Passive Monetary Policy and Active Fiscal Policy in a Monetary Union

B. Mackowiak and S. Schmidt (ECB)

discussed by: James Costain (Banco de España)

30 September 2022

These comments are personal views of the discussant and do not represent the views of the Eurosystem or the Banco de España.

Does it matter if M is passive and F is active in the euro area?

- Maastricht Treaty agreed to follow inflation targeting and fiscal rules. But recently:
 - $r \approx 0$ for most of the past decade
 - Fiscal rules suspended and debt exploding in response to a sequence of crises

Does it matter if M is passive and F is active in the euro area?

- Maastricht Treaty agreed to follow inflation targeting and fiscal rules. But recently:
 - $r \approx 0$ for most of the past decade
 - Fiscal rules suspended and debt exploding in response to a sequence of crises
- This paper models a monetary union under a policy regime with passive monetary policy and active fiscal policy.
 - Price level is determinate in this policy configuration
 - Price level depends on debt of euro area as a whole
 - Active fiscal policy encompasses many very different fiscal regimes
 - Paper proposes a practical implementation of an active fiscal policy
 - Involves **Eurobonds** issued by a European fiscal authority with tax powers
 - Avoids stochastic wealth transfers across member states

Buzz words

- "Active/passive monetary policy"
- "Active/passive fiscal policy"
- Fiscal "backing"
- Fiscal "support"

- "Commitment"
 - to a sequence
 - to a rule
- "Regime switching"
- "Determinacy/indeterminacy" of the price level

• "Monetary financing"

Active vs. passive policies

- Fiscal policy is **active** if the primary **surplus does not respond** strongly to changes in the level of debt.
 - Example: SGP is passive, because surplus must rise when debt exceeds limit
- Monetary policy is active if it aggressively targets inflation, even when this requires large changes in interest rates
 - Example: Taylor rule is **active**, because interest rates respond more than one-for-one to inflation deviations

Active vs. passive policies

- Fiscal policy is **active** if the primary **surplus does not respond** strongly to changes in the level of debt.
 - Example: SGP is passive, because surplus must rise when debt exceeds limit
- Monetary policy is active if it aggressively targets inflation, even when this requires large changes in interest rates
 - Example: Taylor rule is **active**, because interest rates respond more than one-for-one to inflation deviations

Is the equilibrium price determined?

	Passive M	Active M
Passive F	Indeterminacy	Determinacy
Active F	Determinacy	No equilibrium exists

A clean, elegant model

- Long run (flex price) model of a heterogeneous (home-biased) monetary union, with l>1 member states (l=2)
- Endowment economy
 - Each member state i produces one good Y_i with price W_i
 - Representative consumer in country i consumes CES basket of home and foreign goods
- Fiscal policy (primary surplus S_i) of country i is set by its own government
- Monetary policy is set by the common central bank
 - Central bank issues reserves to buy (public) debt
 - Central bank may pay remittances to member state governments

Budget constraints

• Representative household of country *i*:

$$\underbrace{\sum_{j=1}^{I} (1 + \rho Q_{j,t}) B_{i,j,t-1}^{H} - \sum_{j=1}^{I} Q_{j,t} B_{i,j,t}^{H}}_{\text{net reserves income}} + \underbrace{R_{t-1} H_{i,t-1} - H_{i,t}}_{\text{net reserves income}} + \underbrace{W_{i,t} Y_{i,t} - P_{i,t} C_{i,t} - W_{i,t} S_{i,t}}_{\text{endowment minus expenditures}} = 0$$

• Government of country *i*:

$$W_{i,t}S_{i,t} + W_{i,t}Z_{i,t} + Q_{i,t}B_{i,t} - (1 + \rho Q_{i,t})B_{i,t-1} = 0$$

