Making subsidies work rules vs. discretion

Federico CinganoFilippo PalombaPaolo PinottiEnrico Rettore(Bank of Italy)(Princeton University)(Bocconi University)(University of Padua)

Sixth Annual Workshop: ESCB Research Cluster 2

29-30 September 2022

Introduction

- public subsidies to private firms are a major tool of industrial policy in most countries
 - \$61 bil/year in US, €46.5 bil/year in EU in 2018
 - crucial for economic recovery after COVID-19
- Aim: create employment in disadvataged areas
- Their effect(ivenes)s is highly debated and difficult to gauge

What we do

- Study major program of public subsidies to Italian firms (Law 488)
 - RDD \rightarrow Rationing of funds, applications ranked by a quantitative score
 - Score summarizes objective criteria + discretional priorities by local politicians
- Estimate the effect on marginal firms at the cutoff
- Extrapolate the distribution of TEs across inframarginal firms away from the cutoff (Angrist & Rokkanen, 2015)
 - compute aggregate policy effects
 - Characterize heterogeneity of treatment effects
 - > estimate the effects of counterfactual policies

Institutional background

- Law 488/92: main instrument of industrial policy in Italy, 1996-2007
 - policy tool: investment subsidies to firms
 - **€26 billions** (constant 2010 prices) **over 35 calls** for projects
 - subsidies paid to winning applicant firms in 3 yearly installments
- Allocation mechanism
 - each call addressed to a **specific sector** (Industry, Services, etc.)
 - Mostly industry
 - Funds within each call preliminarily allocated across regions
 - Mostly southern regions

Institutional background

- Applications ranked within each sector-region cell according to a quantitative score aggregating criteria clearly defined ex-ante
 - 1996-1997
 - 1. Skin in the game: own funds relative to amount requested
 - 2. Job creation: number of jobs created
 - *3. No waste*: **funds requested** relative to the maximum they can apply for (-)
 - 1998-2007
 - 4. Political discretion: points allocated by the regional government
 - 5. Environmental responsibility: compliance with requirements for an environmental management system (ISO 14001)

Application Score:
$$S = \sum_{j=1}^{5} \left(\frac{I_j - \mu_j}{\sigma_j} \right)$$

• Sub-rankings for specific types of applicants \rightarrow cell = call-region-type \blacktriangleright

-- --

• information on **75k projects from 49k applicant firms** (Value: €22 bil.)

LEGGE N 488/92 ANNO DI RIFERIMENTO 1996 - GRADUATORIA DELLA REGIONE LAZIO

			MEDIA INDIC. DEVIAZIONE	atori Standard	1 0,5804115185 0,3315983503	1 2 0 00658 0 010600	88157 1 03047 0	3 2770473148 7868425888	NUMERO IN	IIZIATIN	/E 242	2					
			INDICATORI	NON NORMALIZ	ZATI		INDICATO	ri Normalizza	JI								
A Posiz. in grad	8 Numera dı prog	C RAGIONE SOCIALE	D I 1 & Capitale proprio	E ? Occupazione attrintà	F 13 Agevclazkine richæsta	G I 1 N Capitale proprio	H I 2N Occupazione attività	l I 3N Agevolazione nchiesta	L Somma indicatori normalizz.	M Sett serv	N Dan	о Оъ	Q Cof	Q Esito finale	R Cod esc	S Risor	T Agevolaz. concessa L. mil
1 2	83963 57097	BPUNELLI SUD SPA MONDO CONFEZIONI SRL	0,9900080 0,7316590	01)013839 01)991408	10,0000000 1,2500000	1,23521 87 0,4561165	-0,4 910157 8,7310682	11,0860200 -0,0343745	11,83022300 9,15281020		G P	2 5B	s	A A		N C	59,34 39,78
3	5377	AGRISIROLE SORATTE DI CACCIA SILVANO	0 9774603	00000000	6 5566567	1,1973 78 6	-0,6215685	6,8496793	7,42548940		þ	5B		А		N	987
4	6262	FELG MODA	0.0925814	00753920	11/11/11	-14711476	6 4906 798	-02108887	480864350		P	2	S	Α		C	98 07
5	5376	MATTOGNO FRANCESCO	0.00000000	0.000000.0	66666667	1.7503450	-0,6215685	6,8496793	4 47776580		Ρ	5B		Α		N	13 05
e	16738	OMAR SRL	0,8000449	0(1426870	1000000	0,6623476	3,4053912	-03521000	371563880		p	2	S	Α		C	146 28
7	30914	CHIARINI PETRELLI MARIO	0,8504155	0,0277008	10000000	0,8142501	1,9916394	-0,3521000	2,45378950		P	5B		A		N	753
8 .	39670	ALLIEDSIGNAL SISTEMI DI SICUREZZA	0,9100046	0,0235460	1 111111	0,9939527	1,5996884	-0,2108887	2,38275240		G	2		Α		N	1 193 40
9	35819	RAMACOLOR S.P.A	0,9489751	0,0106487	19607843	1,1114759	0,3829969	0,8689629	2,36343570		G	2		А		N	8538
10	15354	TECNOMAR COSTRUZIONI MECCANI- CHE	0 8403116	0,0194742	12500000	0,7837798	12155673	-0,0343745	1,96497260		P	2	S	A		C	1950

