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ABSTRACT 

This paper evaluates the forecasting performance of the relatively new machine 

learning Global Unrefined (GlobalUN, hereafter) model with respect to inflation in the 

Eurozone. In this global pooled neural network framework, we use a quarterly panel 

dataset covering 20 euro-area countries (2001Q1–2025Q1) together with the EA-20 

aggregate, which includes key variables such as HICP, energy prices, food, and others. 

Thus, the network remains simple yet flexible enough to absorb heterogeneity across 

countries. Our contribution of our work is crucial since monetary policy in the Eurozone 

hinges on accurate inflation forecasts (i.e., as ECB decisions target expected rather than 

current inflation). Our findings are crystal clear. The GlobalUN model outperforms all 

other benchmark models and the advanced machine learning XGBoost model in almost 

all Eurozone countries and horizons (i.e., the NAÏVE model seems to outperform in a 

few cases). These results are useful for policymakers, central banks, and fiscal 

institutions, as they should take the GlobalUN model into account as part of their 

arsenal. 
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1. Introduction  

The conduct of monetary policy in the Eurozone rests on the centrality of 

inflation. The European Central Bank (ECB) defines price stability as a symmetric two 

percent inflation target over the medium term, clarified in its 2021 strategy review 

(European Central Bank, 2021). Inflation forecasts serve as the anchor of this 

framework because interest rate decisions respond to expected, not current, inflation. 

Recent episodes—including the pandemic, the energy price shock, and supply 

bottlenecks—have again demonstrated that accurate and timely forecasts are crucial for 

both monetary policy decisions and the credibility of the ECB (Banerjee, Hall, 

Kouretas, & Tavlas, 2023; Giannellis, Hall, Kouretas, & Tavlas, 2024). 

 The role of inflation is crucial for the monetary policy and credibility. Thus, the 

literature on inflation forecasting is extensive, employing a range of econometric and 

machine learning techniques. For example, Allayioti et al. (2024) shows that 

approximately one-third of Eurozone core inflation items are measurably sensitive to 

monetary policy shocks, underscoring the importance of reliable projections for 

gauging the impact of interest rate adjustments. The ECB’s symmetric target 

strengthens expectation anchoring, especially when the effective lower bound 

constrains conventional easing (European Central Bank, 2025a). Delle Monache and 

Pacella (2024) highlight that cross-country heterogeneity—in fiscal policy, energy 

dependence, and labor markets—modifies how policy affects national inflation 

dynamics. These findings show the necessity of a stable and reliable forecasting 

framework that integrates both area-wide and country-level data.  

 The failures of 2021–2022 (i.e., due to Covid-19 pandemic crisis), when most 

forecasters underestimated the magnitude and persistence of the inflation surge, 

illustrate the costs of weak predictive frameworks (Banerjee et al., 2023). Forecast 

errors were state-dependent, larger when inflation was already elevated, and shaped by 

global energy and supply shocks (Delle Monache & Pacella, 2024). In response, the 

ECB has enhanced transparency on projections and their past performance, enabling 

external evaluation and methodological improvement (European Central Bank, 2025c). 

The case for model diversification and forecast combinations has thus strengthened, 

particularly in turbulent regimes (Hubrich & Skudelny, 2017; Hall, Tavlas, & Wang, 

2023; Hall, Tavlas, Wang, & Gefang, 2024). 
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 From a methodological perspective, three strands dominate the Eurozone 

inflation forecasting literature. First, factor models extract area-wide common 

components and have been applied to assess whether national data improve aggregate 

forecasts. Cristadoro, Venditti, and Saporito (2008) find that once area-wide data are 

accounted for, national variables add little for forecasting aggregate HICP, though they 

may help track ECB policy moves. Second, forecast combinations improve robustness 

during crises, with constrained weighting schemes yielding gains in periods of 

structural change (Hubrich & Skudelny, 2017; Candelon & Roccazzella, 2025). Third, 

short-term inflation projection (STIP) frameworks focused on specific components—

such as energy and food—enhance real-time accuracy, as shown in national central 

bank models (Bessonovs & Krasnopjorovs, 2020; Albani et al., 2007) and recent ECB 

modules (Giammaria et al., 2025). These approaches converge on the need to 

incorporate global and component-level drivers into Eurozone forecasting.  

 Eurozone monetary integration adds further complexity into the forecasting 

procedure. A single monetary authority operates across heterogeneous economies. 

Flavin et al., (2009) show that in an enlarged Eurozone, pooling country-specific 

forecasts can outperform aggregate modeling. The degree of integration and 

convergence determines whether aggregate or disaggregated approaches perform better. 

During common global shocks, aggregate factors dominate during asymmetric 

disturbances, national information adds value. Earlier research on financial integration 

also shows that differences in banking structures and fiscal stances can shape the 

transmission of monetary policy and, by extension, the inflation process (see 

Kapopoulos & Lazaretou; 2007 for more details). Furthermore, Pereira et al., (2025) 

extends this literature by documenting evolving patterns of convergence and divergence 

in Eurozone inflation, demonstrating that integration is an ongoing process rather than 

a completed outcome. 