Common central bank:

$$\sum_{j=1}^{I} (1 + \rho Q_{j,t}) B_{j,t-1}^{CB} - \sum_{j=1}^{I} Q_{j,t} B_{j,t}^{CB} + \sum_{j=1}^{I} H_{j,t} - R_{t-1} \sum_{j=1}^{I} H_{j,t-1} - \sum_{j=1}^{I} W_{j,t} Z_{j,t} = 0$$

- Can aggregate budgets of governments and common central bank
- Or disaggregate budgets of national central banks

• Household *i* optimization implies the following transversality condition:

$$\lim_{T\to\infty} E_0\left(\theta_{i,0,T} \frac{\sum_j Q_{j,T} B_{i,j,T}^H + H_{i,T}}{P_t}\right) = 0$$

where $\theta_{i,0,T} = \beta^T \frac{\tilde{P}_{i,0}}{\tilde{P}_{i,T}} \frac{u'(C_{i,t+1})}{u'(C_{i,t})}$ is household *i*'s discount factor between 0 and *T*.

• Iterate forward on the aggregate public sector budget constraint, using the discount factor of *any* household *h*:

$$\frac{\sum_{j=1}^{I} (1 + \rho Q_{j,0}) \sum_{i=1}^{I} B_{i,j,-1}^{H} + R_{-1} \sum_{i=1}^{I} H_{i,-1}}{P_{0}} = E_{0} \sum_{t=0}^{T} \theta_{h,0,t} \sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}}{P_{t}}$$

$$+ E_0 \theta_{h,0,T} \left[\frac{\sum_{j=1}^{I} Q_{j,T} \sum_{i=1}^{I} B_{i,j,T}^{H} + \sum_{i=1}^{I} H_{i,T}}{P_T} \right]$$

• Can use each household's transversality condition to eliminate the last term...

• Household *i* optimization implies the following transversality condition:

$$\lim_{T\to\infty} E_0\left(\theta_{i,0,T} \frac{\sum_j Q_{j,T} B_{i,j,T}^H + H_{i,T}}{P_t}\right) = 0$$

where $\theta_{i,0,T} = \beta^T \frac{\tilde{P}_{i,0}}{\tilde{P}_{i,T}} \frac{u'(C_{i,t+1})}{u'(C_{i,t})}$ is household *i*'s discount factor between 0 and *T*.

 Iterate forward on the aggregate public sector budget constraint, using the discount factor of any household h:

$$\frac{\sum_{j=1}^{I} (1 + \rho Q_{j,0}) \sum_{i=1}^{I} B_{i,j,-1}^{H} + R_{-1} \sum_{i=1}^{I} H_{i,-1}}{P_{0}} = E_{0} \sum_{t=0}^{\infty} \theta_{h,0,t} \sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}}{P_{t}}$$

• Household *i* optimization implies the following transversality condition:

$$\lim_{T\to\infty} E_0\left(\theta_{i,0,T} \frac{\sum_j Q_{j,T} B_{i,j,T}^H + H_{i,T}}{P_t}\right) = 0$$

where $\theta_{i,0,T} = \beta^T \frac{\tilde{P}_{i,0}}{\tilde{P}_{i,T}} \frac{u'(C_{i,t+1})}{u'(C_{i,t})}$ is household *i*'s discount factor between 0 and *T*.

• Iterate forward on the aggregate public sector budget constraint, using the discount factor of *any* household *h*:

$$\frac{\sum_{j=1}^{I} (1 + \rho Q_{j,0}) \sum_{i=1}^{I} B_{i,j,-1}^{H} + R_{-1} \sum_{i=1}^{I} H_{i,-1}}{P_{0}} = E_{0} \sum_{t=0}^{\infty} \theta_{h,0,t} \sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}}{P_{t}}$$

- Hence the aggregate price level P_0 is determined by:
 - Total public liabilities of the monetary union
 - PDV of total future public primary surpluses of the monetary union

• Household *i* optimization implies the following transversality condition:

$$\lim_{T\to\infty} E_0\left(\theta_{i,0,T} \frac{\sum_j Q_{j,T} B_{i,j,T}^H + H_{i,T}}{P_t}\right) = 0$$

where $\theta_{i,0,T} = \beta^T \frac{\tilde{P}_{i,0}}{\tilde{P}_{i,T}} \frac{u'(C_{i,t+1})}{u'(C_{i,t})}$ is household *i*'s discount factor between 0 and *T*.

