E pluribus plures

Shock dependency of the USD pass-through to real and financial variables

Massimo Ferrari Minesso European Central Bank Johannes Gräb European Central Bank

Sixth Annual Workshop ESCB Research Cluster 2 29–30 September 2022

Disclaimer: the views expressed here are those of the authors only and do not represent those of the ECB or the Eurosystem.

What are the implications of a USD appreciation?

Domestic FX appreciation (NX ↓) Output From the IS-LM model:

$$Y = C + I + G + NX$$
$$NX = \phi^{1}e + \phi^{2}Y^{f} - \phi^{3}Y$$

with $\phi^1 > 0$, i.e. Marshall–Lerner condition.

Casas et al. (2017) and Boz et al. (2020) show that $\phi^1 \approx 0.6$.

What are the implications of a USD appreciation?

From the IS-LM model:

$$Y = C + I + G + NX$$
$$NX = \phi^{1}e + \phi^{2}Y^{f} - \phi^{3}Y$$

with $\phi^1 > 0$, i.e. Marshall–Lerner condition.

Casas et al. (2017) and Boz et al. (2020) show that $\phi^1 \approx 0.6$.

But what if the exchange rate is endogenous? i.e. $\frac{\partial Y^{f}}{\partial e} \neq 0, \frac{\partial Y}{\partial e} \neq 0$?

Introduction OO			

Our contribution

 $\checkmark\,$ identify US shocks & compute conditional US exchange rate pass-through to real trade and financial variables

Introduction O •			

Our contribution

- ✓ identify US shocks & compute conditional US exchange rate pass-through to real trade and financial variables
- ✓ document a large heterogeneity across country and shocks:
 - \rightarrow 33 individual countries + US + 4 regional aggregates
 - \rightarrow real shocks have positive pass-through to real variables
 - \rightarrow financial shocks have negative pass-through instead

Introduction O •			

Our contribution

- ✓ identify US shocks & compute conditional US exchange rate pass-through to real trade and financial variables
- ✓ document a large heterogeneity across country and shocks:
 - \rightarrow 33 individual countries + US + 4 regional aggregates
 - \rightarrow real shocks have positive pass-through to real variables
 - \rightarrow financial shocks have negative pass-through instead
- ✓ explain the heterogeneity based on second-stage regressions
 - $\rightarrow\,$ after a real shock the "global demand" and the "exchange rate" channel offset each other
 - ightarrow with financial shocks the two channels push in the same direction
 - \rightarrow other determinants of FX pass-through also matter

	Empirical strategy ●○							
Shock-dependent pass-through estimates								

Shock-dependent pass-through estimates

Identifying US shocks by means of Bayesian VAR with 4 macro US variables:

$$Y_t = A_0 + \sum_{i=1}^{N} A_i Y_{t-1} + B\mathcal{E}_t$$
(1)

Table: Sign restriction table

	US Demand	US Monetary	Risk	US supply
	shock	policy shock	shock	shock
Real GDP	-	-	-	-
10-year yield	-	+	-	+
USD NEER	-	+	+	
CPI	-	-	-	+

Notes: "+" indicates a positive response of the variable to the shock on impact; "-" a negative response and empty cells indicate unrestricted responses.

Empirical strategy ○●		

How to compute conditional PT coefficients?

Following Forbes et al. (2018) conditional pass-through coefficients are defined as:

$$\Phi_{y,z}(k) = \left[\frac{\sum_{k=0}^{K} \frac{\partial y_{t+k}}{\partial \epsilon_t^x}}{\sum_{k=0}^{K} \frac{\partial z_{t+k}}{\partial \epsilon_t^x}}\right]$$
(2)

 $\Phi_{y,z}(k)$ is the "dynamic multiplier" of of variable *z* to variable *y*, at horizon *k* conditional on the shock ϵ^x . Requires to have two impulse responses (of *z* and *y*) to the same shock. Empirically this can be done by:

- Local projections → non-linear but subject to significant sample biases and large residuals, see Herbst & Johannsen (2020)
- VAR-X → linearity assumption, but less prone to biases in small samples and smaller residuals

Introduction Empirical strategy Pass-through results Determinants
00 00 00 000 000

Determinants of pass-through 000 Conclusion O Appendix 00000000000000

Impulse responses—Advance economy (DEU)

Figure: Accumulated IRFs for Germany.Notes: response to 1 standard deviation shock.