 The period 2020–2023 reinforced the importance of global drivers. International 

commodity prices, supply chain disruptions, and synchronized reopening effects 

accounted for most of the unexpected surge and the subsequent decline in Eurozone 

inflation (Delle Monache & Pacella, 2024). ECB studies confirm that global factors 

dominated, while national fiscal measures initially dampened and later amplified price 

pressures (European Central Bank, 2025b). This evidence suggests that forecasting 

models must integrate international linkages and allow for state-dependent 
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transmission. Rolling windows, adaptive weights, and regime-switching approaches 

have been proposed to address these challenges (Hall et al., 2024; Banerjee et al., 2023). 

 However, important gaps remain, such as the limited comparative analysis 

across countries, insufficient integration of macroeconomic theory with data-driven 

methods, or the lack of attention to non-linear and complex dependencies of inflation. 

Specifically, many forecasting models either emphasize aggregate factors or focus 

narrowly on specific components, leaving limited capacity to integrate global, area-

wide, and national information in a unified framework. Combination weights are often 

estimated ex post, limiting their usefulness in real time (Candelon & Roccazzella, 

2025). Evaluation pipelines for subcomponents remain uneven despite evidence that 

energy and food shocks dominate recent forecast errors (Giammaria et al., 2025). The 

ECB’s strategy review stresses the need for transparent links between forecasts, global 

drivers, and policy decisions (European Central Bank, 2021, 2025a). Addressing these 

gaps requires hybrid models that combine global information, area-wide dynamics, and 

targeted national modules, supported by adaptive forecast combinations.  

 Our study addresses these gaps by analyzing all the eurozone countries and 

developing a global model. The forecasting framework of global model (also referred 

to as cross-learning forecasting), uses one single (global) model that learns from a set 

of relevant time series in order to produce future predictions. In our work we apply a 

novel dataset using explanatory variables based on macroeconomic theory, detecting 

the channels of inflation, and conducting a cross-country comparative analysis. 

Investigating these issues is essential for monetary policy formulation and effective 

targeting inflation. Moreover, examining the degree of economic integration within the 

Eurozone and identifying differences and common patterns among member countries 

provide deeper insights into the transmission of monetary policy and the dynamics of 

price stability across the monetary union. 

 As the authors are aware, this is the first study to adopt the relatively new Global 

Unrefined (GlobalUN, hereafter) model developed by Hyndman et al. (2023) for 

inflation forecasting. The framework integrates global commodity and financial drivers, 

Eurozone-wide factor structures, and selected national modules where heterogeneity is 

significant. The proposed Global model aims to enhance short- and medium-term 

forecast accuracy, improve the interpretability of forecast revisions, and strengthen 

policy communication under the ECB’s symmetric 2% objective. Furthermore, we 
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employ a large sample of Eurozone countries (along with the EA-20 aggregate) over an 

extensive time series (2001Q1–2025Q1).  

 Our findings are straightforward. The GlobalUN model outperforms all 

benchmark models, including the advanced machine learning XGBoost model, across 

nearly all Eurozone countries and forecast horizons, with the NAÏVE model performing 

better only in a few isolated cases. These findings provide valuable insights for 

policymakers, central banks, and fiscal institutions, highlighting the importance of 

incorporating the GlobalUN model into their forecasting toolkit. 

 The remainder of the paper is structured as follows. Section 2 reviews the 

literature on inflation forecasting models. Section 3 outlines the methodological 

framework employed in this study, while Section 4 describes the dataset and provides 

a preliminary analysis. Section 5 presents the empirical results, and Section 6 

concludes. 

 

2. Literature review of main inflation forecasting models  

2.1. Econometric and Time-Series Models 

Univariate and multivariate time-series models remain standard benchmarks in 

inflation forecasting, with ARIMA widely used for its flexibility and ease of 

application. Studies in different contexts confirm its value. For example, research on 

Irish inflation and on Nigeria’s monthly inflation rates found that well-specified 

ARIMA models can capture price dynamics effectively, producing forecasts with low 

errors and stable residuals when selected with a focus on out-of-sample accuracy 

(Meyler et al., 1998; Adubisi et al., 2018).  

 Adjusting for structural breaks can further improve forecasts. In Finland, 

incorporating such breaks into ARIMA models often led to better performance than 

rolling regressions or survey-based expectations, and in some cases even outperformed 

national research institute projections (Junttila, 2001). Comparisons with other 

approaches show that ARIMA remains competitive but not always dominant. Work on 

Austrian HICP inflation found that factor models could outperform ARIMA for certain 

subindices, with the best results achieved when factor and VAR forecasts were 

combined. Forecasts based on aggregated subindices also tended to be more accurate 
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than those targeting headline inflation alone (Moser et al., 2007). Similarly, research 

comparing linear and neural network models for euro-area inflation showed that while 

neural networks can perform well, linear benchmarks like ARIMA still hold their 

ground as reliable reference tools (Binner et al., 2005). Performance also varies by 

institutional setting. In the EU, where inflation targeting is well established, ARIMA 

produced the most accurate 12-month forecasts. In the Western Balkans, where 

targeting frameworks are less rigid, nonlinear neural network models performed better, 

with Holt–Winters ranking second in both regions (Karadžić & Pejović, 2021). 