• Iterate forward on the aggregate public sector budget constraint, using the discount factor of *any* household *h*:

$$\frac{\sum_{j=1}^{I} (1 + \rho Q_{j,0}) \sum_{i=1}^{I} B_{i,j,-1}^{H} + R_{-1} \sum_{i=1}^{I} H_{i,-1}}{P_{0}} = E_{0} \sum_{t=0}^{\infty} \theta_{h,0,t} \sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}}{P_{t}}$$

- Hence the aggregate price level P_0 is determined by:
 - Total **public liabilities** of the monetary union
 - PDV of total future public **primary surpluses** of the monetary union
- An analogous budget constraint does not hold at the country level

Implications: fiscal shocks cause endogenous wealth transfers across countries

Experiment	Shock	Aggregate	Relative	Consumption
		price level	prices	
Symmetric	15% deficits	P rises 4%		
fiscal	in both $i=1,2$	permanently	Unchanged	Unchanged
expansion				
Asymmetric	No deficit, $i=1$	P rises 2%	$ ilde{P}_1$ falls 2 bp	C ₁ falls 4bp
fiscal	15% deficit, $i=2$	permanently	$ ilde{P}_2$ rises 2bp	C_1 rises 4bp
expansion			permanently	permanently
Balanced	pprox 15% surplus, $i=1$		$ ilde{P}_1$ falls more	C ₁ falls more
expansion	15% deficit, $i=2$	Unchanged	\tilde{P}_2 rises more	C ₁ rises more
and contraction			permanently	permanently

^{*}Shock is a one-quarter primary deficit equalling 15% of quarterly GDP (3.75% annualized).

Implications: fiscal shocks cause endogenous wealth transfers across countries

Experiment	Shock	Aggregate	Relative	Consumption
		price level	prices	
Symmetric	15% deficits	P rises 4%		
fiscal	in both $i=1,2$	permanently	Unchanged	Unchanged
expansion				
Asymmetric	No deficit, $i=1$	P rises 2%	$ ilde{P}_1$ falls 2 bp	C ₁ falls 4bp
fiscal	15% deficit, $i=2$	permanently	$ ilde{P}_2$ rises 2bp	C_1 rises 4bp
expansion			permanently	permanently
Balanced	pprox 15% surplus, $i=1$		$ ilde{P}_1$ falls more	C ₁ falls more
expansion	15% deficit, $i=2$	Unchanged	\tilde{P}_2 rises more	C ₁ rises more
and contraction			permanently	permanently

^{*}Shock is a one-quarter primary deficit equalling 15% of quarterly GDP (3.75% annualized).

- **Mechanism:** Deficit *i* loosens household *i*'s budget constraint: consumption demand rises.
 - Aggregate and relative prices adjust to offset demand.

Implications: fiscal shocks cause endogenous wealth transfers across countries

 Experiment	Shock	Aggregate	Relative	Consumption
,		price level	prices	, , , , , , , , , , , , , , , , , , ,
Symmetric	15% deficits	P rises 4%		
fiscal	in both $i=1,2$	permanently	Unchanged	Unchanged
expansion				_
Asymmetric	No deficit, $i=1$	P rises 2%	$ ilde{P}_1$ falls 2 bp	C_1 falls 4bp
fiscal	15% deficit, $i=2$	permanently	$ ilde{P}_2$ rises 2bp	C_1 rises 4bp
expansion			permanently	permanently
Balanced	pprox 15% surplus, $i=1$		$ ilde{P}_1$ falls more	C ₁ falls more
expansion	15% deficit, $i=2$	Unchanged	\tilde{P}_2 rises more	C ₁ rises more
and contraction			permanently	permanently

^{*}Shock is a one-quarter primary deficit equalling 15% of quarterly GDP (3.75% annualized).

