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ABSTRACT 

Amid the transition to sustainable energy systems, understanding the drivers of energy 

intensity is essential for informed policymaking. This paper investigates the influence 

of technological innovation and demographic dynamics on energy intensity across 27 

OECD countries from 1990 to 2022, offering novel policy insights. Employing a 

multifaceted empirical strategy, we utilize dynamic common correlated effects (DCCE) 

estimators to address cross-sectional dependence and slope heterogeneity, both salient 

features of our dataset characterized by interdependent units. The empirical findings 

indicate that technological innovation significantly reduces energy intensity through 

improvements in efficiency and the adoption of cleaner technologies. Economic 

openness and GDP per capita are linked to lower energy intensity, underscoring the role 

of trade and wealth in driving energy efficiency. Conversely, higher fertility rates are 

linked to increased energy intensity, reflecting population growth and greater demand 

for energy-intensive services. Quantile regressions uncover heterogeneity across the 

distribution, with stronger effects of technological innovation and credit access at 

specific quantiles. We find that fertility positively influences energy intensity across 

most of the distribution, with the effect diminishing at the upper quantiles—

highlighting that higher fertility is associated with increased energy consumption 

primarily at lower and middle levels of energy intensity. Promoting technological 

innovation and financial access, while accounting for demographic pressures, is 

essential for achieving sustainable energy transitions in developed economies. 

Keywords: technological innovation; fertility; energy intensity; OECD panel; 

instrumental variables; quantile regression 
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1. Introduction 

Around the world, there is broad consensus on the critical importance of fostering 

technological innovation to address pressing energy challenges. Recent data indicate 

that global energy demand surged at an above-average rate in 2024, leading to an 

increased need for all energy sources, including oil, natural gas, coal, renewables, and 

nuclear power (IEA, 2025). This growing demand underscores the urgency of 

accelerating technological innovation to meet the needs of a rapidly changing energy 

landscape. Concurrently, population growth, urbanization, and rising living standards 

are contributing to higher energy consumption, while trends in energy intensity—

energy use per unit of economic output—remain a challenge in many regions. 

Demographic shifts are intensifying pressure on energy demand, making the need for 

innovation in energy technologies even more critical to meet the evolving needs of a 

growing and changing global population (IEA, 2024). 

The literature on the relationship between technological innovation and energy 

intensity has grown in recent years, yet it remains an area with considerable room for 

further exploration. Studies have primarily focused on specific countries or sectors, 

limiting the generalizability of findings. Studies on China highlight the critical impact 

of technological innovations such as artificial intelligence (AI), green finance, and 

industrial robotics in enhancing energy efficiency and reducing carbon emissions. AI 

has demonstrated varying effects across regions, with stronger impacts in economically 

developed areas (Li et al., 2025; Zhou et al., 2024). Green finance also plays a crucial 

role in optimizing energy structures, especially in resource-dependent regions (Lee et 

al., 2023). While much of the research centers on China, studies on the broader BRICS 

economies (Brazil, Russia, India, China, and South Africa) emphasize the positive 

relationship between environmental technologies and green growth, particularly 

through the promotion of renewable energy (Ulucak, 2020).  

Related empirical analysis on the OECD countries is rather limited. Notable 

contributions include research on the role of AI in renewable energy systems and energy 

efficiency (Ahmad et al., 2021), as well as the impact of energy efficiency policies in 

OECD countries (Geller et al., 2006). Other studies, such as those by Paramati et al. 

(2022) and Yasmeen et al. (2023), highlight the importance of green technologies, 

financial development, and environmental policies in reducing energy consumption and 

carbon emissions. However, many studies neglect the influence of demographic factors 
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like population growth or urbanization, which are increasingly important in shaping 

energy demand. While recent research, such as Lee et al. (2024), has begun to explore 

AI's role in energy transitions, there is still a gap in understanding the broader impacts 

of technological innovation, particularly in relation to the most up-to-date 

methodologies and demographic variables like fertility. Furthermore, while significant 

progress has been made in countries like those in the OECD, there remains considerable 

room for maneuver within these nations to further leverage technological innovation to 

drive energy efficiency and reduce carbon emissions. These gaps underscore the need 

for further research to comprehensively address how technological advances can meet 

the growing and changing energy needs of the global population. 

To fill this gap, we contribute to the existing literature on technology and 

environmental sustainability by incorporating underexplored factors, such as fertility 

rates, into the analysis of energy intensity and technological innovation. Investigating 

fertility is critical, as demographic dynamics fundamentally influence resource 

consumption patterns, labor force structure, and long-term sustainability trajectories, 

thereby shaping both the demand for and the diffusion of technological solutions. Using 

the latest methodologies and focusing on 27 OECD countries from 1990 to 2022, while 

accounting for interdependencies across countries arising from unobserved common 

shocks and other forms of cross-sectional dependence, we aim to provide a more 

holistic understanding of how technological advancements and demographic trends 

intersect to shape future energy landscapes. Specifically, we present four main 

contributions to the extant literature. 

First, the use of Dynamic Common Correlated Effects (DCCE) estimators 

represents an important methodological contribution to the study of energy intensity 

and technological innovation. DCCE estimators are particularly advantageous for panel 

data analysis, as they allow for modeling cross-sectional dependence, which is often 

present in large datasets like ours. In the context of global energy and technological 

trends, such dependence may arise from shared economic shocks, policy diffusion, or 

technological spillovers, highlighting the interdependence among countries. Moreover, 

slope heterogeneity is another key feature of such datasets, as countries differ 

significantly in their energy structures, demographic profiles, and levels of 

technological development. Ignoring these complexities can lead to biased or 

misleading results. By accounting for unobserved common factors that influence 
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multiple units, DCCE estimators provide more accurate and robust estimates, especially 

in heterogeneous panels with varying energy and demographic dynamics. Applying 

DCCE to our analysis will help bridge gaps in the literature and offer more reliable 

insights into how technological innovation can meet the growing energy needs of 

diverse populations. To our knowledge, these methodological approaches have not been 

explored in the literature, offering a novel way to examine the association between 

technological innovation, fertility and energy intensity. 

Second, we make a significant contribution by using information and 

communication technology (ICT) as a proxy for technological innovation. This 

approach provides a robust method for capturing the impact of technological 

advancements on energy intensity, as ICT encompasses the technologies that are 

revolutionizing nearly every sector. In today's digital age, ICT is at the heart of driving 

transformative change—from smart grids and energy management systems to the rise 

of AI—enabling more efficient energy use and better integration of renewable sources. 

By focusing on ICT, we can better understand how the diffusion of new technologies, 

such as digital infrastructure and advanced communication systems, influences energy 

demand and intensity. While ICT's benefits are well-recognized, its environmental 

impact remains debated, with significant variation among studies, and it has not been 

extensively studied in the context of our research. This gap in the literature presents an 

opportunity to further explore the complex relationship between ICT, demographics 

and energy intensity. 

 Third, we address a critical gap in the existing literature by analyzing the 

heterogeneous effects of technological innovation on energy intensity across the entire 

conditional distribution—not merely at the mean, but also at the distributional tails. 

While most prior studies concentrate on average effects, this approach overlooks 

important distributional dynamics that may vary substantially across countries. By 

employing simultaneous quantile regression for panel data, we uncover whether 

technological innovation exerts disproportionately stronger effects in reducing energy 

intensity among countries at the highest and lowest ends of the distribution. This 

distribution-sensitive analysis provides more nuanced policy implications, particularly 

for designing interventions tailored to the specific needs of countries with extreme 

energy intensity profiles. Our methodology captures unobserved heterogeneity through 
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country-specific and temporal fixed effects, enabling robust inference across quantiles 

(Koenker 2005; Machado and Mata 2005; Koenker 2017). 