 VAR and VEC models are common tools for forecasting inflation. They capture 

how inflation moves with other macroeconomic variables over time. Panel VAR can 

improve accuracy by using richer data. In the euro area, sector-level panel VAR 

forecasts outperformed aggregate VARs, especially at short horizons (Dées & Güntner, 

2017). In Nigeria, VAR worked best for short-term forecasts, while VEC models suited 

longer-term projections. Exchange rates, foreign prices, and government spending were 

important drivers (Uko & Nkoro, 2012). Time-varying parameter models can add 

further gains. A TVP-VAR for the euro area outperformed standard and Bayesian VARs 

in predicting CPI during crisis periods (Bekiros, 2014). Mixed-frequency models that 

combine monthly inflation with daily financial data also reduced forecast errors 

compared with standard VARs (Monteforte & Moretti, 2013). Institutional forecasts 

remain a strong benchmark. ECB projections were the most informative for euro area 

inflation from 2009 to 2021. Their relative importance fell after 2021, reflecting shifts 

in the economic environment (Candelon & Roccazzella, 2025). 

 

2.2. Phillips Curve–Based Models 

Phillips curve models link inflation dynamics to measures of economic slack. 

Their forecasting performance, however, remains contested. Stock and Watson (2007) 

argued that U.S. inflation is better captured by models with stochastic volatility and 

time-varying parameters. Such features account for the reduced forecasting power of 

traditional Phillips curve specifications. In inflation-targeting economies, results are 

more supportive. Gabrielyan (2019) found that Phillips curve models improved one-

year-ahead forecasts for Sweden, Canada, and New Zealand once explicit targeting 

regimes were established. Forecast gains were weaker in earlier periods and varied 
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across model specifications. Other evidence is more skeptical. Atkeson and Ohanian 

(2001) showed that NAIRU-based Phillips curve forecasts were no more accurate than 

a random walk benchmark. Their results indicate that the models perform poorly in 

predicting turning points in inflation. 

 

2.3. Dynamic Stochastic General Equilibrium (DSGE) Models 

DSGE models are derived from economic theory rather than purely statistical 

fitting. They combine microeconomic foundations, stochastic shocks, and dynamic 

adjustment mechanisms. This structure makes them suitable for structural analysis and 

policy evaluation. 

 In the euro area, an open economy DSGE estimated with Bayesian methods 

achieved forecasting accuracy comparable to VAR and VECM models. In several cases, 

it outperformed benchmark models such as the random walk (Adolfson et al., 2007). A 

Bayesian sticky-price DSGE also matched the performance of a-theoretical VAR 

models. In addition, it produced full predictive distributions, conditional forecasts, and 

measures of policy-relevant risks (Smets & Wouters, 2004). 

 However, forecasting superiority is not universal. A review of the literature 

concluded that DSGE models perform similarly to time-series models and official 

forecasts. None of these approaches predicted the 2007 recession, and all continued to 

forecast poorly during the downturn. The structural design of DSGE models may 

explain this pattern: backward-looking dynamics resemble those in time-series models, 

while forward-looking dynamics rely on expectations about future exogenous variables, 

which are inherently difficult to predict (Wickens, 2014). 

 

2.4. Factor Models  

Used to capture information from large datasets without overfitting. Factor 

models are designed to capture information from large datasets without overfitting. 

Dynamic factor models (DFM) in particular extract common components that 

summarize macroeconomic dynamics and can be used to forecast inflation. Meta-

analyses show that factor models often outperform smaller models but not always 

pooled forecasts. They tend to work better for U.S. output and euro area inflation than 
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for other regions or variables. Forecast accuracy improves when larger datasets are 

used, while variable pre-selection offers little benefit (Eickmeier & Ziegler, 2008). 

Applications to small open economies confirm the value of DFMs. A two-step DFM 

estimated with market and survey data produced more accurate forecasts for Jamaica 

than univariate and DSGE benchmarks.  

 Market-based data improved both in-sample and out-of-sample performance, 

showing that DFMs can be effective outside advanced economies (Aysun & Wright, 

2024). In Poland, forecasts based on 92 monthly time series showed that DFMs 

outperformed autoregressive, VAR, and survey-based indicator models. Gains were 

clearer for short-term horizons, especially one-month ahead (Kotłowski, 2008). 