Introduction

Empirical strategy 00 Pass-through results

Determinants of pass-through 000 Conclusion O Appendix 00000000000000

Impulse responses—EME (CHN)

Figure: Accumulated IRFs for China. Notes: response to 1 standard deviation shock.

Conditional exchange rate pass-through—Exports

Figure: Country-specific estimates of pass-through to export volumes. Notes: pass-through coefficients are estimated separately for each country and describe the elasticity of imports (in percent points) to a 1% USD appreciation. Black dots are the reduced-form pass-through estimates from Equation 2.

	Pass-through results ○○○●		

 \rightarrow the shock matters! Reduced-form estimate differ significantly from conditional coefficients

	Pass-through results		

- \rightarrow the shock matters! Reduced-form estimate differ significantly from conditional coefficients
- $\rightarrow\,$ positive PT for real shocks (demand, supply), negative PT for financial shocks (monetary policy, risk)

	Pass-through results		

- \rightarrow the shock matters! Reduced-form estimate differ significantly from conditional coefficients
- → positive PT for real shocks (demand, supply), negative PT for financial shocks (monetary policy, risk)
- \rightarrow transmission channels:
 - (a) a shock increases (decreases) global demand \rightarrow positive effect on exports
 - (b) a shock appreciates (depreciates) the dollar \rightarrow negative effect on exports

	Pass-through results		

- \rightarrow the shock matters! Reduced-form estimate differ significantly from conditional coefficients
- → positive PT for real shocks (demand, supply), negative PT for financial shocks (monetary policy, risk)
- \rightarrow transmission channels:
 - (a) a shock increases (decreases) global demand \rightarrow positive effect on exports
 - (b) a shock appreciates (depreciates) the dollar \rightarrow negative effect on exports
- \rightarrow if:
 - (i) *a* and *b* have opposite signs and $|a| > |b| \rightarrow$ the "global demand" channel dominates
 - (ii) if *a* and *b* have the same sign \rightarrow the "exchange rate" channel dominates

	Pass-through results		

- \rightarrow the shock matters! Reduced-form estimate differ significantly from conditional coefficients
- → positive PT for real shocks (demand, supply), negative PT for financial shocks (monetary policy, risk)
- \rightarrow transmission channels:
 - (a) a shock increases (decreases) global demand \rightarrow positive effect on exports
 - (b) a shock appreciates (depreciates) the dollar \rightarrow negative effect on exports
- \rightarrow if:
 - (i) *a* and *b* have opposite signs and $|a| > |b| \rightarrow$ the "global demand" channel dominates
 - (ii) if *a* and *b* have the same sign \rightarrow the "exchange rate" channel dominates

these hypothesis can be tested by checking the correlation of PT coefficients with observable variables.

Determinants of exchange rate pass-through – trade

		Export	ts			Imports	;	
	Demand	Mon. policy	Risk	Supply	Demand	Mon. policy	Risk	Supply
Exp. USD invoicing	-0.021***	-0.003	-0.002	-0.022***				
	(0.00)	(0.47)	(0.74)	(0.01)				
E INCODE	0.105***	0.047	0.10.15	0.001***	0.000	0.005	0.011	0.497
Exp. to US/GDP	0.195***	0.047	0.104	0.301	-0.260	-0.085	0.011	-0.436
	(0.00)	(0.33)	(0.08)	(0.00)	(0.60)	(0.64)	(0.96)	(0.50)
Net USD liab.	-0.004	-0.007*	-0.005	0.002	-0.017	-0.010**	-0.007	-0.018
	(0.47)	(0.07)	(0.33)	(0.76)	(0.15)	(0.03)	(0.31)	(0.22)
Exported fuel chare	0.001	0.013**	0.016**	0.011				
Exported rule share	(0.92)	(0.03)	(0.03)	(0.21)				
	(***=)	(0100)	(0100)	(*==)				
VAX	1.103	-0.228	-0.887	-0.783	-0.255	0.090	-0.281	-2.621
	(0.53)	(0.84)	(0.51)	(0.82)	(0.95)	(0.96)	(0.90)	(0.61)
Spread vs. US	0.019	0.043	-0.021	0.097	-0.383**	0.048	-0.057	-0.424*
1	(0.85)	(0.57)	(0.84)	(0.47)	(0.03)	(0.44)	(0.58)	(0.06)
Imp USD invoicing					-0.042**	-0.009	-0.004	-0.051*
mip. COD involcing					(0.03)	(0.16)	(0.65)	(0.07)
					(0.00)	(0.10)	(0.00)	(0.07)
Imported fuel share					0.064	0.042*	0.024	0.107
-					(0.24)	(0.10)	(0.47)	(0.17)
R-squared	0.54	0.57	0.42	0.44	0.66	0.45	0.21	0.56
Observations	28	28	28	28	27	27	27	27