- information on 75k projects from 49k applicant firms (Value: €22 bil.)
- merge with employment data (INPS): 40k projects from 27k firms
- merge with balance sheets (CERVED): 33.5k projects from 21.5k firms

Empirical strategy: at the cutoff

- Main outcomes of interest: investment, employment, productivity, and firm survival
 - main threat to identification: firms receiving and not receiving the subsidy may be different
- the allocation mechanism generates an ideal RDD
 - only firms scoring above the cutoff defined by the marginal firm funded in each cell are eligible for funding
 - firms scoring just above and just below the cutoff are as good as randomly assigned into eligibility
 - cutoff in each cell is unknown ex-ante
 - pool together applicants across cells (Fort, Ichino, Rettore & Zanella, 2021)

Funds received and effect on investment

Effect on employment growth

log change in employment at alternative horizons

Dynamic effects

Empirical strategy: Away from the cutoff

- Angrist & Rokkanen (JASA 2015) "Wanna get away? Regression discontinuity estimation of exam school effects away from the cutoff"
- in RDD, selection is captured by the running variable (s)
 - match eligible and non-eligible on a set of ("killer") covariates x that make the running variable ignorable
 - put differently: use the RD as a test for matching

Empirical strategy: Away from the cutoff

 Angrist & Rokkanen (JASA 2015) "Wanna get away? Regression discontinuity estimation of exam school effects away from the cutoff"

• in RDD, selection is captured by the running variable (s)

- match eligible and non-eligible on a set of ("killer") covariates x that make the running variable ignorable
- put differently: use the RD as a test for matching
- **Crucial**, partially testable conditions:
 - **1.** conditional independence: E[y|s, x] = E[y|x] on both sides of the cutoff
 - **2.** common support: 0 < E[Z|x] < 1

Effects away from the cutoff: Testing

• Unconditionally, firm outcomes (here, $\hat{L}_{t,t+6}$) are correlated with S

Effects away from the cutoff: Testing

- Conditioning on x makes the score ignorable
 - x includes growth predictors (size, age, ...) selected manually and with ML

Conditional independence

Effects away from the cutoff: Testing

- Conditioning on x makes the score ignorable, while granting support
 - x includes growth predictors (size, age, ...) selected manually and with ML

Conditional independence

Common support

Effects away from the cutoff: Estimation

• Kline (2011): parametric implementation of matching

$$E[y|Z = 1] = x'\gamma_1$$
$$E[y|Z = 0] = x'\gamma_0$$

• treatment effect for any $s \neq \overline{s}$

$$E[y^1 - y^0 | s = \theta] = (\gamma_1 - \gamma_0)' E[x | s = \theta]$$

Effects away from the cutoff: Results

 getaway.ado: new Stata package implementing A & R + other extrapolation methods (Palomba, 2022)

Total policy effects

Recover new jobs/investment combining TE & initial size; compute their cost

Cost measure:	cost per (thousa	new job and €'s)	cost per v (thou	worker-year sand €'s)	cost of new investment (subsidy/investment)				
CIA set of covariates:	manual	data-driven	manual	data-driven	manual	data-driven			
all regions	178	172	54	58	0.812	0.745			
south	241	215	77	76	1.052	0.979			
north-center	68	78	19	25	0.351	0.314			

• Clear patterns of geographical heterogeneity, but can explore more..

Heterogeneity by class size and age

 Smaller firms generate larger % increases in employment, but larger firms produce more jobs-per-€-of subsidy!