Finally, fertility rates are often overlooked in energy analyses, particularly 

regarding energy intensity and technological innovation. While population growth and 

urbanization are commonly studied, fertility rates have not been widely incorporated 

into energy models. High fertility rates lead to larger, younger populations, increasing 

energy demand and affecting energy intensity. By integrating fertility into our analysis, 

we contribute novel insights into future energy demand, efficiency, and the role of 

technological innovation, addressing a key empirical gap and offering a more nuanced 

understanding of global energy dynamics under fiscal constraints such as high public 

debt. To this end, in estimating the relationship between energy intensity and its 

determinants, we account for potential endogeneity by employing an Instrumental 

Variables (IV) approach, using female employment as an instrument for fertility 

decisions that may be correlated with energy intensity. To assess potential regime-

dependent effects on the relationship between fertility and energy intensity, we apply a 

threshold model using central government debt as the threshold variable; the results 

reinforce the robustness of the baseline specification, suggesting that a threshold 

structure is not warranted in this context.  

The remainder of our paper is structured as follows. Section 2 presents the 

literature review. Section 3 contains the methodology and data. Section 4 reports the 

quantitative analysis and discussion and Section 5 concludes and proposes policy 

recommendations. 

2. Literature review  

In this section, we review the existing literature and outline the theoretical 

foundations underpinning the relationship between technological innovation and 

energy intensity. We begin by examining global and OECD-focused studies, followed 

by research specific to China, the BRICS, and Gulf Cooperation Council (GCC) 

countries, to identify key empirical findings, methodological approaches, and gaps that 

inform the present study. 
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i. OECD and world-wide 

Academic research on the relationship between technological innovation and 

energy intensity is largely recent, indicating that there remains considerable room for 

further exploration in this area. While a growing body of literature has begun to address 

this connection, many studies focus on specific countries or narrow sectors, leaving 

various dimensions of the association underexplored. However, some notable studies 

have provided valuable contributions by providing, for instance, a qualitative 

discussion on the role of AI in the energy sector, focusing on its application in 

renewable energy systems and supply-demand management such as solar and hydrogen 

power generation, energy efficiency, predictive maintenance, and smart grid 

management (Ahmad et al., 2021). The authors underline the need for regulatory 

engagement to address issues such as customer safety and information security.  

Geller et al. (2006) discuss trends in energy intensity and review the role of 

energy efficiency policies in reducing energy consumption across OECD countries over 

the past 30 years, focusing on Japan, the United States, and Western Europe. Using a 

decomposition technique to distinguish between efficiency improvements and 

structural changes in the economy, they show that energy intensity has significantly 

decreased, with key OECD nations using much less energy to fuel economic growth 

compared to 1973. The findings suggest that well-designed energy efficiency policies, 

which can target key sectors and leverage technology, are highly effective in achieving 

substantial energy savings. Similarly, Paramati et al. (2021) explore the impact of 

financial deepening, green technology, foreign direct investment (FDI), per capita 

income, and trade openness on carbon emissions across 25 OECD countries between 

1991 and 2016. Utilizing the Augmented Mean Group (AMG) and Grouped-Mean 

Fully Modified Ordinary Least Squares (FMOLS) estimators, their results highlight that 

green technology, FDI inflows, and trade openness contribute to a reduction in carbon 

emissions, while financial deepening and per capita income have a positive association 

with increased emissions. Notably, demographic variables are not considered in this 

analysis, which mainly focuses on economic and technological factors. Another 

research by Paramati et al. (2022) explores the influence of environmental-related 

technologies on energy consumption and efficiency across OECD countries. Analyzing 

data from 1990 to 2014 using advanced panel techniques (the Fixed Effects estimation 

method, Dynamic Ordinary Least Square (DOLS), Fully Modified Least Squares 
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(FMOLS), and Autoregressive Distributed Lag (ARDL)), the study reveals that 

environmental technologies effectively decrease energy intensity. Moreover, their 

paper underscores the significant impact of financial development and income on 

energy demand. The focus of Wang et al. (2022) is directed towards the manufacturing 

sector. Their study explores the impact of industrial robots on manufacturing energy 

intensity across 38 countries and 17 manufacturing sectors, using the dynamic panel 

GMM estimation method. The research reveals that industrial robots significantly 

improve manufacturing energy intensity, driven by two main effects: the technology 

improvement effect and the technological complement effect between robots and labor. 

The study also identifies a heterogeneous relationship between industrial robots and 

energy intensity, noting that robots primarily influence non-renewable energy intensity, 

particularly in labor-intensive sectors rather than capital-intensive ones.  

Turning to the most recent contributions on the field, Yasmeen et al. (2023) 

investigate the impact of green technology, environmental taxes, and natural resource 

management on energy efficiency and productivity in OECD countries, with a focus on 

the role of rule of law. Employing data from 2000 to 2020 for the energy intensity 

model, the study uses fixed effects and system GMM estimators to analyze the 

relationship between these variables over time, with green technology proxied by 

patents on environmental technology. They show that environmental tax and green 

technology lead to lower energy intensity, while population exerts the inverse impact 

on energy intensity. In the same vein, Lee et al. (2024) examine the role of AI in the 

energy transition, emphasizing how the digital economy supports this process. The 

research analyzes panel data from 64 countries worldwide between 2005 and 2019, 

utilizing the panel entropy weighting method. Empirical results demonstrate that AI has 

a positive impact on advancing the energy transition, with the digital economy further 

enhancing this effect. The study finds that AI's influence on the energy transition is 

stronger in high-income countries, such as those in Western Europe and the United 

States, as well as in resource-dependent nations like those in the Middle East and parts 

of Africa. The only demographic variable employed in the study is the level of 

urbanization, which is considered as a factor influencing the energy transition. On the 

fiscal front, Ebeke and Eklou (2023) utilize data from 18 European countries spanning 

the years 1997 to 2016 to examine the influence of automation on the effectiveness of 

fiscal policy in promoting job creation. The findings indicate that the pace of 
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automation has, on average, reduced the sensitivity of employment to fiscal stimulus 

by approximately half. In particular, manufacturing employment shows a diminished 

response to fiscal stimulus in countries with higher automation rates, as robots 

increasingly substitute human labor in production processes. Furthermore, the study 

reveals that low-skill workers and female employees are particularly less responsive to 

fiscal policies in nations with extensive automation, underscoring the growing 

challenge of generating job creation in an era marked by rapid technological 

advancement. 

Taking a slightly different perspective, Hondroyiannis et al. (2025) assess the 

impact of inflation on CO2 emissions, controlling for financial development, with a 

focus on 28 high-income countries from 1996 to 2021, and making use of various 

estimation methods, including regressions, quantile estimators, and impulse response 

functions. Empirical findings show a positive link between inflation and carbon 

emissions, while financial depth reduces emissions. The effects vary by country, with 

larger impacts in low-inflation countries. Energy inflation is identified as the main 

driver of CO2 emissions, suggesting the need for targeted monetary policies to address 

environmental concerns. Another insightful paper is by Wang et al. (2024) who 

examine how AI influences energy transition and carbon emissions, with a focus on the 

mediating role of trade openness. Using panel data from 69 countries between 1993 and 

2019, the research employs the Stochastic Impacts by Regression on Population, 

Affluence, and Technology (STIRPAT) approach, mediation effect techniques, and 

panel threshold analysis to estimate these relationships. The findings reveal that AI 

promotes energy transition and reduces carbon emissions, with trade openness acting 

as a mediator. It identifies a threshold effect, where AI significantly reduces carbon 

emissions only when trade openness surpasses a certain level, and similarly, AI’s 

positive impact on energy transition strengthens beyond another threshold of trade 

openness. The study also finds that trade thresholds for carbon emission reductions are 

lower in high-income countries and higher in regions with low AI levels.  

Climate change remains a critical global challenge, and Sustainable Development 

Goals (SDG) emphasize the need for countries to reduce greenhouse gas emissions and 

address climate change by 2030. While recent research has explored the environmental 

impact of Information and Communications Technologies (ICTs), most studies have 

assumed that this impact is the same across all countries. To examine how ICT affects 
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environmental degradation by considering differences in ICT quality among countries, 

Appiah-Otoo et al. (2023) investigate the relationship between ICT and environmental 

sustainability using data from 110 countries (2000-2018). Their findings indicate that 

ICT enhances environmental sustainability in countries with high ICT quality but leads 

to environmental degradation in nations with moderate or low ICT quality. The 

causality analysis reveals a bi-directional relationship between ICT and emissions in 

high and moderate ICT quality countries, while in low ICT quality countries, causality 

runs only from emissions to ICT. However, the study does not explore the potential 

benefits of quantile analysis, which could provide a more granular view of ICT’s effects 

across varying levels of ICT quality. 