• Wealth transfers reinforced if country 1 is a creditor to country 2

How to avoid wealth transfers when fiscal shocks occur?

• "Sims rule": Each government obliged to adjust its surplus in response to deviations from its designated share of total debt:

$$\frac{W_{i,t}S_{i,t}}{P_t} = \phi_{i,t} + \phi_B \left(\frac{Q_{i,t}B_{i,t-1}}{P_{t-1}} - \eta_i \sum_{j=1}^{I} \frac{Q_{j,t}B_{j,t-1}}{P_{t-1}} \right)$$

- Each country i runs passive fiscal policy, as required by SGP
 - Wealth transfers eliminated passive fiscal policy means transfers are eventually paid back

How to avoid wealth transfers when fiscal shocks occur?

• "Sims rule": Each government obliged to adjust its surplus in response to deviations from its designated share of total debt:

$$\frac{W_{i,t}S_{i,t}}{P_t} = \phi_{i,t} + \phi_B \left(\frac{Q_{i,t}B_{i,t-1}}{P_{t-1}} - \eta_i \sum_{j=1}^{I} \frac{Q_{j,t}B_{j,t-1}}{P_{t-1}} \right)$$

- Each country i runs passive fiscal policy, as required by SGP
 - Wealth transfers eliminated passive fiscal policy means transfers are eventually paid back
- But if $\sum_i \eta_i = 1$, then the **aggregate fiscal policy is active**:

$$\sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}}{P_t} = \sum_{i=1}^{I} \phi_{i,t}$$

• Active: aggregate fiscal stance does not react to debt level

How to avoid wealth transfers when fiscal shocks occur?

• "Sims rule": Each government obliged to adjust its surplus in response to deviations from its designated share of total debt:

$$\frac{W_{i,t}S_{i,t}}{P_t} = \phi_{i,t} + \phi_B \left(\frac{Q_{i,t}B_{i,t-1}}{P_{t-1}} - \eta_i \sum_{j=1}^{I} \frac{Q_{j,t}B_{j,t-1}}{P_{t-1}} \right)$$

- Each country i runs passive fiscal policy, as required by SGP
 - Wealth transfers eliminated passive fiscal policy means transfers are eventually paid back
- But if $\sum_i \eta_i = 1$, then the **aggregate fiscal policy is active**:

$$\sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}}{P_t} = \sum_{i=1}^{I} \phi_{i,t}$$

- Active: aggregate fiscal stance does not react to debt level
- Problem: this only works if all countries obey the fiscal rules

Implementing the Sims rule via Eurobonds

• Eurobonds mechanism:

Governments passively adjust own surplus in response to own debt:

$$\frac{W_{i,t}S_{i,t}}{P_t} = \phi_{i,t} + \phi_B \frac{Q_{i,t}B_{i,t-1}}{P_{t-1}}$$

• European fiscal authority (EFA) adjusts aggregate surplus in the opposite direction:

$$\sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}^{F}}{P_{t}} = \phi_{t}^{F} - \phi_{B} \sum_{j=1}^{I} \frac{Q_{j,t} B_{j,t-1}}{P_{t-1}}$$

• Aggregate fiscal policy is active — debt response term cancels out

Implementing the Sims rule via Eurobonds

• Eurobonds mechanism:

• Governments passively adjust own surplus in response to own debt:

$$\frac{W_{i,t}S_{i,t}}{P_t} = \phi_{i,t} + \phi_B \frac{Q_{i,t}B_{i,t-1}}{P_{t-1}}$$

• European fiscal authority (EFA) adjusts aggregate surplus in the opposite direction:

$$\sum_{i=1}^{I} \frac{W_{i,t} S_{i,t}^{F}}{P_{t}} = \phi_{t}^{F} - \phi_{B} \sum_{j=1}^{I} \frac{Q_{j,t} B_{j,t-1}}{P_{t-1}}$$

