COUNTRY SOLIDARITY, PRIVATE SECTOR INVOLVEMENT, AND THE CONTAGION OF SOVEREIGN CRISES

Work in progress

Athens University of Economics and Business and Bank of Greece, April 6, 2012

I. INTRODUCTION

Main focus of academic analysis of sovereign borrowing:

✓ sovereign debt level/maturity. Allocation of risk between debtor country and creditors.

Understanding debt sustainability requires considering also:

- ✓ market vs. official sector borrowing. Or flip side: bail-in vs. bailout
- ✓ solidarity area. Allocation of risk within the official sector
- ✓ pattern of solidarity. Spontaneous (ex post) or contractual (ex ante).

Example: *Eurozone crisis*: Private sector involvement? Bailout by Northern Europe or the rest of the world? And in what form?

Implications for building a formal analysis

This suggests adding to analysis the following ingredients:

- \checkmark Introduce potential guarantors
- Apply to them the same logic (willingness, rather than ability, to pay) as to debtor country:
 - Vulnerability: stand by the distressed country if the latter's private debt is smaller than the collateral damage cost [economic: reduced trade, subsidiaries and banking exposures, run on other countries; other: empathy, European construction, distressed country's nuisance power.]
 - This "pledgeable income" can be increased through joint-and-several liability (JL)
 - A country's borrowing capacity depends not only on its own WTP (literature), but also on:
- ✓ collateral damage its default would inflict on other countries;
- Iatter's willingness to take on JL.

Two paradigms

- (1) One-way insurance International community/debtor country Northern Europe/Southern Europe
- (2) *Mutual insurance* Europe, IMF..., behind the veil of ignorance

Main results

- ✓ Optimality of debt brakes
- Mixed public-private financing
- \checkmark JL increases borrowing capacity and risk of contagion
- \checkmark JL does not emerge under one-way insurance
- ✓ JL emerges behind the veil of ignorance, provided that
 - country shocks are sufficiently independent
 - spillover costs are relatively large relative to default costs.

II. ONE-WAY INSURANCE

- ✓ Three players
 - M (market)
 - *P* (principal/official sector)
 - *A* (agent/debtor country)
- ✓ Universal risk neutrality. *M* and *P* have deep pockets.
- ✓ Two periods, t = 1, 2.

Borrowing & repayment

Date 1 Agent $\begin{cases} borrows \ b = b_M + b_P \text{ against debt claims } d_M \text{ and } d_P \\ obtains \ Rb \text{ where } R \text{ measures liquidity needs} / \\ investment opportunities \end{cases}$

Date 2

Agent learns income (beyond incompressible consumption) $\begin{cases}
y \text{ with prob. } \alpha \text{ (Good state)} \\
0 \text{ with prob. } 1 - \alpha \text{ (Bad state)}
\end{cases}$

 α is exogenous (easy to add *MH*: agent chooses α at date 1)

 Market does not observe income shock. Principal does, and forms a coalition with agent (similar insights if principal does not observe shock).

- ✓ Debt forgiveness and bailout? Principal can forgive to $\hat{d}_P \leq d_P$ and offer support conditional on private debt being repaid: $\hat{d}_M \leq d_M$.
- \checkmark *Repayment decision*: Agent repays \hat{d}_P and \hat{d}_M or defaults.

Date 1		Date 2	
 <i>A</i> borrows <i>b_M</i> from the market (against claim <i>d_M</i>) <i>b_P</i> from the principal (against claim <i>d_P</i>) and consumes <i>R</i>(<i>b_M</i> + <i>b_P</i>) 	A's income is realized and observed by A and P	<i>P</i> decides whether to forgive some of the debt d_P to \hat{d}_P , and proposes to share some of the burden $d_M - \hat{d}_M$ if <i>A</i> reimburses her debt.	A decides whether to pay back \hat{d}_P and \hat{d}_M , and defaults otherwise

Default costs

Agent's default cost: Φ_A

[Standard motivation: interruptions in trade patterns, denial of trade credit, seizure of assets & other retaliatory moves, internal cost of default, FDI interruptions, alliance shifts...]