 

ii. China, the BRICS and Gulf Cooperation Council countries 

Several studies focus on China due to its significant role in global energy 

consumption and efforts to improve energy efficiency. As the world’s largest energy 

consumer, China plays a critical role in both energy use and energy efficiency 

advancements. Li et al. (2025) examine the effect of AI on energy efficiency across 30 

Chinese provinces from 2000 to 2021, using a two-way fixed effects model and a spatial 

Durbin specification to account for spatial dependencies. Their findings indicate that 

AI significantly enhances energy efficiency, with green technological innovation 

serving as a positive moderator. Notably, the impact of AI is more pronounced in 

economically advanced regions, while in energy-rich areas, it may exert adverse effects, 

underscoring spatial heterogeneity. In a similar vein, Lee et al. (2023) investigate the 

impact of green finance on energy efficiency in China, emphasizing the roles of green 

technological innovation and energy structure transformation. Utilizing a panel entropy 

weighting method and fixed effects estimation, they find that green finance 

significantly enhances energy efficiency, particularly by promoting green technologies 

and optimizing energy structures. The effects vary across regions, time periods, and 

industries, with the strongest impacts observed in resource-dependent areas and sectors 

with inefficient industrial structures.  

Focusing on carbon emissions, Zhou et al. (2024) use provincial panel data from 

China (2010-2019) and a dual fixed effects model to control for time trends and regional 

differences, to find that industrial robots significantly reduce emissions intensity by 
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enhancing energy efficiency and advancing pollution reduction technologies. The 

impact is more pronounced in China’s eastern and western regions, with varying 

mechanisms across these areas. Similarly, Qin et al. (2024) employ a Vector 

Autoregressive (VAR) model to investigate the interaction between AI and renewable 

energy indicators in China. The findings suggest that while AI encourages renewable 

energy development, its impact is sometimes weakened by the lower costs of non-

renewable energy. Additionally, during the COVID-19 pandemic, a decline in 

renewable energy and stock markets hindered AI’s progress. The study also highlights 

the role of urbanization in influencing the AI-renewable energy relationship. Lee et al. 

(2025) take a human capital perspective, examining how AI impacts corporate energy 

consumption (CEC) in China and the moderating role of human capital (HC). Using 

data from 2013 to 2022, along with a Panel Smooth Transition Regression (PSTR) 

model, that allows for smooth transitions between regimes based on an endogenous 

threshold variable, their results reveal that AI increases CEC when HC is low, but this 

effect diminishes as HC improves. Additionally, increased HC helps AI reduce high-

pollution energy consumption, particularly in state-owned and high-tech enterprises. 

Liu and Wan (2023) explore the connection between ICT and CO2 emissions, with a 

particular focus on the spillover effects in China's prefecture-level cities. Analyzing 

panel data from 285 cities over the period 2004-2018, the study reveals a positive 

relationship between ICT and CO2 emissions, highlighting significant spatial 

spillovers. Energy consumption is identified as a key mediator, with the ICT–emissions 

relationship varying by geography, population size, and urban density. 

Ulucak (2020) investigates the impact of environmental technologies on green 

growth within BRICS economies. To address this, the study employs the Continuously 

Updated Fully Modified (CUP-FM) and Continuously Updated Bias-Corrected (CUP-

BC) estimation methods. Empirical findings reveal a positive relationship between 

environmental technologies and green growth in the BRICS. The study also highlights 

that renewable energy contributes to green growth, while non-renewable energy 

consumption acts as a barrier. Turning to the Gulf Cooperation Council (GCC) 

countries, Islam and Rahaman (2023) explore the asymmetric impact of ICT on CO2 

emissions, using panel data from 1995 to 2019 and applying the Westerlund 

cointegration test and nonlinear pooled mean group (PMG) estimation. The results 

support the Environmental Kuznets Curve (EKC) hypothesis, showing that while 
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higher per capita GDP increases CO2 emissions, the squared GDP per capita has a 

reducing effect. Additionally, energy consumption, intensity, and trade contribute to 

higher emissions, while ICT and financial development help mitigate emissions.  

Overall, although existing studies provide valuable insights into the relationship 

between energy intensity and technological innovation, there remains a significant gap 

in the literature, particularly concerning the use of recent estimation methods such as 

the Dynamic Common Correlated Effects estimators and the IV methodological 

approach. Quantile-based approaches have scarcely been explored in this context. 

Moreover, ICT-based proxies for AI, such as the balance of payments (BoP) data on 

ICT service exports as a percentage of total service exports, have yet to be fully utilized, 

thereby limiting a comprehensive understanding of AI's impact on energy intensity. 

Furthermore, fertility has not been included as a control variable, despite its potential 

to provide crucial context for understanding the broader dynamics at play, particularly 

with respect to demographic changes and their implications for energy demand and 

sustainability. These gaps underscore the need for further research to comprehensively 

examine how technological innovation, in conjunction with demographic factors, can 

contribute to addressing global energy challenges and advancing sustainable 

development. 

 

3. Methodology and data 

3.1 Econometric approach 

To examine the impact of technological innovation and fertility on energy 

intensity, we make use of a panel dataset covering 27 OECD countries from 1990 to 

2022, depending on data availability. As highlighted in the literature review, there is a 

scarcity of empirical studies examining this relationship within OECD countries. 

Focusing on OECD countries provides controlled and reliable results that can be 

generalized to other developed economies and offers insights for policy implementation 

and comparisons with emerging economies, particularly in relation to energy intensity 

and technological innovation, including AI. To address this issue, we leverage a unique 

longitudinal dataset and apply a combination of econometric techniques that are well-

suited to the structure of our data. Building on the models in Paramati et al. (2022) and 

Li et al. (2025), the model is specified as follows: 
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𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑡𝑖𝑡 = 𝑎1 + 𝛽1𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝑖𝑡 + 𝛽2𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 + 𝛽3𝑜𝑝𝑒𝑛𝑖𝑡+ 𝛽4𝑐𝑟𝑒𝑑𝑖𝑡𝑖𝑡 +

 𝛽5𝑔𝑑𝑝𝑖𝑡 +  𝑈𝑖𝑡         (1) 

𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑡𝑖𝑡 = 𝑎1 + 𝛽1𝑅𝐷𝑖𝑡 + 𝛽2𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑡 + 𝛽3𝑜𝑝𝑒𝑛𝑖𝑡+ 𝛽4𝑐𝑟𝑒𝑑𝑖𝑡𝑖𝑡 +  𝛽5𝑔𝑑𝑝𝑖𝑡 +

 𝑈𝑖𝑡                             (2) 

where 𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑡 represents energy intensity of country 𝑖 at time 𝑡 and 𝛽𝑖 denote 

coefficients to be estimated. 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 is technological innovation, 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦 is the 

fertility rate, 𝑜𝑝𝑒𝑛 denotes the economic openness indicator, 𝑐𝑟𝑒𝑑𝑖𝑡 is private sector 

credit, 𝑔𝑑𝑝 is GDP per capita, and 𝑈it is the error term. In equation (2), we utilize an 

alternative control variable, 𝑅𝐷 (Research and development expenditure), because 

R&D investments often influence innovation, productivity, and overall business 

performance, making it a critical factor to control for in the analysis. All variables are 

expressed in natural logarithms. The regressors are assumed to be uncorrelated with 

𝑈𝑖𝑡. However, the disturbances themselves are allowed to be autocorrelated, 

heteroskedastic and cross-sectionally dependent. 

