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1. THE ISSUES & THE RECORD

I Forestalling �nancial panics

I Averting bank runs

I Managing credit supply

I Minimizing moral hazard

I Developed nations 1870-1933 (Bordo, 1986)
- 16 banks crises (runs, failures)
- 30 �nancial crises (runs, failures, panics, stock market
crashes)

I Crises defused by central bank action
- Bank of England: 1878, 1890, 1914
- Bank of France: 1882, 1889, 1930
- Federal Reserve: 2008-2010(?)
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2. TOOLS & LITERATURE

I Manipulating capital reserves

I lending of last resort (LLR)
- Recipes from Thornton(1802), Bagehot(1873), Rochet &
Vives(2004)

I Liquidity injections
- Champ, Smith & Williamson(1996)

I Deposit insurance
- Diamond & Dybvig(1983)
- Ennis & Keister(2010)
- Martin(2006)

I Role of private information
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3. GOALS OF THIS ESSAY

I Evaluate two policies: capital reserves, LLR

I Context: consumption smoothing in endowment economies
with{
complete markets

limited commitment by borrowers

<Kehoe & Levin(1993), Alvarez & Jermann(2000)>

I No private information or equilibrium default

I Ignore

{
deposit insurance, bailouts

moral hazard, liquidity, default

I Default successfully averted by debt limits on borrowers
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4. FINANCIAL CRISES: CAUSES AND CURES

I Reputation as �collateral� for unsecured loans

I Endogeneity of reputation values

I Dynamic complementarity: expected future credit conditions
→ value of borrower's reputation → current credit conditions

I Bank panics triggered by adverse shocks to expectations of
future credit supply

I Central Bank goal: o�set adverse shocks to expected future
debt limits
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5. BASELINE MODEL

(a) Benchmark Economy

I Discrete time t = 0, 1, ...

I Two groups of households i = 1, 2

I equal mass
I common preferences: v i

t =
∑∞

s=0
βsu

(
c it+s

)
I alternating endowments with constant aggregate income(

ω1

t , ω
2

t

)
=

{
(1+ α, 1− α) if t = 0, 2, ...

(1− α, 1+ α) if t = 1, 3, ...

with 0 < α < 1
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5. BASELINE MODEL

I Budget and debt constraints

c it + bit+1 = ωi
t + Rtb

i
t (1)

bit + Lit ≥ 0 (2)
bit = claims of household i on other households payable at time t

Rt = 1+ rt = yield on debt payable at time t

Lit = debt limit for households i at t

I Default

I implies perpetual �nancial autarky, i .e. exclusion from all
future asset trades

I value of default at t

v
i,A
t =

∞∑
s=0

βs
u
(
ωi

t+s

)
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I Equilibrium de�ned

I consumers maximize v i
0
s.t. (1) and (2)

I market clears:
∑

i
bit = 0, ∀t

I debt limits
(
Lit

)
are the largest values consistent with

participation constraints

v
i

t ≥ v
i,A
t ∀t, i (3)
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5. BASELINE MODEL

(b) Laissez-Faire Equilibrium w/o Financial Frictions

I Ignore participation constraint

I Perfect consumption smoothing at symmetric (and optimal)
equilibrium [cf. point E, Figure 1](

c it ,Rt

)
= (1, 1/β) ∀t, i

bit = ±
αβ

1+ β

I This equilibrium satis�es the constraint (3) i�

Lit ≥ αβ/ (1+ β) ∀t, i

I equivalently i� the payo� from solvency exceeds that of default

u (1)

1− β
≥ u (1+ α) + βu (1− α)

1− β2
(4)
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5. BASELINE MODEL

Steady states: c
H

t
=

{
1 + α ←→ suboptimal& robust

x̂ ←→ optimal& fragile



5. BASELINE MODEL

(c) Equilibrium with Financial Frictions

I Assume

{
Arrow − Debreu allocation violates (4)
Autarky is a suboptimal allocation

}
⇒

(1+ β) u (1) > uA := u (1+ α) + βu (1− α) (5)

R :=
u′ (1+ α)

βu′ (1− α)
< 1 (6)

I Figure 1 illustrates; also shows golden rule allocation (GR)

I The allocation (x̂ , 2− x̂) at C is the constrained optimum

I CO maximizes SWF, the equal-treatment social welfare
function u (x) + u (2− x), s.t. resource & participation
constraints
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I x̂∈ [1, 1+ α] is the smallest solution to

u (x) + βu (2− x) = uA (7)

I If R̂ := u′ (x̂) /βu′ (2− x̂), then the CO is also a stationary
equilibrium at a loan yield R̂, with

(
c it , b

i
t

)
=


(
x̂ ,−1+ α− x̂

1+ R̂

)
if ωi

t = 1+ α(
2− x̂ ,

1+ α− x̂

1+ R̂

)
if ωi

t = 1− α

I Autarky is also an equilibrium corresponding to(
Rt , c

i
t , b

i
t

)
=
(
R, ωi

t , 0
)
∀t, i
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5. BASELINE MODEL