Notes: The Table reports coefficient estimates of regstatic with robust standard errors in parenthesis.

The US are excluded from the sample. Controls not reported are $\triangle GDP$ and $\triangle CPI$. *** p < 0.01, ** p < 0.05, * p < 0.10, + p < 0.15.

	Determinants of pass-through	Appendix .
	000	

DCP and monetary policy shocks (1)

Figure: Impulse responses under different monetary policy reaction functions. Notes: Impulse responses from Boz et all. (2020) for different DCP shares and two different reaction functions of the open economy central bank: free floating of the exchange rate (upper panel), direct response to US shocks (lower panel).

DCP and monetary policy shocks (2)

Response of 2-year rate in Germany:

DCP and monetary policy shocks (2)

Response of 2-year rate in Germany:

Response of 2-year rate in China:

		Conclusion •	

Conclusion

- We provide an estimate of shock-dependency and cross-country heterogeneity of US dollar pass-through to trade and financial variables
- Pass-through is highly shock dependent
 - Reduced-form regression are driven by mix of shocks
- Large degree of cross country heterogeneity
 - Country characteristics matter: trade and financial linkages and invoicing
 - Size and sign of determinants vary across shocks and variables depending on specific transmission channels
 - In EMEs domestic policy reacts to monetary policy induced US dollar appreciations
- Policy implications: Appropriate policy reaction to US dollar movements depends on underlying shock driving US dollar

		Appendix
		000000000000

Appendix

		Appendix 0000000000000

Reduced-form estimates

Similar to Boz et al. (2020) we estimate the USD pass-through to export and import volumes as:

$$\Delta x_t = \alpha + \beta \Delta e_t + \sum_{i=1}^N X_{t-i} \Gamma + \varepsilon_t$$
(3)

where: Δx_t is the real export (import) change, Δe_t the USD nominal effective exchange rate change and X_{t-i} a set of control variables to capture the economic cycle.

The coefficient β is the trade elasticity to a USD appreciation.

Reduced-form estimates — real exports

Figure: Estimates of β for real exports. **Notes:** white bars indicate insignificant coefficients, black bars indicate country aggregates.

Reduced-form estimates — real imports

Figure: Estimates of β for real imports.

Notes: white bars indicate insignificant coefficients, black bars indicate country aggregates.

		Appendix 0000●00000000

Shocks statistics

Table: Description of US variables and structural shocks

	QoQ RGDP	QoQ 10-year	QoQ USD	QoQ CPI
Mean	0.55	-0.05	0.29	-0.01
Std	1.36	0.35	2.45	0.52
	Demand	Mon. policy	Risk	Supply
Mean	0.00	0.00	0.00	0.00
Std	0.85	0.85	0.82	0.81

Notes: US variables are expressed in pecent quarter on quarter changes. Structural shocks are the median identified shocks.

	Demand	Mon. policy	Supply	Risk
	shock	shock	shock	shock
Demand	1.000	-0.006	0.066	0.006
shock		(0.952)	(0.520)	(0.953)
Mon. policy		1.000	0.007	-0.039
shock			(0.943)	(0.702)
Supply			1.000	-0.103
shock				(0.314)
Risk				1.000
shock				

Table: Correlation across structural shocks

Notes: correlation between median structural shocks. P-values for the nullhypothesis of $\neq 0$ correlation are reported in parenthesis below correlation coefficients.