To estimate equations (1) and (2), we apply both fixed effects (FE) and random 

effects (RE) models, as well as the Mean Group estimator that allows for individual-

specific coefficients, meaning that each cross-sectional unit in the panel can have its 

own unique intercept and slope, which is especially useful when there is significant 

heterogeneity across groups by avoiding the assumption of identical relationships 

between variables, as is the case in our panel (Eberhardt 2012). We additionally apply 

the Dynamic Common Correlated Effects model that offers several advantages, 

particularly in situations where there is cross-sectional dependence across units by 

allowing for a common set of parameters across the panel while accounting for time-

varying factors, which can lead to more accurate and robust estimates compared to other 

estimation methods (Ditzen 2019; Ditzen 2021). The superiority of the Mean Group 

and Dynamic Common Correlated Effects estimators lies in their ability to handle more 

complex panel data structures, such as slope heterogeneity and cross-sectional 

dependence, which traditional methods like fixed or random effects models may fail to 

capture. Slope heterogeneity and cross-sectional dependence are especially salient in 

our dataset, which comprises a diverse set of countries with varying levels of 

technological advancement, energy consumption patterns, and demographic trends—
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conditions that inherently give rise to heterogeneity in slope coefficients and 

interdependence across cross-sectional units due to shared global shocks, regional 

integration, and policy spillovers. These advanced techniques provide more accurate 

and efficient estimates, improving the robustness and reliability of the results in 

heterogeneous panel data settings. Moreover, they have not been fully explored in the 

context addressed by our paper, making our analysis a novel contribution to the 

literature by applying these methods to this specific area. 

To rigorously capture this distributional heterogeneity, we employ simultaneous 

quantile regression for panel data, which captures heterogeneous effects across 

different quantiles of the conditional energy intensity distribution and accounts for 

unobserved country-specific and temporal effects, thereby enhancing the robustness 

and granularity of inference (Koenker 2005; Machado and Mata 2005; Koenker 2017). 

Τhe benchmark equation for quantile regression is: 

𝑄𝜏 (𝑌𝑖 |  𝛸𝑖) =  𝛸𝑖𝛽(𝜏) +  𝜀𝑖(𝜏)  (3) 

 

where 𝑄𝜏 (𝑌𝑖 |  𝛸𝑖) is the conditional 𝜏-th quantile of the dependent variable 𝑌𝑖, 

given the independent variables 𝛸𝑖. 𝛽𝜏 is the vector of coefficients to be estimated for 

the 𝜏-th quantile and 𝜀𝑖(𝜏) is the error term associated with the 𝜏-th quantile. The 

equation represents how the 𝜏-th quantile of the dependent variable is related to the 

independent variables 𝛸𝑖, with 𝛽𝜏 capturing the impact of predictors at the specific 

quantile 𝜏.  

This approach is particularly important because it allows estimation of the 

conditional quantiles of the dependent variable, providing a more detailed view of the 

relationship between variables, particularly in the presence of heteroscedasticity or non-

normal error distributions. Unlike mean regression, which only provides insights into 

the average value of the dependent variable, quantile regression reveals how covariates 

impact different parts of the distribution, such as the lower or upper tails, offering a 

more comprehensive understanding of the effects across diverse subgroups or extreme 

outcomes. In our dataset, where energy intensity serves as the dependent variable and 

technological innovation is included as a control, quantile regression offers valuable 

insights by examining how technological advancements impact energy intensity across 

different quantiles. By analyzing these variations across countries and time periods, 

quantile regression sheds light on the diverse and often unequal effects of technological 
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innovation and fertility on energy intensity, an aspect that has been largely overlooked 

in previous studies. Furthermore, by considering both technological innovation and 

fertility as independent variables, this approach provides important insights into how 

these factors influence environmental outcomes, with significant policy implications 

for sustainable development and energy transitions. 

 

3.2 Data 

This study utilizes a panel data set consisting of 27 OECD developed countries 

over the period from 1990 to 2022, based on data availability. The sample includes 

Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Estonia, France, 

Germany, Greece, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, 

Luxembourg, Norway, Portugal, Slovak Republic, Slovenia, Spain, Sweden, the United 

Kingdom, and the United States. The primary data source is the World Bank World 

Development Indicators (WDI) database, unless otherwise specified. The WDI 

database adheres to internationally accepted standards and norms across countries and 

time periods, ensuring the consistency and reliability of the statistical information. All 

variables in the analysis are entered in their logarithmic form (𝑙) to account for scale 

differences and allow for a more robust interpretation of the estimated relationships. 

The dependent variable in this study is the energy intensity level of primary 

energy (energyint), which is the ratio of energy supply to gross domestic product (GDP) 

measured at purchasing power parity. Energy intensity indicates how much energy is 

required to produce one unit of economic output. A lower ratio suggests greater energy 

efficiency, while a higher ratio indicates higher energy consumption per unit of output, 

often linked to industrial or energy-intensive economies. Energy intensity is chosen as 

the main dependent variable because it reflects how efficiently an economy uses energy 

to produce goods and services. Lower energy intensity is generally associated with 

technological advancements, energy-efficient systems, or a shift towards service-based 

economies. An alternative dependent variable is total greenhouse gas emissions per 

capita (carbon), which includes annual emissions from the six greenhouse gases 

covered by the Kyoto Protocol across the energy, industry, waste, and agriculture 

sectors. These emissions are standardized to carbon dioxide equivalent values and 

divided by the population. Carbon emissions are key to understanding a country's 
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environmental impact and its contribution to global climate change. They are also 

crucial in the context of the Paris Agreement, which aims to limit global warming by 

reducing greenhouse gas emissions and promoting sustainable development. 

Independent variables include: ICT service exports (technology), which serve as 

a strong proxy for technological innovation and AI. ICT service exports encompass 

computer and communications services (such as telecommunications, postal, and 

courier services) and information services (including computer data and news-related 

transactions). Key examples of ICT service exports are software development and IT 

services, telecommunications services, business process outsourcing (BPO), IT 

consulting and system integration, web and mobile app development, cybersecurity 

services, digital marketing services, e-commerce and online platforms, as well as cloud 

hosting and data storage. These services are essential in facilitating global access to 

specialized technology and expertise, reflecting a country’s engagement with advanced 

technologies, including AI, and its integration into the global digital economy. Another 

proxy for AI is Research and Development expenditure (RD), expressed as a percentage 

of GDP. This includes both capital and current spending across business enterprises, 

government, higher education, and private non-profits. Research and Development 

covers basic research, applied research, and experimental development. High Research 

and Development investment indicates a country’s focus on technological 

advancements, including AI, and reflects its capacity for innovation and integration of 

AI into the economy. Total Fertility Rate (fertility) is included as a control variable in 

the analysis, representing the number of children a woman would bear if she lived 

through her childbearing years. Higher fertility rates typically lead to a growing, 

younger population, which can increase energy demand and raise energy intensity. 

Conversely, lower fertility rates may reduce population growth, potentially lowering 

energy intensity. Economic openness, measured by the ratio of total trade (exports plus 

imports) to GDP (open), serves as another control variable. The relationship between 

openness and energy intensity is multifaceted, as both trade expansion and technology 

transfer influence energy use. Higher economic openness can facilitate access to 

energy-efficient technologies, potentially reducing energy intensity. To account for 

financial sector activity, we use domestic credit to the private sector by banks (credit). 

This measure represents the financial resources provided to the private sector, including 

loans and credit. Increased access to credit can facilitate investment in energy-efficient 
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technologies and infrastructure, helping to reduce energy intensity. By enabling 

businesses to adopt more sustainable practices, domestic credit can promote efficiency 

and lower energy consumption per unit of output. To capture income effects, we include 

GDP per capita (gdp) in the analysis. Higher GDP per capita often reflects greater 

economic wealth, which can provide the resources necessary for investments in energy-

efficient technologies and infrastructure. As a result, wealthier economies may be better 

equipped to reduce energy intensity, even with higher levels of energy consumption, 

through technological advancements and more sustainable practices.  

The summary statistics are presented in Table 1, offering an overview of the key 

descriptive measures for the variables used in the analysis, including their mean, 

standard deviation, minimum, and maximum values. Appendix A displays the graph of 

energy intensity by country, illustrating the variations across different nations. 