- Aggregate fiscal policy is active debt response term cancels out
- Advantage: this creates an effective fiscal instrument under control of EFA
 - EFA could compensate for deviations of governments' policies from their fiscal rules
 - EFA could switch to aggregate passive fiscal policy when/if this becomes necessary

Punchlines: bringing theory to practice

- Eurobonds mechanism implements Sims rule in a more practical/credible way
 - Keeps member state fiscal policy passive, consistent with SGP
 - Aggregate stance can ensure active fiscal policy, when necessary

Punchlines: bringing theory to practice

- Eurobonds mechanism implements Sims rule in a more practical/credible way
 - Keeps member state fiscal policy passive, consistent with SGP
 - Aggregate stance can ensure active fiscal policy, when necessary
- Overall, optimal policy is likely to involve regime switching, to improve stabilization and ensure determinacy at all times
 - Passive F, active M in "normal" times
 - Active F, passive M when slumps push us towards ELB
- That's why having a practical way of implementing active fiscal policy matters

Punchlines: bringing theory to practice

- Eurobonds mechanism implements Sims rule in a more practical/credible way
 - Keeps member state fiscal policy passive, consistent with SGP
 - Aggregate stance can ensure active fiscal policy, when necessary
- Overall, optimal policy is likely to involve regime switching, to improve stabilization and ensure determinacy at all times
 - Passive F, active M in "normal" times
 - Active F, passive M when slumps push us towards ELB
- That's why having a practical way of implementing active fiscal policy matters
- Demystifying buzzwords
 - "Active" F is not the same as "irresponsible" F
 - Occasional switching to "passive" M in order to improve stabilization and ensure determinacy –
 is not the same as "monetary financing"

THANKS FOR YOUR ATTENTION!

Public budget constraints can be aggregated

• Representative household of country *i*:

$$\sum_{j=1}^{I} (1 + \rho Q_{j,t}) B_{i,j,t-1}^{H} - \sum_{j=1}^{I} Q_{j,t} B_{i,j,t}^{H} + R_{t-1} H_{i,t-1} - H_{i,t} + W_{i,t} Y_{i,t} - P_{i,t} C_{i,t} - W_{i,t} S_{i,t} = 0$$

• Budget constraint of aggregate public sector:

$$\sum_{j=1}^{I} W_{j,t} S_{j,t} + \sum_{j=1}^{I} Q_{j,t} B_{j,t}^{H} - \sum_{j=1}^{I} (1 + \rho Q_{j,t}) B_{j,t-1}^{H} + \sum_{j=1}^{I} H_{j,t} - R_{t-1} \sum_{j=1}^{I} H_{j,t-1} = 0$$

• Sovereign bonds held by the Eurosystem cancel out of aggregate public sector budget constraint

Return to main presentation

NCB budget constraints can be disaggregated

• Representative household of country *i*:

$$\sum_{j=1}^{I} (1 + \rho Q_{j,t}) B_{i,j,t-1}^{H} - \sum_{j=1}^{I} Q_{j,t} B_{i,j,t}^{H} + R_{t-1} H_{i,t-1} - H_{i,t} + W_{i,t} Y_{i,t} - P_{i,t} C_{i,t} - W_{i,t} S_{i,t} = 0$$

• Government of country *i*:

$$W_{i,t}S_{i,t} + W_{i,t}Z_{i,t} + Q_{i,t}B_{i,t} - (1 + \rho Q_{i,t})B_{i,t-1} = 0$$

• National central bank of country i:

$$(1 + \rho Q_{i,t}) B_{i,t-1}^{CB} - Q_{i,t} B_{i,t}^{CB} + H_{i,t} - R_{t-1} H_{i,t-1} + R_{t-1} \sum_{j=1}^{I} T_{i,j,t-1} - \sum_{j=1}^{I} T_{i,j,t} - W_{i,t} Z_{i,t} = 0$$

- TARGET debts $T_{i,j,t}$ of j held by i enter NCB budget constraint
- Return to main presentation