Extensions of factor modelling also enhance performance in advanced economies. For 

the U.S., euro area, and U.K., moving window techniques offered limited gains, but 

combining factor forecasts with time-varying weights improved accuracy substantially 

(Hall et al., 2023). 

 

2.5. Machine Learning and Artificial Intelligence Approaches 

Machine learning offers flexible, data-driven methods for forecasting inflation. 

These models capture nonlinearities, handle high-dimensional datasets, and often 

surpass linear benchmarks. In emerging economies, results are consistent. Random 

Forest and Gradient Boosting delivered the strongest forecasts for Nigeria, especially 

when foreign exchange reserves were included (Mirza et al., 2024). In Russia, tree-

based models performed at least as well as autoregression and random walk 

benchmarks, confirming their early potential (Baybuza, 2018). In advanced economies, 

machine learning also shows clear benefits. For the United States, Random Forest 

models improved accuracy by exploiting nonlinear relations across predictors 

(Medeiros et al., 2021). In Turkey, tree-based ensembles combined with Shapley value 

explanations produced accurate and transparent forecasts under volatile conditions 

(Aras & Lisboa, 2022). China provides further evidence from large-scale applications. 

Penalized regressions and gradient boosting trees consistently outperformed traditional 

time-series and factor models. Key predictive signals came from food prices, producer 

costs, and credit conditions (Huang et al., 2025; Xu et al., 2025). Comparisons with 

traditional econometrics are mixed. In Romania, sentiment-augmented ARDL models 
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outperformed several machine learning techniques in short-term horizons (Simionescu, 

2025). Similar studies show that while Random Forests are not always dominant, they 

remain competitive under flexible loss functions (Behrens et al., 2018). 

 

 2.6. Mixed-Frequency and Real-Time Data Models 

Mixed-frequency models use data collected at different intervals. They are useful 

when inflation is driven by fast-moving shocks. In the euro area, a Bayesian VAR with 

Student-t errors and stochastic volatility gave strong results. By turning quarterly GDP 

into monthly data, it produced more accurate forecasts than standard models, especially 

during energy shocks (Ertl et al., 2025). A nonparametric MIDAS model takes a 

different path. It smooths lag structures with penalized least squares and adapts better 

than parametric versions. Using daily indicators, it showed that commodity prices 

predict inflation up to a month ahead (Breitung & Roling, 2015). 

 

3. Methodology framework   

The following part depicts the models that were used for our study and the 

necessary preprocessing prior to their fitting.  

Naïve method 

The naïve method referred to as the simplest forecasting approach and is often 

used as a baseline. The naïve method forecast treats the latest data point as the best 

prediction for future values.  It assumes that the most recent observation contains all 

the relevant information for predicting future values. Consequently, the forecast for T 

+ h is set equal to the last known value 𝑦𝑇 (Tashman, 2000): 

𝑦̂𝑇+ℎ| 𝑇 = 𝑦𝑇 

where h is the forecasting horizon, and  𝑦̂𝑇+ℎ| 𝑇   is the estimate of 𝑦̂𝑇+ℎ|  based on the 

data 𝑦1, 𝑦2, … , 𝑦𝑇.  The naïve method is theoretically optimal when the underlying data 

follows an non-stationary process.  
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ARIMA 

Autoregressive Integrated Moving Average (ARIMA) models exploit dependence 

on lagged values and past shocks after differencing stationarity to produce forecasts. 

Predictions are produced as linear combinations of previous observations and past 

errors. According to (Pankratz, 2009) the non-seasonal ARIMA(p, d, q) model can be 

written  as  

𝜙(𝛤)𝛻𝑑𝑦𝑡 = 𝜇 + 𝜃(𝛤)𝜀𝑡 

where 𝛤 is the backshift operator, 𝜀𝑡 is the error term at time t, ϕ(Γ) denotes the p-order 

autoregressive operator, θ(Γ) the q-order moving average operator, d denotes the d-

order differencing operator, and 𝜇 the constant term. 

We select the autoregressive (p) and moving-average (q) parts using the Hyndman–

Khandakar (2008) approach.1  Following model estimation, we analyzed the residual 

mean for signs of bias and used the Ljung–Box test (Ljung & Box, 1978) with the Q 

statistic to evaluate residual independence. 

 Neural Networks 

An artificial neural network (NN) is a stack of simple processing units arranged 

in layers that trains a nonlinear mapping 𝑓(𝑋) from an input vector of p variables X = 

(X1, X2, …, Xp) to a response Y. In a basic feed-forward network, the input layer provides 

the features to one or more hidden layers. Each hidden unit blends its inputs using 

learned weights, adds a small offset (a bias), and then applies a nonlinear function like 

ReLU. Stacking these layers lets the model capture patterns that a straight line can’t. 

The example in Figure 1 has four inputs, one hidden layer with five units, and a single 

output; for simplicity, the figure leaves out the bias terms (Goodfellow, Bengio, & 

Courville, 2016). 