Appendix B provides a detailed list of variables and their corresponding sources. 

 

TABLE 1. Summary statistics 

Variable Obs Mean Std. Dev. Min Max 

   
   

energyint 479 4.15 1.91 1.09 15.65 

carbon 479 12.00 5.12 5.55 28.75 

technology 479 10.02 10.00 0.50 60.42 

RD 479 2.03 1.03 0.24 5.71 

fertility 479 1.64 0.38 0.81 3.11 

empfem 479 49.49 6.95 29.51 70.72 

open 479 100.14 64.15 19.56 393.14 

credit 479 92.67 37.96 0.19 254.55 

gdp 479 52,293.84 21,341.02 23,264.59 140,435.80 

 

 

4. Quantitative analysis and discussion 

4.1. Preliminary tests 

Before performing the regression analysis, we conduct a series of preliminary 

tests. To assess the impact of technological innovation and fertility on energy intensity 

while controlling for other variables, we utilize Pesaran’s CD test (Pesaran, 2015). 

Unlike some other tests for cross-sectional dependence, the CD test is robust to 
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heteroscedasticity and autocorrelation in the residuals and involves straightforward 

calculations of pairwise correlations of residuals. As shown in Table 2, the null 

hypothesis of weak cross-sectional dependence is rejected, confirming the presence of 

cross-sectional dependence. We proceed with the slope homogeneity test by Pesaran 

and Yamagata (2008) that allows for testing the assumption of slope homogeneity in 

the presence of cross-sectional dependence. This is particularly important because in 

panel data analysis, the assumption that the coefficients are the same across all cross-

sectional units (homogeneity) may not always hold, especially when there are 

unobserved common factors or cross-sectional dependence as is the case in our panel. 

The null hypothesis of slope homogeneity is rejected in the Delta and the Delta-adjusted 

versions of the dispersion test. Given the evidence of both cross-sectional dependence 

and slope heterogeneity, we move forward with the Fisher-type panel unit root tests 

(Choi, 2001). The Fisher-type panel unit root tests are advantageous for panel data 

because they can handle unbalanced panels, are robust to cross-sectional dependence, 

increase test power by pooling information across cross-sectional units, and allow for 

heterogeneity across units, making them ideal for panel datasets. The results in Table 3 

indicate that the null hypothesis of non-stationarity is rejected, suggesting that the series 

are stationary. 

TABLE 2. Tests for cross-sectional dependence and slope homogeneity 

 
 value p-value 

Cross-sectional 

dependence* 
Pesaran test CD = 23.427 0.000 

Slope 

homogeneity** 
Delta test 

Delta = 12.415  

Delta-adjusted (Δadj) = 15.956  

0.000 

0.000 

Notes: * The null hypothesis is that errors are weakly cross-sectional dependent.                           

** The null hypothesis is that slope coefficients are homogeneous.  
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TABLE 3. Panel unit root tests 

 
variable value p-value 

Fisher-type panel 

unit root test 

 lenergyint 

lcarbon 

ltechnology 

lfertility 

lempfem 

lopen 

lcredit 

lgdp 

8.5158 

 12.6863 

15.3917 

13.0913 

12.3627  

10.0511 

6.7112   

7.3425 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Note: The null hypothesis is that the series are non-stationary.  

 

4.2 Benchmark regression 

Based on the findings from the preliminary tests, Table 4 presents benchmark 

results at the mean level utilizing a range of different estimators to further enhance the 

robustness of the analysis. Columns 1-2 and 5-6 report results from panel OLS with 

fixed and random effects, columns 3 and 7 use the Mean Group estimator, and columns 

4 and 8 present results from the Dynamic Common Correlated Effects estimator. 

From the perspective of technological innovation (ltechnology), proxied by ICT, 

the coefficient is negative and significant at the highest significance levels across all 

specifications, a finding that aligns with the existing literature (Li et al., 2025). Under 

the Dynamic Common Correlated Effects estimator (column 4), the coefficient is -0.098 

and is statistically significant at the 5% level. This suggests that as ICT usage 

(ltechnology) increases, energy consumption per unit of economic output decreases, 

leading to a reduction in energy intensity (lenergyint). This can occur through various 

mechanisms, such as enhanced energy efficiency in industries via automation and 

optimization, the development of smart grids for improved energy management, and 

the shift toward less energy-intensive service-based economies. Additionally, ICT 

promotes energy-saving practices, including remote work, virtualization, and the 

integration of renewable energy sources, while the use of energy-efficient devices 

further contributes to reducing energy demand. 

Similar outcomes can be observed using the alternative proxy for technological 

innovation and AI, namely R&D expenditure (lRD). The results presented in columns 

5,6 and 7 suggest that as investment in research and development increases, energy 
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consumption per unit of economic output decreases. Higher R&D spending often drives 

the development and adoption of more energy-efficient technologies, innovations, and 

sustainable practices across various sectors. R&D fosters more efficient resource use, 

thereby reducing energy intensity and contributing to more sustainable economic 

growth. These findings are consistent with the results reported by Paramati et al. (2022) 

and Yasmeen et al. (2023). 

A consistently positive and significant association between fertility rates 

(lfertility) and energy intensity (lenergyint) suggests that as fertility rates increase, 

energy consumption per unit of economic output also rises. Higher fertility rates often 

lead to population growth, which can drive up the demand for energy-intensive services 

such as transportation, housing, and healthcare. As the population expands, energy 

consumption typically rises to meet both residential and industrial needs, contributing 

to increased energy intensity. Additionally, larger populations may place greater 

pressure on existing infrastructure and resources, further escalating energy demand. 

This relationship underscores the challenge of managing energy use as population 

growth accelerates. Related issues are discussed in Lee et al. (2024). 

Regarding other control variables, results indicate a negative and statistically 

significant association between economic openness (lopen) and energy intensity 

(lenergyint), though this effect is only significant under the OLS estimators, not the 

Mean Group or Dynamic Common Correlated Effects estimators. Consistent with 

Yasmeen et al. (2023), increased trade openness is associated with lower energy 

consumption per unit of economic output. Empirical evidence indicates that trade 

openness can stimulate the diffusion of best practices in energy efficiency while 

simultaneously reducing energy intensity through the adoption of cleaner technologies. 

Additionally, trade fosters industry specialization, with countries focusing on less 

energy-intensive sectors, further reducing energy consumption.  

Similarly, GDP per capita (lgdp) is negatively associated with energy intensity 

(lenergyint) across all columns. In line with Li et al. (2025), as a country's GDP per 

capita increases, energy consumption per unit of economic output decreases. This can 

be attributed to the adoption of energy-efficient technologies and practices as 

economies grow wealthier. Higher income levels often lead to increased investments in 

clean energy, improved infrastructure, and more efficient production processes. 

Additionally, wealthier countries may shift toward less energy-demanding service 
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industries, further reducing energy consumption per unit of GDP. This suggests the 

potential for economic growth to be decoupled from energy use as income rises. 

In conclusion, our preferred model, the Dynamic Common Correlated Effects 

estimator (column 4), which accounts for both slope heterogeneity and cross-sectional 

dependence, reveals several important findings. Technological innovation has a 

significant negative impact on energy intensity, while fertility rates exhibit a significant 

positive effect at high levels of statistical significance. Additionally, GDP plays a 

crucial role in reducing energy intensity. The relationship between private sector credit 

(lcredit) and energy intensity (lenergyint) is ambiguous at the mean, but we have yet to 

explore the quantiles, where the pattern may differ. 