I Autarky is asymptotically stable: robust

I CO equilibrium is fragile: requires that debt limits never fall

below
1+ α− x̂

1+ R̂
I Laissez-Faire dynamics in Figure 2 and eq.

uA = u (xt) + βu (2− xt+1) (8)

xt ∈ [1, 1+ α] (9)
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Steady states:

{
c
H

t
= x̂ ←→ optimal& locally robust

c
H

t
= x > x̂ ←→ suboptimal& locally robust



5. BASELINE MODEL

I Solving eq. (8) [cf. Fig. 2]

xt+1 = f (xt) (10)

I with f : increasing concave;
f (x̂) = x̂ , f (1+ α) = 1+ α
f ′ (x̂) = R̂ ∈ (1, 1/β)
f ′ (1+ α) = R ∈ (0, 1)
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6. ACTIVIST CREDIT POLICIES

(a) Central Bank as Intermediary

I Similarities with private FI's
- excludes defaulters from future asset trades

I Advantages over private FI's
- commitment to repay loans (cares about SWF)
- power to extract and collateralize (small) reserves from
lenders

I Disadvantages
- reserves invested in inferior �storage� technology with low
yield R < 1
- LLR �wastes� exogenous fraction δ ∈ (0, 1)of all CB deposits;
converts 1− δ into CB loans
- CB informational disadvantage:{
higher cost of state veri�cation;

cannot exclude defaulters from future lending
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6. ACTIVIST CREDIT POLICIES

(b) Reserve Policies

I In equilibrium:
aggregate consumption = endowment - investment in storage
+ returns from past storage

I Equivalently,

cHt + cLt = 2− kt+1 + Rkt

I Capital reserves are small: 0 ≤ kt ≤ k , k � 1

I Countercyclical credit policy: kt+1 = φ (xt+1, kt), mapping the

current state (xt+1, kt) ∈ [1, 1+ α]×
[
0, k
]
of the economy

into today's reserve requirement.

I If autarky and the constrained optimum outcome are both
steady states, then

φ (x̂ , 0) = φ (1+ α, 0) = 0 (11)
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I If autarky and the constrained optimum outcome are both
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6. ACTIVIST CREDIT POLICIES

I Desirable policy rules

I remove fragility of optimal state
I reverse stability of no-lending state
I guide economy to optimal state as quickly as possible

I Rationing equilibria
satisfy policy rule and analog of eq. (8), i .e.

u (xt) + βu
(
2− xt+1 − kt+1 + Rkt

)
= uA (12)

I Sol'n to (12)

xt+1 = f (xt)− kt+1 + Rkt (13)

shown in Fig.2 for kt = kt+1 = k
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7. CAPITAL RESERVES

(a) When loans have dried up
I CB rewards �good� behavior by lowering capital requirements;

punishes �bad� behavior by raising them

I Economy guided away from autarky if capital requirements are
maximal when x → 1+ α

I Then φ (xt+1, kt) = k if 1+ α− xt+1 small

(b) Policy near constrained optimum

I Achieving xt+1 = x̂ for any xt near x̂
I Eqs. (12) and (13) suggest

xt+1 = x̂ + Rkt − kt+1 (⇒)

kt+1 = φ (xt+1, kt) = Rkt + f (xt+1)− x̂ (14)

I ∵ Capital requirements overreact to deviations of equilibrium
from the optimal state(

∂kt+1

∂xt+1

)
xt+1=x̂

= R̂ ∈
(
1,

1

β

)
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7. CAPITAL RESERVES

(c) Policy far from Laissez-Faire states

I What if state of economy is far from the extremes of
optimality and autarky?

I Rules admitting extremes (x̂ , 1+ α) as a steady state likely to
generate additional states

I Fig.2 shows one of them: points near autarky may be stable

I CB response to large credit shocks fraught with peril if
conducted through capital reserves
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8. LENDING OF LAST RESORT

(a) CB as ine�cient FI
I Wastes fraction δ of all household deposits

I Zero pro�t condition

{
yield on deposits = R

yield on loans = R/ (1− δ)
I Total wastage by CB

δ · (Central Bank deposits) =
δ

1− δ
· (Central Bank loans)

(b) Rationing equilibria

I Market clearing condition

cHt + cLt = 2− δ

1− δ
Lt+1 (15)

where Lt+1 =loans made by CB at t and maturing at t + 1
I Participation constraint

u
(
cHt

)
+ βu

(
cLt+1

)
= uA (16)

(assuming central bank excludes defaulters from both sides of
credit market)



8. LENDING OF LAST RESORT

(a) CB as ine�cient FI
I Wastes fraction δ of all household deposits

I Zero pro�t condition

{
yield on deposits = R

yield on loans = R/ (1− δ)

I Total wastage by CB

δ · (Central Bank deposits) =
δ

1− δ
· (Central Bank loans)