 

 

 

 
1 This approach runs unit-root checks, then searches over (p, d, q) options and picks the model with the 

lowest AIC information criterion. 
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Figure 1. Neural network with four inputs, a single hidden layer of five units, and one 

output     

                

Considering regression and a neural network with a single hidden layer and a one-

neuron output layer, the math proceeds as:   

     

𝑧𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

+ 𝑏𝑗 

where 𝑤𝑖𝑗 denote the weights, 𝑥𝑖 the input variables, and 𝑏𝑗 the bias. The pre-activation 

𝑧𝑗 is then passed through a nonlinear function g to produce the unit’s output 𝛼𝑗:  

𝛼𝑗 = 𝑔(𝑧𝑗) 

In regression settings, the output layer typically contains a single neuron, and the 

network applies a final transformation to approximate the target variable. (e.g., 

Goodfellow, Bengio & Courville, 2016) 

𝑦̂ = ∑ 𝑤𝑗
′𝛼𝑗

𝑚

𝑗=1

+ 𝑏′ 

In our simulation the network’s weights and bias terms are learned from the data 

during training via repeated forward propagation, loss evaluation, backpropagation, and 

parameter updates. To forecast the All-items HICP for each country, we develop an 

autoregressive feed-forward neural network trained on a 6-lag window (the previous 
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six quarters) to produce one-step-ahead predictions within the training sample. The 

input window is set to six lags to keep sufficient training observations and limit 

overfitting risk. Multi-step-ahead forecasts for the out-of-sample period at Q1, Q2, and 

Q4 quarter horizons are produced recursively. Each one-step prediction is fed back as 

input to construct the subsequent steps. The network architecture comprises two hidden 

layers with 128 units each using Rectified Linear Unit (ReLU) activations, followed by 

a single linear output unit. 

Global Unrefined (GlobalUN) 

We implement a global pooled neural forecaster on a quarterly panel of 20 euro-

area countries (2001Q1–2025Q1) plus the EA-20 aggregate, so that information can 

transfer across countries according to Hyndman et al. (2023). The predictor is a feed-

forward ReLU Multilayer Perceptron (MLP) sized to the pooled dataset, so the network 

remains simple yet flexible enough to absorb heterogeneity across countries.  

For each country and quarter we use a 6-lag window consisting of: (i) six lags of 

the target All-items HICP (autoregressive block), (ii) up to six lags of inflation-related 

indicators (HICP components: processed/unprocessed food, non-energy industrial 

goods, services, energy, a nominal unit-labour-cost measure based on hours worked and 

a world-demand indicator), and (iii) two rolling statistics of the target the 6-quarter 

rolling mean and rolling standard deviation both computed with a one-quarter shift so 

they only use data up to t−1. This construction prevents look-ahead bias. 

Before training, we standardized each time series with a Z-score using only the 

training data, because the variables are on different scales: 

𝑧𝑡 =
𝑦𝑡 − 𝑦̅

𝑠
 

where 𝑧𝑡 depicts the transformed series, 𝑦̅ is the mean and, 𝑠 is the standard 

deviation of the series. 

We train the model globally (pooled across all countries) without grouping or 

filtering. Out-of-sample forecasts at Q1, Q2, and Q4 horizons are produced recursively: 

the one-step-ahead prediction is fed back to form the next step’s lag window. In sum, 

our global pooled neural forecaster offers a transparent and reproducible way to harness 

cross-country information for quarterly inflation prediction. By combining a simple 

ReLU MLP with a six-lag autoregressive window and strictly past-only rolling 
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statistics, the approach avoids look-ahead bias while remaining flexible enough to 

capture heterogeneous dynamics across the euro area. Out-of-sample forecasts are 

produced for Q1, Q2, and Q4 horizons using training-only standardization at each 

rolling origin.  

XGBoost 

We use a quarterly dataset covering 20 euro-area countries plus the Eurozone-20 

aggregate to train a single XGBoost model to transfer information sharing across 

countries. Inputs include six quarterly lags of the following features: Processed food 

including alcohol and tobacco, Unprocessed food, non-energy industrial goods, Energy, 

Services (overall index excluding goods), Nominal unit labor cost (hours worked), and 

a World demand indicator. We also include strictly causal rolling statistics of the target 

with mean and standard deviation over a six-quarter window computed using data only 

up to t−1.  

 Forecasts are produced 1, 2, and 4 quarters ahead and synchronized with each 

country’s calendar quarter. Evaluation follows a rolling-forecast-origin design with 

standard error metrics and MASE under quarterly seasonality, and hyperparameters are 

tuned per horizon to balance bias and variance. 

Evaluation 

We assessed the model performance through a rolling-origin forecast validation 

approach. This procedure overcomes the limitation of a simple train–test split, which 

would provide results for only one forecast horizon. Using the initial training set, we 

determined the best ARIMA order through model selection before applying the model 

in the rolling-origin forecasting process. 