- heterogeneity by score sub-components s^r (rules) and s^d (discretion)
 - Verify the CIA: $E[y|s^r, s^d, x] = E[y|x]$ on both sides of the cutoff

Left of the cutoff

Right of the cutoff

 High-on-discretion firms less cost effective than high-on-rules firms at generating new jobs

• Explanation: local politicians target applicant firms that are smaller and demand larger subsidies - CORRELATIONS

• Explanation: local politicians target applicant firms that are smaller and demand larger subsidies - LASSO

Determinants of Obj score

Determinants of political discretion

- Re-rank applicants under alternative criteria, compute cost-per-job
 - important assumption: policy invariance (e.g., Heckman, 2010)
 - consistent with balance in observables before/after introduction of discretion

- Re-rank applicants under alternative criteria, compute cost-per-job
 - important assumption: policy invariance (e.g., Heckman, 2010)
 - consistent with balance in observables before/after introduction of discretion

	Actual policy
	cost
all regions	179
south	225
north-center	83

- Re-rank applicants under alternative criteria, compute cost-per-job
 - important assumption: policy invariance (e.g., Heckman, 2010)
 - consistent with balance in observables before/after introduction of discretion

	Actual	Counterfactual policies						
	policy	No dis	cretion					
	cost	cost	%Δ					
all regions	179	159	-11%					
south	225	198	-12%					
north-center	83	76	-9%					

- Re-rank applicants under alternative criteria, compute cost-per-job
 - important assumption: policy invariance (e.g., Heckman, 2010)
 - consistent with balance in observables before/after introduction of discretion

	Actual	Counterfactual policies							
	policy	No dis	cretion	Only discretion					
	cost	cost	%Δ	cost	%Δ				
all regions	179	159	-11%	262	+47%				
south	225	198	-12%	307	+41%				
north-center	83	76	-9%	118	+36%				

Conclusions

- Law 488/92
 - Positive effect on investment (+39%) and employment (+17%) at the cutoff
 - Heterogeneity in the effect of subsidies across different types of firms
 - Large firms more cost-effective than small firms
 - Rules better than discretion
- General lessons
 - Studyin the heterogeneity of treatment effects helps «make policies work» → need to go beyond *local average treatment effect on compliers*

Thank you!

• information on 75k projects from 49k applicant firms (Value: €22 bil.)

• information on 75k projects from 49k applicant firms (Value: €22 bil.)

LEGGE N 488/92 ANNO DI RIFERIMENTO 1996 - GRADUATORIA DELLA REGIONE LAZIO

			MEDIA INDIC. DEVIAZIONE	atori Standard	1 0,5804115185 0,3315983503	1 2 0 00658 0 010600	88157 1 03047 0	3 ,2770473148 ,7868425888	NUMERO IN	UZIATIN	VE 242	2					
			INDICATORI	Non Normaliz	ZATI		INDICATO)ri Normalizza	זו								
A Posiz. in grad	8 Numera dı prog	C RAGIONE SOCIALE	D I 1 * Capitale proprio	E ? Occup azione attratà	F 13 Agevclazkine richiesta	G I 1 N Capitale proprio	H I 2N Occupazione attività	l I 3N Agevoíazione nchiesta	L Somma Indicatori normalizz.	M Sett serv	N Dan	0 0b	Q Cof	Q Esito finale	R Cod esc	S Risor	T Agevolaz. concessa L. mil
1 2	83963 57097	BPUNELLI SUD SPA MONDO CONFEZIONI SRL	0,9900080 0,7316590	01)013839 01)991408	10,0000000 1,2500000	1,23521 87 0,4561165	-0,4 910157 8,7310682	11,0860200 -0,0343745	11,83022300 9,15281020		G P	2 5B	s	A A		N C	59,34 39,78
3	5377	AGRISIROLE SORATTE DI CACCIA SILVANO	09774603	00000000	6 5866567	1,1973786	-0,6215685	6,8496793	7,42548940		þ	5B		A		N	987
4	6262	FELG MODA	0.0925814	00753920	11/11/11	-14711476	6 4906 798	-02108887	480864350		₽	2	S	Α		C	98 07
5	5376	MATTOGNO FRANCESCO	0.00000000	0.0000000	6 6 6 6 6 6 6 7	1.7503450	-0,6215685	6,8496793	4 47776580		Ρ	5B		Α		N	13 05
ē	16738	OMAR SRL	0,8000449	0(1426870	1000000	0,6623476	3,4053912	-03521000	371563880		P	2	5	Α		C	146 28
7	30914	CHIARINI PETRELLI MARIO	0,8504155	0,0277008	10000000	0,8142501	1,9916394	-0,3521000	2,45378950		P	5B		A		N	753
8 .	39670	ALLIEDSIGNAL SISTEMI DI SICUREZZA	0,9100D46	0,0235460	1 1 11111	0,9939527	1,5996884	-0,2108887	2,38275240		G	2		А		N	1 193 40
9	35819	RAMACOLOR S.P.A	0,9489751	0,0106487	19607843	1,1114759	0,3829969	0,8689629	2,36343570		G	2		А		N	8538
10	15354	TECNOMAR COSTRUZIONI MECCANI- CHE	0 8403116	0,0194742	12500000	0,7837798	12155673	-0,0343745	1,96497260		Ρ	2	S	A		C	1950