 

TABLE 4. Energy Intensity and Technological Innovation 

  

Panel 

OLS  

(Fixed 
effects) 

Panel 

OLS 

(Random 
effects) 

Mean 

Group 

Dynamic 

Common  

Correlated 
Effects 

Panel 

OLS  

(Fixed 
effects) 

Panel 

OLS 

(Random 
effects) 

Mean 

Group 

Dynamic 

Common  

Correlated 
Effects 

Columns 1 2 3 4 5 6 7 8 

VARIABLE lenergyint lenergyint lenergyint lenergyint lenergyint lenergyint lenergyint lenergyint 

  Mean Mean Mean Mean Mean Mean Mean Mean 

ltechnology -0.040*** -0.045*** -0.123*** -0.098** - - - - 

 (-3.215) (-3.625) (-3.539) (-2.338)     

lRD  -   -   -   -  -0.134*** -0.130*** -0.246** -0.228 

     (-5.632) (-5.523) (-2.272) (-1.548) 

lfertility 0.186*** 0.187*** 0.288*** 0.296** 0.164*** 0.170*** 0.268** 0.302** 

 (3.350) (3.357) (2.895) (2.510) (2.997) (3.100) (2.338) (2.255) 

lopen -0.315*** -0.302*** -0.055 -0.003 -0.247*** -0.247*** 0.064 0.091 

 (-8.885) (-8.691) (-0.847) (-0.047) (-6.637) (-6.835) (0.943) (1.257) 

lcredit -0.007 -0.005 -0.086 -0.039 0.001 0.001 -0.059 -0.019 

 (-0.549) (-0.436) (-1.556) (-0.613) (0.095) (0.113) (-0.858) (-0.265) 

lgdp -0.814*** -0.787*** -0.633*** -0.407** -0.853*** -0.834*** -0.785*** -0.515* 

 (-15.863) (-15.552) (-4.776) (-2.513) (-19.860) (-19.444) (-3.998) (-1.961) 

constant 11.560*** 11.240*** 8.884*** 8.303*** 11.654*** 11.464*** 9.899*** 10.714*** 

 (21.560) (21.016) (6.340) (4.989) (25.292) (24.572) (4.613) (4.556) 

         

observations 479 479 479 479 479 479 479 479 

countries 27 27 27 27 27 27 27 27 

Note: t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1. 
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4.3 Quantile regression analysis 

We employ quantile regression to examine how key explanatory variables 

influence the conditional distribution of energy intensity across different quantiles 

(Q10, Q25, Q50, Q75, and Q90), as reported in Table 5. This approach is particularly 

suited to uncovering heterogeneous effects that may be obscured in traditional mean 

regression frameworks, which estimate only average relationships. By modeling the 

entire conditional distribution, quantile regression provides a more granular view of 

how technological innovation, fertility, and credit affect energy intensity at different 

points of the distribution—ranging from the least to the most energy-intensive contexts. 

To enhance inference across quantiles and account for within-panel heterogeneity, we 

adopt a simultaneous quantile regression framework for panel data, which allows for 

efficient estimation while controlling for unobserved country-specific and temporal 

effects (Koenker, 2005; Machado and Mata, 2005; Koenker, 2017). 

The quantile regression analysis reveals several important distributional 

differences that are masked in mean regression. Technological innovation (ltechnology) 

is negatively associated with energy intensity (lenergyint) across all quantiles except 

for Q90, indicating that its impact on energy intensity is more pronounced at lower and 

middle levels, but weaker at the upper tail of the distribution. Similarly, fertility 

(lfertility) shows a positive association with energy intensity (lenergyint) at all quantiles 

except for Q90, suggesting that higher fertility rates tend to lead to higher energy 

consumption per unit of economic output at lower and middle levels of energy intensity, 

but this relationship weakens in the upper quantiles of the distribution. GDP (lgdp), on 

the other hand, is primarily significant at the higher levels of energy intensity, 

particularly at Q75, underscoring its role in reducing energy intensity in wealthier or 

more industrialized contexts. 

Interestingly, credit (lcredit) exhibits a significant negative association with 

energy intensity (lenergyint) at the 1% level in the middle of the distribution (Q25, Q50, 

and Q75), suggesting that increased access to credit can help reduce energy intensity in 

countries with moderate energy consumption. This finding implies that enhanced 

financial access may incentivize investment in energy-efficient technologies and 

infrastructure, especially in economies where energy consumption is neither too high 

nor too low. Moreover, it could signal that the financial sector plays a crucial role in 

promoting sustainable practices by providing the necessary capital for businesses and 
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households to adopt cleaner, more efficient energy solutions within this segment of the 

conditional energy intensity distribution. These results highlight significant 

distributional heterogeneity that may be overlooked when focusing solely on the mean, 

underscoring the added value of quantile regression in offering a more nuanced and 

precise understanding of such relationships. Although their focus differs, related 

concerns are discussed in Lee et al. (2023). 

 

TABLE 5. Energy Intensity and Technological Innovation (Quantile Regression) 

Quantiles 

Columns 1 2 3 4 5 

VARIABLE lenergyint lenergyint lenergyint lenergyint lenergyint 

  Q10 Q25 Q50 Q75 Q90 

ltechnology -0.200*** -0.172*** -0.217*** -0.202*** -0.071 

 (-4.943) (-5.442) (-5.725) (-5.784) (-0.905) 

lfertility 0.497*** 0.546*** 0.533*** 0.336* 0.027 

 (3.699) (4.998) (5.078) (1.723) (0.117) 

lopen -0.048 -0.028 -0.021 0.002 -0.101 

 (-1.031) (-0.832) (-0.428) (0.051) (-1.230) 

lcredit -0.037 -0.089*** -0.225*** -0.168*** -0.050 

 (-0.674) (-3.240) (-2.742) (-3.250) (-1.062) 

lgdp -0.133* -0.081 -0.126* -0.220*** -0.294* 

 (-1.851) (-1.569) (-1.948) (-3.777) (-1.703) 

constant 2.979*** 2.613*** 3.944*** 4.840*** 5.662*** 

 (4.264) (4.901) (5.135) (9.686) (2.772) 

      

observations 479 479 479 479 479 

Note: t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

4.4 Robustness 

To assess the robustness of our findings, we replace the dependent variable with 

carbon emissions (lcarbon) in Table 6. The results largely mirror those from Table 4, 

with technological innovation (ltechnology and lRD), fertility (lfertility), and openness 

(lopen) maintaining similar effects on carbon emissions as they did on energy intensity. 

This consistency further supports the robustness of our findings across different 

environmental outcomes. However, GDP (lgdp) does not exhibit the same relationship 

with carbon emissions as it did with energy intensity. This divergence suggests that 

while economic growth may help reduce energy intensity through the adoption of 

energy-efficient technologies and practices, its direct impact on carbon emissions might 
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be more complex and influenced by other factors, such as the energy mix or industrial 

structure. 

A noteworthy finding is the significant negative relationship between credit 

(lcredit) and carbon emissions (lcarbon) observed across most empirical specifications. 

This suggests that increased access to credit can lead to more sustainable environmental 

practices. Credit enables firms and households to invest in cleaner technologies, energy-

efficient infrastructure, and renewable energy projects, which, in turn, help reduce 

carbon emissions. The ability to secure financing may lower the barriers for adopting 

greener practices, such as upgrading to energy-efficient systems or implementing 

carbon-reducing technologies. Financial access also promotes innovation in 

environmental sustainability, encouraging the development of cleaner products and 

processes. This finding aligns in spirit with the results of Hondroyiannis et al. (2024). 