		Appendix
		000000000000000000000000000000000000000

Impulse responses

Figure: Impulse responses (in percent) of the VAR described by Equation 1.

Historical decomposition—USD NEER

Figure: Historical decomposition of the US dollar nominal effective exchange rate.

		Appendix 00000000000000

HD – all variables

Figure: Historical decomposition – all variables.

		Appendix 00000000●0000

Computing responses

If *S* is a shock, the dynamic response to *S* can be computed as:

$$Y_t = A_0 + \sum_{i=1}^{N} A_i Y_{t-1} + CS_t + B\mathcal{E}_t$$
(4)

because *S* is the variable of interest, no identification assumptions on *B* are needed. A_0 , A_i and *C* can be estimated in reduced-form. We estimate:

- $\checkmark\,$ all identified shocks from Equation 1 are included in S
- ✓ because *S* is generated, confidence intervals are computed by drawing 1000 times from the posterior of Equation 1
- ✓ we estimate a "real" and a "financial" VAR for each country
- \checkmark in the "real" VAR $Y = [\Delta EXP, \Delta IMP, \Delta NEER_{USD}, \Delta NEER_k, \Delta RGDP]$
- $\checkmark~$ in the "financial" VAR
 - $Y = [\Delta Stock, \ \Delta 10Y, \ \Delta NEER_{USD}, \ \Delta NEER_k, \ \Delta RGDP]$

Conditional exchange rate pass-through—Imports

Figure: Country-specific estimates of pass-through to import volumes. **Notes:** pass-through coefficients are estimated separately for each country and describe the elasticity of imports (in percent points) to a 1% USD appreciation. Black dots are the reduced-form pass-through estimates from Equation 3.

Conditional exchange rate pass-through—Equity

Figure: Country-specific estimates of the pass-through to equity prices. **Notes:** pass-through coefficients are estimated separately for each country and describe the elasticity of equity indices (in percent points) to a 1% USD appreciation.

Conditional exchange rate pass-through— 10-year yield

Figure: Country-specific estimates of the pass-through to FCIs. Notes: pass-through coefficients are estimated separately for each country and describe the

		Appendix
		0000000000000

Determinants of exchange rate pass-through – financial markets

	Equity prices				10-year yields			
	Demand	Mon. policy	Risk	Supply	Demand	Mon. policy	Risk	Supply
Exp. USD invoicing	0.056*	-0.019*	-0.007	0.063**	0.012	-0.002	-0.001	-0.021
	(0.06)	(0.09)	(0.63)	(0.05)	(0.52)	(0.55)	(0.49)	(0.43)
Exp. to US/GDP	-0.700**	0.274**	0.151	-0.771	-0.063	0.019	0.008	0.073
*	(0.02)	(0.04)	(0.42)	(0.27)	(0.68)	(0.48)	(0.62)	(0.71)
Net USD liab.	-0.020	-0.000	-0.017	-0.058	-0.000	0.001	0.001	-0.002
	(0.29)	(0.98)	(0.23)	(0.21)	(0.99)	(0.49)	(0.41)	(0.87)
Exported fuel share	0.004	-0.031***	-0.039***	-0.002	-0.007	0.003	0.003	0.012
*	(0.86)	(0.00)	(0.01)	(0.96)	(0.66)	(0.23)	(0.20)	(0.55)
VAX	-16.995*	3.919	-1.187	-26.695**	2.312	-0.830	-0.291	1.843
	(0.06)	(0.29)	(0.79)	(0.03)	(0.49)	(0.16)	(0.56)	(0.68)
Spread vs. US	-0 708	-0.009	-0.010	-0.576	0.645	-0 161**	-0.080	-0.405
	(0.18)	(0.97)	(0.96)	(0.39)	(0.18)	(0.02)	(0.16)	(0.56)
R-squared	0.46	0.36	0.59	0.43	0.43	0.63	0.47	0.32
Observations	27	27	27	27	27	27	27	27

Notes: The Table reports coefficient estimates of regstaticwithrobuststandarderrorsinparenthesis.

The US are excluded from the sample. Controls not reported are ΔGDP and ΔCPI . *** p < 0.01, ** p < 0.05, * p < 0.10, + p < 0.15.