- information on 75k projects from 49k applicant firms (Value: €22 bil.)
- merge with employment data (INPS): 40k projects from 27k firms
- merge with balance sheets (CERVED): 33.5k projects from 21.5k firms

Empirical strategy: effects at the cutoff

• y_{ic}^1 and y_{ic}^0 are the potential outcomes of firm *i* in cell *c* when scoring above ($Z_{ic} = 1$) and below the cutoff ($Z_{ic} = 0$)

Empirical strategy: effects at the cutoff

- y_{ic}^1 and y_{ic}^0 are the potential outcomes of firm *i* in cell *c* when scoring above ($Z_{ic} = 1$) and below the cutoff ($Z_{ic} = 0$)
- difference in observed outcomes between firms with score s_{ic} just above and just below the cutoff \bar{s}_c is the Intention-To-Treat effect on the marginal firm

$$\lim_{\theta \to \bar{s}_{c}^{+}} E[y_{ic}|s_{ic} = \theta] - \lim_{\theta \to \bar{s}_{c}^{-}} E[y_{ic}|s_{ic} = \theta] = E[y_{ic}^{1} - y_{ic}^{0}|s_{ic} = \bar{s}_{c}]$$

Empirical strategy: effects at the cutoff

- y_{ic}^1 and y_{ic}^0 are the potential outcomes of firm *i* in cell *c* when scoring above ($Z_{ic} = 1$) and below the cutoff ($Z_{ic} = 0$)
- difference in observed outcomes between firms with score s_{ic} just above and just below the cutoff \bar{s}_c is the Intention-To-Treat effect on the marginal firm

$$\lim_{\theta \to \bar{s}_{c}^{+}} E[y_{ic} | s_{ic} = \theta] - \lim_{\theta \to \bar{s}_{c}^{-}} E[y_{ic} | s_{ic} = \theta] = E[y_{ic}^{1} - y_{ic}^{0} | s_{ic} = \bar{s}_{c}]$$

parametric estimating equation

$$y_{ic} = \beta_0 + \frac{\beta_1 Z_{ic}}{\beta_1 Z_{ic}} + \beta_2 (s_{ic} - \bar{s}_c) + \beta_3 (s_{ic} - \bar{s}_c) Z_{ic} + F E_c + \varepsilon_{ic}$$

RDD diagnostics: Density tests

RDD diagnostics: Balance tests (covariates)

RDD diagnostics: Balance tests (sub-scores)

Parametric estimates

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Specification:		lin	ear			dratic		
Kernel:	unif	form	trian	igular	unif	orm	trian	gular
Group FE:	no	yes	no	yes	no	yes	no	yes
Log-change in e	mployment o	over 3 years						
Subsidy	0.088***	0.104***	0.101***	0.104***	0.120***	0.107***	0.114***	0.105***
	(0.019)	(0.020)	(0.020)	(0.020)	(0.026)	(0.025)	(0.028)	(0.026)
Observations	31,681	31,681	31,681	31,681	31,681	31,681	31,681	31,681
R-squared	0.004	0.059	0.004	0.063	0.004	0.059	0.004	0.063
Log-change in e	mployment o	over 6 years						
Subsidy	0.147***	0.153***	0.145***	0.139***	0.142***	0.124***	0.131***	0.119***
	(0.023)	(0.024)	(0.023)	(0.023)	(0.030)	(0.029)	(0.032)	(0.030)
Observations	28,759	28,759	28,759	28,759	28,759	28,759	28,759	28,759
R-squared	0.007	0.066	0.007	0.067	0.007	0.066	0.007	0.067

Additional results

- repeated applicants
 - susidized firms firms have a lower probability of re-applying → overall effect: direct effect + indirect effect (negative)
 - baseline estimates are lower bound to direct effect
- local effects
 - no significant spillovers on other firms in the same labor market

Repeated applicants

Spillover effects

Issues with 488 data

- Region-call specific rankings published in the GU mixed two or more «actual rankings», those used in the allocation of funds.
- We recovered such rankings exploiting additional information on firm size, operating sector, eligibility for co-financing, and geographical area to construct the RD design

Applicant characteristics, with/out discretion

Counterfactual policy effects

• better targeting of constrained/underdeveloped areas?

Financially constrained firms (in progress)

Financially constrained firms (in progress)

Financially constrained firms (in progress)