 Under this validation framework, all forecasting models ARIMA, Naïve, Neural 

Network, XGBoost, and GlobalUN were re-evaluated on a training set that expanded 

by one step at each iteration. Forecasts were then generated recursively for horizons of 

3, 6, and 12 months ahead. Bias was quantified using the Mean Error (ME), which 

exposes systematic over- or under-forecasting, while forecast accuracy was estimated 

via Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean 

Absolute Scaled Error (MASE).  
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4. Data and Preliminary Analysis    

The data are sourced from the databases of Eurostat and the European Central 

Bank (ECB).2 Our dataset covers the period from 2001-03-01 to 2025-03-01 with 

quarterly frequency and includes all Eurozone countries as well as the average for the 

Eurozone-20 countries.3 Table 1 presents a summary explanation of the endogenous 

variable (HCIP) and the exogenous variables used as explanatory variables in the 

machine learning models. We set the All-items HICP as the main variable that we 

predict and the exogenous variables are the sub-components, Processed food including 

alcohol and tobacco, Unprocessed food, Non-energy industrial goods, Energy and 

Services (overall index excluding goods) and economic variables the unit labor cost 

and economic demand indicator.  

 The selection of explanatory variables is based on the previous literature. For 

example, unit labour cost is considered one of the major factors determining inflation. 

King and Watson (2012), using a New Keynesian DSGE framework, showed that 

higher real labour costs drive increases in inflation. From a more empirical perspective, 

Bragoudakis (2014), using an error correction model, also finds a positive effect of unit 

labour costs on inflation. Thus, labour costs act as a fundamental driver of inflation in 

our model. 

 The choice of HICP subcomponents as explanatory variables is also motivated 

by a large body of research on the relative merits of forecasting using aggregated versus 

disaggregated data. For example, Hubrich (2005) analysed whether the accuracy of euro 

area inflation forecasts can be improved by aggregating or disaggregating forecasts of 

HICP subindices. Similarly, Porqueddu and Sokol (2020) compared direct forecasts of 

HICP (and HICP excluding energy and food) in the euro area and five member 

countries with aggregated forecasts of their main components, using large Bayesian 

VAR model 

 We therefore use the components as explanatory variables to ensure that the 

model captures consistent patterns across subindices. This approach exploits the 

 
2 Before any preprocessing step, the dataset was split into train data and test data. The test data covers 

the last 25 quarterly frequency and includes all Eurozone countries as well as the average for the 

Eurozone-20 countries. 
3 The list of countries presented in Table A1 in Appendix.  
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advantage of global models, which follow common trends, while using different 

components allows us to incorporate all available information and reduce the risk of 

forecast failures. 

 Finally, the world demand indicator is one of the most important explanatory 

variables. World demand influences HICP mainly by raising global commodity prices, 

which increases energy and food inflation, and by boosting exports and wages, which 

generate more persistent inflation in services and industrial goods. Exchange rate 

dynamics can further amplify these effects. Empirical studies have also used such 

variables: for example, Oulatta (2016) and Bruneau et al. (2007) employ global demand 

indicators or similar external factors to explain inflation dynamics. We also present the 

description and source of selected variables in Table 1.  

 

Table 1: Description of Variables    
Variable Description Source 

All-items HICP Harmonised Index of Consumer Prices 

(overall index, 2015=100) 

Eurostat 

https://ec.europa.eu/eurostat 

Processed food 

including alcohol 

and tobacco 

Sub-index of HICP covering processed food, 

alcoholic beverages, and tobacco 

Eurostat 

https://ec.europa.eu/eurostat 

Unprocessed food Sub-index of HICP covering food items  Eurostat 

https://ec.europa.eu/eurostat 

Non-energy 

industrial goods 

Sub-index of HICP covering durable and non-

durable industrial goods excluding energy 

Eurostat 

https://ec.europa.eu/eurostat 

Energy Sub-index of HICP covering energy-related 

goods and services. 

Eurostat 

https://ec.europa.eu/eurostat 

Services (overall 

index excluding 

goods) 

Sub-index of HICP covering market and non-

market services 

Eurostat 

https://ec.europa.eu/eurostat 

https://ec.europa.eu/eurostat
https://ec.europa.eu/eurostat
https://ec.europa.eu/eurostat
https://ec.europa.eu/eurostat
https://ec.europa.eu/eurostat
https://ec.europa.eu/eurostat
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Nominal unit 

labour cost based 

on hours worked 

Nominal unit labour cost (NULC) measures 

labour cost relative to labour productivity. 

Labour cost = compensation per hour worked; 

Productivity = GDP per hour worked. The 

index is shown as % change and 2015=100. 

Eurostat 

https://ec.europa.eu/eurostat 

World Demand 

Indicator (Export 

demand index) 

This index reflects foreign demand for a 

country’s exports, calculated as a weighted 

geometric average of trading partners’ import 

volumes 

European Central Bank 

 

5. Empirical Results  

We conduct a comparative evaluation of GlobalUN, ARIMA, Naïve, XGBoost, 

and a neural network baseline in a global, multi country setting that pools information 

across series. Models are assessed at 1, 2, and 4 quarter horizons using MAE, RMSE, 

MASE, and ME. 