(b) Rationing equilibria

I Market clearing condition

cHt + cLt = 2− δ

1− δ
Lt+1 (15)

where Lt+1 =loans made by CB at t and maturing at t + 1
I Participation constraint

u
(
cHt

)
+ βu

(
cLt+1

)
= uA (16)

(assuming central bank excludes defaulters from both sides of
credit market)



8. LENDING OF LAST RESORT

(a) CB as ine�cient FI
I Wastes fraction δ of all household deposits

I Zero pro�t condition

{
yield on deposits = R

yield on loans = R/ (1− δ)
I Total wastage by CB

δ · (Central Bank deposits) =
δ

1− δ
· (Central Bank loans)

(b) Rationing equilibria

I Market clearing condition

cHt + cLt = 2− δ

1− δ
Lt+1 (15)

where Lt+1 =loans made by CB at t and maturing at t + 1
I Participation constraint

u
(
cHt

)
+ βu

(
cLt+1

)
= uA (16)

(assuming central bank excludes defaulters from both sides of
credit market)



8. LENDING OF LAST RESORT

(a) CB as ine�cient FI
I Wastes fraction δ of all household deposits

I Zero pro�t condition

{
yield on deposits = R

yield on loans = R/ (1− δ)
I Total wastage by CB

δ · (Central Bank deposits) =
δ

1− δ
· (Central Bank loans)

(b) Rationing equilibria
I Market clearing condition

cHt + cLt = 2− δ

1− δ
Lt+1 (15)

where Lt+1 =loans made by CB at t and maturing at t + 1

I Participation constraint

u
(
cHt

)
+ βu

(
cLt+1

)
= uA (16)

(assuming central bank excludes defaulters from both sides of
credit market)



8. LENDING OF LAST RESORT

(a) CB as ine�cient FI
I Wastes fraction δ of all household deposits

I Zero pro�t condition

{
yield on deposits = R

yield on loans = R/ (1− δ)
I Total wastage by CB

δ · (Central Bank deposits) =
δ

1− δ
· (Central Bank loans)

(b) Rationing equilibria
I Market clearing condition

cHt + cLt = 2− δ

1− δ
Lt+1 (15)

where Lt+1 =loans made by CB at t and maturing at t + 1
I Participation constraint

u
(
cHt

)
+ βu

(
cLt+1

)
= uA (16)

(assuming central bank excludes defaulters from both sides of
credit market)



8. LENDING OF LAST RESORT

I Policy rule

Lt+1 = L
(
cHt

)
(17)

I Setting cHt = xt ∈ [1, 1+ α], we reduce (15), (16) and (17) to

u (xt) + βu

(
2− xt+1 −

δ

1− δ
L (xt)

)
= uA (18)

I Solving for xt+1:

xt+1 = f (xt)−
δ

1− δ
L (xt) (19)
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8. LENDING OF LAST RESORT

I The optimal policy rule

L (xt) =
1− δ
δ

[f (xt)− x̂ ] (20)

rules out all equilibria except the optimal one. It implies that
xt+1 = x̂ for any xt ∈ [1, 1+ α].

I Fig.3 diagrams this rule and Fig.4 compares laissez-faire
equilibria with what occurs under an optimal policy.

I To achieve this outcome, the CB must react vigorously to any
diminution of private credit below the optimal amount.
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8. LENDING OF LAST RESORT

I CB in e�ect guarantees that total available credit will always
be at its optimal value by standing ready to lend generously to
solvent borrowers at a yield somewhat about the optimal, i .e.

at RL =
R̂

1− δ

I Example δ = .05, R̂ = 1.03, CB o�ers to lend at RL = 1.08
I As in Thornton and Bagehot

- CB policy averts panic
- CB does not need to actually lend in equilibrium

I Big assumption: CB can feret out dafaulters as e�ciently as
private intermediaries

I If not (say, CB can prevent defaulters from borrowing but not
from lending), value of default goes up. The RHS of eq.(16)
replaced by something bigger: the o�er curve which connects
autarky A with the golden rule GR.

I The best a weak CB can do is guide economy to GR(cf. Fig.
4)
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9. CONCLUSIONS AND EXTENSIONS

(a) Conclusions

I Manipulating capital reserves useful against small deviations
from steady states; problematic for large shocks

I Last resort lending by informed CB an e�ective guarantee
against panics in economies with complete markets / no
private information

I Last resort lending by relative uninformed CB averts panics at
the cost of never achieving the constrained optimum reached
by laissez-faire in good times
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(b) Extensions

I Separating FI's from households
- FI's highly levered, prone to default: regulation needed
- FI's informational and scale advantages: do not over-regulate

I Private information and bankruptcy
- borrower's private information [Rochet & Vives(2004),
Martin(2006)]
- bankruptcy and costly state veri�cation (CSV) (Gale &
Hellwig,1985)

I CB e�ciency. CSV for FI's and CB's: Who is better at
collecting information on borrowers?
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