In conclusion, although the factors influencing energy intensity and carbon 

emissions exhibit a high degree of similarity, the role of credit emerges as a particularly 

salient factor in fostering environmentally sustainable practices. The robust negative 

relationship between credit and carbon emissions underscores the potential of financial 

access as a crucial policy instrument for advancing sustainability goals. This suggests 

that improving access to credit could facilitate the widespread adoption of cleaner 

technologies, thereby acting as a key enabler of the transition towards a low-carbon 

economy. Moreover, the ability to secure financing enhances both firm-level and 

household-level investments in energy-efficient infrastructure and renewable energy 

initiatives, which are integral to mitigating carbon emissions. This finding aligns with 

recent literature on the intersection of finance and environmental sustainability (Lee et 

al., 2023), further highlighting the importance of financial innovation in promoting 

green technologies and supporting a sustainable economic transformation. 
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TABLE 6. Carbon Emissions and Technological Innovation 

  
Panel OLS  

(Fixed 

effects) 

Panel OLS 
(Random 

effects) 

Mean 

Group 

Dynamic 

Common  

Correlated 
Effects 

Panel OLS  
(Fixed 

effects) 

Panel OLS 
(Random 

effects) 

Mean 

Group 

Dynamic 

Common  

Correlated 
Effects 

Columns 1 2 3 4 5 6 7 8 

VARIABLE lcarbon lcarbon lcarbon lcarbon lcarbon lcarbon lcarbon lcarbon 

  Mean Mean Mean Mean Mean Mean Mean Mean 

ltechnology -0.068*** -0.075*** -0.205*** -0.172*** - - - - 

 (-4.192) (-4.716) (-4.039) (-3.248)     

lRD - - - - -0.215*** -0.208*** -0.340*** -0.281** 

     (-7.005) (-7.016) (-3.367) (-2.300) 

lfertility 0.246*** 0.248*** 0.405*** 0.420*** 0.211*** 0.224*** 0.382** 0.392** 

 (3.404) (3.454) (3.011) (3.101) (3.011) (3.212) (2.348) (2.202) 

lopen -0.380*** -0.342*** -0.100 -0.018 -0.272*** -0.270*** 0.056 0.092 

 (-8.241) (-7.818) (-1.300) (-0.214) (-5.678) (-6.032) (0.688) (1.111) 

lcredit -0.027* -0.026 -0.246*** -0.182** -0.015 -0.015 -0.202* -0.167 

 (-1.698) (-1.625) (-2.866) (-2.038) (-0.971) (-0.975) (-1.859) (-1.582) 

lgdp 0.040 0.078 0.000 0.091 -0.031 0.003 -0.113 0.196 

 (0.593) (1.223) (0.001) (0.442) (-0.570) (0.052) (-0.578) (0.750) 

constant 3.801*** 3.248*** 4.081** 3.251 4.042*** 3.664*** 4.282* 5.093** 

 (5.456) (4.801) (2.294) (1.595) (6.818) (6.230) (1.930) (2.269) 

         

observations 479 479 479 479 479 479 479 479 

countries 27 27 27 27 27 27 27 27 

Note: t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1. 
    

 

4.5 Further insights into the effects of fertility on energy intensity and carbon 

emissions 

To address potential endogeneity in the relationship between energy intensity, 

carbon emissions, and their key determinants—specifically those outlined in equations 

(1) and (2)—we employ an Instrumental Variables (IV) estimation approach, as 

proposed by Baum et al. (2003). This methodology enables efficient estimation in the 

presence of endogenous regressors while explicitly accommodating heteroskedasticity 

and serial correlation. Baum et al. (2003) rigorously demonstrated that this approach 

yields robust standard errors and valid inference regarding instrument relevance and 

exogeneity, thereby enhancing the credibility of the estimates. Additionally, 

endogeneity concerns are further acknowledged and addressed via the Lewbel (2012) 

heteroscedasticity-based estimator, as applied by Barkat et al. (2023), which enables 

robust identification when traditional instruments are unavailable. 
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To mitigate biases arising from reverse causality and omitted variable 

confounding, we use female employment as an instrument for fertility decisions, which 

may be endogenously linked to energy intensity.1 This application constitutes a novel 

contribution to the extant literature by facilitating a more precise and reliable 

assessment of the interplay between technological innovation, fertility, and energy 

intensity. The estimation results are presented in Table 7.  

Technological innovation (ltechnology) is negatively associated with both energy 

intensity and carbon emissions, with the relationship being statistically significant at 

conventional levels. Fertility rates (lfertility) exhibit a consistent positive correlation 

with both energy intensity and carbon emissions, indicating a potentially amplifying 

effect of demographic growth on environmental outcomes. Openness to trade (lopen) 

reveals complex trade-offs between international integration and environmental 

sustainability that are specific to this particular empirical context. Access to credit 

(lcredit) is negatively correlated with carbon emissions, consistent with the findings 

presented in Table 6. Finally, GDP (lgdp) is negatively associated with energy intensity, 

yet positively correlated with carbon emissions, highlighting the nuanced and 

multifaceted relationship between economic growth and environmental dynamics. 

These results underscore the critical roles of technological innovation, demographic 

factors, financial access, and economic growth in shaping the energy and carbon 

trajectories. 

Finally, to examine potential threshold effects and discontinuities in the 

relationship between the dependent and independent variables, we implement a 

Threshold Effect Analysis following the methodology proposed by Lee et al. (2025). 

Specifically, we evaluate whether the association between energy intensity and its 

determinants, including fertility, varies across regimes defined by government debt 

levels. The level of government debt may signal differing fiscal capacities or policy 

priorities, which could, in turn, influence how demographic factors like fertility affect 

 
1 The female employment-to-population ratio (empfem) indicates how efficiently an economy provides 

jobs for women who want to work. A high ratio means that a large proportion of the female population 

is employed. We use female employment as an instrumental variable to examine its effect on fertility, 

addressing potential endogeneity. Female employment is assumed to influence fertility through factors 

like the opportunity cost of childbearing and access to family planning, while being uncorrelated with 

unobserved factors that might affect fertility decisions (For an extended discussion on the relationship 

among employment and fertility see, among others, Alderotti et al. 2021 and Papapetrou, 2004). 
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energy demand.2 This inquiry is pertinent as demographic dynamics and fiscal capacity 

jointly shape energy demand trajectories, particularly in contexts where high fertility 

amplifies the need for energy-intensive public services (such as healthcare, education, 

and housing) while elevated debt burdens may constrain the state’s ability to invest in 

energy-efficient infrastructure and public service provision. In this specification, 

fertility is modeled as the regime-switching variable, while government debt serves as 

the threshold (or regime-determining) variable. The results are reported in Table 8. 

The estimated threshold value is 3.2956, with a 95% confidence interval ranging 

from 2.8794 to 3.3008. However, the threshold effect test yields an F-statistic of 11.84 

and a p-value of 0.5767, based on 300 bootstrap replications. Since the p-value exceeds 

conventional significance levels, the null hypothesis of no threshold effect cannot be 

rejected. Furthermore, the observed F-statistic falls below the critical values at the 10, 

5, and 1 percent levels, reinforcing the lack of statistical significance. These results 

provide no compelling evidence of a regime-dependent relationship between fertility 

and energy intensity conditional on government debt. Consequently, allowing the effect 

of fertility to vary across debt regimes does not materially improve the model's 

explanatory power. Overall, the absence of a significant threshold effect suggests that 

the fertility–energy intensity relationship remains stable across debt levels, thereby 

reinforcing the robustness of our empirical results.  

 

 

 

 

 

 

 

 

 

 

 

 
2 In the threshold analysis, central government debt (as a percentage of GDP) is employed as the threshold 

variable to examine regime-dependent effects. Debt refers to the total stock of direct government fixed-

term contractual obligations to external and domestic creditors, including currency and deposits, 

securities other than shares, and loans. It is measured as the gross amount of government liabilities, net 

of equity and financial derivatives held by the government (Source: World Bank). 
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TABLE 7. Energy Intensity, Carbon Emissions and Fertility 

Instrumental Variables (IV) 

Columns 1 2 3 4 

VARIABLE lenergyint lenergyint lcarbon lcarbon 

  Mean Mean Mean Mean 

ltechnology -0.636*** - -0.353*** - 

 (-7.187)  (-6.324)  

lRD  -  -0.057 - -0.042 

  (-0.885)  (-0.935) 

lfertility 3.357*** 2.050*** 1.623*** 0.919*** 

 (6.273) (4.966) (4.807) (3.211) 

lopen 0.332*** -0.022 0.132*** -0.067** 

 (4.207) (-0.454) (2.662) (-2.013) 

lcredit 0.048 0.052 -0.089** -0.086** 

 (0.833) (0.970) (-2.476) (-2.302) 

lgdp -0.420*** -0.421*** 0.472*** 0.473*** 

 (-4.519) (-4.937) (8.043) (7.997) 

constant 3.872*** 4.833*** -2.948*** -2.434*** 

 (4.471) (5.926) (-5.394) (-4.304) 

     

observations 479 479 479 479 

countries 27 27 27 27 

Note: t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

 

 

TABLE 8. Threshold effect test 

Threshold estimator (level = 95):    

    

model   Threshold Lower Upper 
    

Th-1   3.2956 2.8794 3.3008 
    

Threshold effect test (bootstrap = 300):    

   

Threshold    

RSS 

(Residual 

Sum of 

Squares) 

MSE (Mean 

Squared 

Error) 

Fstat 

(F-

statistic ) 

Prob  

(p-

value ) 

Crit10 Crit5 Crit1 

Single   33.012 0.0371 11.84 0.5767 23.3153 27.0627 32.9433 

Notes: * The null hypothesis is that there is no threshold effect. 