 Across countries and horizons, GlobalUN attains the lowest MAE and RMSE 

on average, indicating superior point forecast accuracy and robust performance in the 

cross section. Relative to the seasonal naïve benchmark, MASE values for GlobalUN 

are generally above one, especially at longer horizons, which highlights both the 

difficulty of the task and the strength of the benchmark in this panel. Mean errors are 

typically positive and become more pronounced as the horizon lengthens, pointing to a 

mild tendency to over forecast in aggregate while the gains in MAE and RMSE remain 

clear. 

 ARIMA is competitive in a subset of countries at short horizons, but its errors 

expand as the horizon increases. The naïve benchmark provides a stable reference and 

can perform adequately in some short horizon cases, yet it remains weaker than 

GlobalUN on average. XGBoost and the neural network perform strongly in certain 

cases, most often at the shortest horizon, but their performance is less uniform across 

countries and their bias is more variable at longer horizons. 

 Overall, the evidence identifies GlobalUN as the most reliable approach in this 

setting. It consistently leads on MAE and RMSE from the short to the long horizon. 

GLOBALUN not only lowers average error but does so consistently, with stable 

performance under both scale-free (MASE) and squared-loss (RMSE) criteria and no 

https://ec.europa.eu/eurostat
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systematic bias (ME). While XGBoost and the neural network retain localized 

strengths, their gains are episodic and do not alter the overall ranking.4 

 In this section, we present the forecasting performance of our models for 

horizons 1, 2, and 4. The evaluation metrics include Mean Error (ME); Mean Absolute 

Error (MAE); Root Mean Squared Error (RMSE and Mean Absolute Scaled Error 

(MASE), Tables 3-5 present the results for bias and accuracy of the out-of-sample 

forecasts for the three horizons under consideration.

 
4 Full country by country results for all methods and horizons are reported in the Appendix (see Figures 

A1 to A5) 
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Table 3: Bias and Accuracy measures for 1 horizon 
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Table 4: Bias and Accuracy measures for 2 horizons 

 



 

21 
 

Table 5: Bias and Accuracy measures for 4 horizons 
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Figure 2 presents the results for the five forecasting models across three forecast 

horizons (3, 6, and 12 months), evaluated using three performance metrics: (a) MAE, 

(b) MASE, and (c) RMSE. The plotted values depict the average performance obtained 

from all rolling-origin forecast iterations for each model and horizon. 

Figure 2. The average performance obtained from all rolling-origin forecast iterations 

for each model and horizon 

 

 In panel (a), which reports MAE, the GlobalUN model consistently achieves the 

lowest values across all horizons, indicating higher point-forecast accuracy. ARIMA 

and the naïve benchmark are relatively competitive at the short horizon, but their errors 

rise notably as the horizon lengthens. NN and XGBoost exhibit substantially higher 

MAE, especially at the twelve-month horizon. 

 Panel (b) presents MASE. GlobalUN attains the lowest MASE among methods 

at each horizon, although levels remain above one and increase with horizon—

underscoring both the difficulty of the task and the strength of the naïve comparator. 

ARIMA approaches or exceeds two at longer horizons, while NN and XGBoost often 

 exceed two, particularly at twelve months. 

Panel (c) shows RMSE, which places greater weight on larger forecast errors. 

GlobalUN yields the lowest RMSE across horizons, reflecting stability and robustness. 

ARIMA is reasonable in the short run but weakens at medium and long horizons. In 

most cases, NN and XGBoost have the highest RMSE, so their forecasts are less 

dependable.  
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 Overall, the figure shows GlobalUN is the most accurate and steady across 

errors and horizons. Its MASE is still above one, but the other models fall off much 

faster at longer horizons.5 

 The next figure (Figure 3) displays the correlation between each explanatory 

feature and the target variable (All-items HICP) for each country. The heatmap shows 

that most features show strong positive correlations with the target, indicating that 

increases in these variables are generally associated with increases in the overall HICP. 

Particularly high correlations are observed for Processed food including alcohol and 

tobacco, non-energy industrial goods, and Services (overall index excluding goods) 

across almost all countries.  

 By contrast, some features like Unprocessed food and Energy line up less with 

inflation in some countries and can even move the other way. That means what drives 

inflation isn’t the same everywhere. When we build forecasts, we should watch both 

how strong the link is and which direction it goes, because each feature can matter very 

differently in stronger vs. weaker economies. 

