | y t´1)

(34)

where fk (yt | y t´1) is the predictive density of model k. Themain idea of this updating
equation is that a model, which had a better forecasting performance in the past, will
receive higher weight at time t .
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