**The critical values for the test at different significance levels are: Crit10 (for a 10% significance level), Crit5 (for a 5% 

significance level) and Crit1 (for a 1% significance level). 
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5. Conclusions and policy implications 

As the global transition toward sustainable energy systems accelerates, 

understanding the key drivers of energy intensity and carbon emissions becomes 

increasingly imperative. This study contributes novel insights into the interplay of 

technological innovation, demographic dynamics, and economic factors shaping energy 

outcomes across OECD countries—an area that remains insufficiently explored in 

existing research. To this end, we analyze the impact of technological innovation and 

fertility on energy intensity using a unique panel dataset encompassing 27 OECD 

countries from 1990 to 2022, employing a diverse suite of advanced estimation 

techniques. We apply Dynamic Common Correlated Effects (DCCE) estimators, a 

robust method seldom utilized in the energy intensity literature, which effectively 

accounts for cross-sectional dependence and slope heterogeneity, enhancing the 

robustness of our empirical results. This approach enables a more nuanced and 

comprehensive understanding of the determinants of energy intensity in OECD 

countries, advancing the literature with both theoretical and empirical rigor. 

The results demonstrate that technological advancements play a pivotal role in 

significantly reducing energy intensity, highlighting the transformative potential of 

innovation—particularly through ICT and R&D—in mitigating energy consumption. 

Economic openness and higher GDP per capita further contribute to lower energy 

intensity, emphasizing the importance of trade and economic growth in facilitating the 

adoption of energy-efficient technologies. Conversely, higher fertility rates are 

associated with increased energy intensity, driven by population growth and heightened 

demand for energy-intensive services.  

The quantile regression analysis unveils significant heterogeneities along the 

conditional distribution of energy intensity. Technological innovation exerts stronger 

negative effects on energy intensity at lower and middle quantiles, with its influence 

diminishing toward the upper tail; conversely, fertility is positively associated with 

energy intensity following a similar pattern, with stronger effects at lower and middle 

quantiles that weaken toward the upper tail. Additionally, credit shows a significant 

negative impact at the middle quantiles, underscoring the critical role of financial access 

in enabling energy-efficient investments within these segments. 
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Robustness checks using carbon emissions as the dependent variable confirm the 

consistency of the results. Technological innovation, fertility, and openness exhibit 

similar effects, while the significant negative impact of credit underscores its critical 

role in enabling cleaner technologies that drive emissions reduction. Collectively, these 

findings reinforce the stability and explanatory power of the baseline model in 

advancing sustainable development objectives.  

This study underscores the transformative potential of technological innovation, 

particularly through ICT and R&D, in enhancing energy efficiency. However, it also 

reveals that demographic factors, such as fertility rates, pose significant challenges for 

sustainable energy transitions. To address these challenges, future policy efforts should 

prioritize fostering technological innovation by increasing investments in R&D and 

ICT infrastructure. Additionally, policies aimed at improving access to credit are crucial 

for enabling energy-efficient investments, particularly in the middle quantiles of the 

distribution. Given the enduring impact of demographic trends, it is essential that 

targeted strategies be devised to address the energy demand implications of fertility 

dynamics. Ultimately, a comprehensive policy framework that effectively integrates 

technological advancement, financial accessibility, and demographic considerations 

will be paramount in advancing sustainable energy systems and achieving long-term 

energy efficiency objectives. 

While this study offers valuable insights into the relationship between 

technological innovation, energy intensity, and fertility, several limitations can be 

considered, primarily related to data availability. Future research could benefit from 

extending the analysis to include additional control variables and countries, contingent 

upon improved data availability. Such an extension would provide deeper insights into 

the evolving role of technological innovation in energy dynamics. These limitations 

also present important avenues for further exploration. 
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Appendix B 

Overview of variables and data sources 

Abbreviation Name of variable Description Source 

energyint 
Energy intensity level of 

primary energy 

Energy intensity level of primary energy is the ratio between energy 

supply and gross domestic product measured at purchasing power 

parity. Energy intensity is an indication of how much energy is used 

to produce one unit of economic output. Lower ratio indicates that 

less energy is used to produce one unit of output. 

World Bank 

carbon 
Total greenhouse gas 

emissions per capita 

Total annual emissions of the six greenhouse gases (GHG) covered 

by the Kyoto Protocol (carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons 

(PFCs), and sulphurhexafluoride (SF6)) from the energy, industry, 

waste, and agriculture sectors, standardized to carbon dioxide 

equivalent values divided by the economy's population. This measure 

excludes GHG fluxes caused by Land Use Change Land Use and 

Forestry (LULUCF), as these fluxes have larger uncertainties. 

World Bank 

technology 
ICT service exports  

(% of service exports, BoP) 

Information and communication technology service exports include 

computer and communications services (telecommunications and 

postal and courier services) and information services (computer data 

and news-related service transactions). 

World Bank/IMF 

RD 
Research and development 

expenditure (% of GDP) 

Gross domestic expenditures on research and development (R&D), 

expressed as a percent of GDP. They include both capital and current 

expenditures in the four main sectors: Business enterprise, 

Government, Higher education and Private non-profit. R&D covers 

basic research, applied research, and experimental development. 

World Bank 

fertility 
Fertility rate, total  

(births per woman) 

Total fertility rate represents the number of children that would be 

born to a woman if she were to live to the end of her childbearing 

years and bear children in accordance with age-specific fertility rates 

of the specified year. 

World Bank 

empfem 

Employment to population 

ratio, female (%) (modeled 

ILO estimate) 

Employment to population ratio is the proportion of a country's 

population that is employed. Employment is defined as persons of 

working age who, during a short reference period, were engaged in 

any activity to produce goods or provide services for pay or profit, 

whether at work during the reference period (i.e. who worked in a job 

for at least one hour) or not at work due to temporary absence from a 

job, or to working-time arrangements. 

World Bank 

open Economic openness  

Openness is calculated as the ratio of imports plus exports to GDP. 

Imports of goods and services represent the value of all goods and 

other market services received from the rest of the world. They 

include the value of merchandise, freight, insurance, transport, travel, 

royalties, license fees, and other services, such as communication, 

construction, financial, information, business, personal, and 

government services. They exclude compensation of employees and 

investment income (formerly called factor services) and transfer 

payments. Exports of goods and services represent the value of all 

goods and other market services provided to the rest of the world. 

World Bank 

credit 
Domestic credit to private 

sector by banks (% of GDP) 

Domestic credit to private sector by banks refers to financial 

resources provided to the private sector by other depository 

corporations (deposit taking corporations except central banks), such 

as through loans, purchases of nonequity securities, and trade credits 

and other accounts receivable, that establish a claim for repayment. 

For some countries these claims include credit to public enterprises. 

World Bank 
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gdp GDP per capita, PPP 

GDP per capita based on purchasing power parity (PPP). PPP GDP is 

gross domestic product converted to international dollars using 

purchasing power parity rates. An international dollar has the same 

purchasing power over GDP as the U.S. dollar has in the United 

States. GDP at purchaser's prices is the sum of gross value added by 

all resident producers in the country plus any product taxes and minus 

any subsidies not included in the value of the products. It is 

calculated without making deductions for depreciation of fabricated 

assets or for depletion and degradation of natural resources. Data are 

in constant 2021 international dollars (constant 2021 international $). 

World Bank 
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