 

 
5 An explicit visualization of the forecasting and actual price trajectories for all countries and horizons 

is provided in the Appendix (see Figures A1–A5 on Appendix). 
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Figure 3. Heat map of the correlation between each explanatory feature and the target 

variable (All-items HICP) for each country             

 

6. Conclusions  

In this study, we empirically evaluate five forecasting approaches (namely, 

GlobalUN, ARIMA, a seasonal naïve benchmark, XGBoost, and a simple neural 

network baseline), using a quarterly panel spanning twenty euro-area countries along 

with the EA-20 aggregate. We used a rolling-origin evaluation at one-, two-, and four-

quarter horizons and aligned every forecast to each country’s calendar. All inputs were 

constructed in a strictly causal way, with lags and rolling statistics computed only from 

information available up to 𝑡−1. Within that framework, a clear pattern emerged: the 

global, pooled learner (GlobalUN) consistently delivered the lowest MAE and RMSE 

across most countries and horizons, without becoming erratic as the horizon lengthened. 

 The message is straightforward but important. Sharing information across series 

helps, especially in a region like the euro area where common shocks ripple through 

countries with different amplitudes and lags. Pooled learning allows the model to 

borrow strength from neighbours when a single country’s history is short, noisy, or 

buffeted by idiosyncratic events. In practice, that meant more stable errors at the one-
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quarter horizon and a slower deterioration as we moved to two and four quarters. While 

MASE values for GlobalUN are not below one—an honest signal of the task’s difficulty 

and of the naïve benchmark’s strength they are systematically lower than those of the 

competing models. Bias is low and directionally consistent, yielding forecasts that 

respond in a sensible way as conditions change.  

 The contrast with the alternatives helps to interpret the gains. ARIMA and the 

seasonal naïve rule have appeal in the short run because they are transparent and react 

quickly to the most recent data, yet their errors grow more quickly at longer horizons. 

XGBoost and a generic neural network showed pockets of competitiveness but lacked 

uniformity across countries and horizons; they were more sensitive to volatility and 

produced larger errors when the signal-to-noise ratio fell. None of this suggests that 

these tools are “bad”—rather, it underlines that in a multi-country inflation setting with 

quarterly frequency and heterogeneous dynamics, a disciplined form of pooling 

provides a steadier base. 

 There are also accessible ways to build on these results without turning the 

framework into a black box. A simple next step is structured pooling: keep the benefits 

of sharing information across countries but still let each country speak for itself—for 

example with global–local hybrids or a light hierarchical reconciliation. We can also 

feed the models richer, faster signals, energy prices, commodity futures, or a basic 

financial-conditions index—so they react sooner, especially at longer horizons when 

shocks matter more. And a few post-forecast tweaks small bias corrections or compact 

ensembles that anchor GlobalUN to a simple rule can help close the remaining MASE 

gap to the seasonal naïve benchmark without giving up the MAE/RMSE gains. None 

of these steps requires heavy machinery. They are incremental, testable, and easy to 

communicate. 

 Finally, the evaluation design itself is a strength worth keeping. By respecting 

calendar timing, relying on strictly causal features, and using a rolling-origin scheme, 

the exercise remains close to how forecasts are produced in practice. That makes the 

conclusions useful beyond the sample at hand. For policy teams and practitioners who 

need regular, country-by-country updates, GlobalUN offers a robust, workhorse 

baseline: accurate at short horizons, resilient as horizons lengthen, and straightforward 

to maintain. The approach also travels well it can be extended to probabilistic forecasts 

and uncertainty summaries, it can accommodate new countries or revised data with 
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minimal friction, and it leaves room for transparent improvements as better signals 

become available. 

 In short, informed pooling is not a silver bullet, but in this setting, it is a reliable 

starting point that balances accuracy, stability, and usability. These results, which 

highlight the superiority of the GlobalUN model, are particularly valuable for 

policymakers, central banks, and fiscal institutions. By incorporating this framework 

into their analytical arsenal, decision-makers can enhance the accuracy of inflation 

forecasts, strengthen the design of monetary and fiscal policies, and finally improve 

economic stability across the Eurozone. 
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Appendix 

Table A1: List of Countries   

Country 

Austria 

Belgium 

Croatia 

Cyprus 

Estonia 

Euro area 20 countries (from 2023) 

Finland 

France 

Germany 

Greece 

Ireland 

Italy 

Latvia 

Lithuania 

Luxembourg 

Malta 

Netherlands 

Portugal 

Slovakia 

Slovenia 

Spain 
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Figure A1. GlobalUN model: Actual vs Forecasts (Eurozone counties plus EA-20) 

 

 

 

 

 



 

33 
 



 

34 
 



 

35 
 



 

36 
 



 

37 
 



 

38 
 



 

39 
 

 

 

 

 

 

 

 



 

40 
 

Figure A2. XGBoost model: Actual vs Forecasts (Eurozone counties plus EA-20) 
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Figure A3. ARIMA model: Actual vs Forecasts (Eurozone counties plus EA-20 
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Figure A4. NAIVE model: Actual vs Forecasts (Eurozone counties plus EA-20) 
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Figure A5. NN (Neural Networks) model: Actual vs Forecasts (Eurozone counties plus EA-20) 
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