Collateral damage/spillover cost: ϕ_P

[economic and political costs mentioned above]

Principal's own default cost: Φ_P

only if (a) takes on joint liability, (b) agent defaults, and (c) principal does not honor resulting liability.

Assume $y > \Phi_A$.

No-principal benchmark

If agent decides to borrow:

 $d_M = \Phi_A$ (maximal credible reimbursement) and so

$$b_M = \alpha \Phi_A$$

$$\implies U_A = R(\alpha \Phi_A) + \alpha (y - \Phi_A) - (1 - \alpha) \Phi_A$$

Absence of borrowing yields αy .

Borrows iff $\alpha R > 1$

Then defaults in Bad state.

Principal: Date-2 debt forgiveness and bailouts

Agent: Agent reimburses iff $\hat{d} \equiv \hat{d}_M + \hat{d}_P \leq \Phi_A$.

Principal:

Bad state (no income): Principal forgives: $\hat{d}_P = 0$. Furthermore

$$\begin{array}{ll} \text{if} \quad d_M \leq \phi_P, \quad \text{bailout} \\ \text{if} \quad d_M > \phi_P, \quad \text{default.} \end{array}$$

Good state:

Date 1: Laissez-faire (borrow from market only)

Optimum for agent (if borrows, i.e., $R \ge R_0$ for some $R_0 < 1$): Low debt (no default): borrows $b_M = \phi_P$. Agent reimburses $d_M = \phi_P$ in good state, is rescued in bad state. High debt (default in bad state): debt $d_M = \Phi_A + \phi_P$.

Agent chooses risky policy if *R* or α are "large enough":

 $R(\alpha \Phi_A - (1-\alpha)\phi_P) \geq \Phi_A - \alpha \phi_P.$

increase in borrowing reduction in date-2 $(\alpha(\Phi_A + \phi_P) - \phi_P)$ if positive

expected welfare

or $R > R^*$ (where R^* may be $+\infty$)

$$U_P^* = egin{cases} -\phi_P & ext{if} \quad R \geq R^* \ -(1-lpha)\phi_P & ext{if} \quad R < R^* \end{cases}$$

Optimal contract with official sector

At date 1, agent makes offer to principal. Mechanism design.

Contract:
$$\begin{cases} b = b_M + b_P \\ d^{\omega} = d^{\omega}_M + d^{\omega}_P \qquad (actual \text{ payments}) \end{cases}$$

Note: d_P^{ω} can be negative (bailout)

Proposition (optimal contract) When the agent contracts with the principal at date 1 and $R \ge 1$, (i) an upper bound on the agent's utility is

$$\widehat{U}_A = R(\alpha \Phi_A - U_P^*) + \alpha(y - \Phi_A);$$

Derivation of upper bound

$$\max\left\{U_A = Rb + \alpha(y - d^G) + (1 - \alpha)(-d^B)\right\},\tag{I}$$

where

$$b=b_M+b_P,$$

the participation constraints are satisfied:

$$\begin{split} &-b_P + \alpha d_P^G + (1-\alpha) d_P^B \geq U_P^* \\ &-b_M + \alpha d_M^G + (1-\alpha) d_M^B \geq 0, \end{split}$$

and the incentive constraints are satisfied:

$$d^G \leq \Phi_A$$

 $d^B \leq 0$
 $-d_P^\omega \leq \phi_P + \Phi_P \quad ext{for} \quad \omega \in \{G, B\}.$

Ignoring latter (principal IC) constraints,

$$U_A \leq R\left[\alpha d^G + (1-\alpha)d^B - U_P^*\right] + \alpha(y-d^G) + (1-\alpha)(-d^B).$$

Implementation of upper band

Proposition (optimal contract)

(ii) this upper bound is reached through the following contract:

- ✓ the agent borrows $b_M = d_M^G = d_M^B = \phi_P$ from the market; the principal monitors this cap on market financing (debt brake) and spontaneously bails out the agent in the bad state of nature;
- ✓ the agent borrows $b_P = \alpha \Phi_A \phi_P U_P^*$ from the principal, repays the principal $d_P^G = \Phi_A \phi_P$ in the good state of nature, and receives bailout money $-d_P^B = \phi_P$ in the bad state of nature from the principal to repay its private creditors.

The agent never defaults.

Discussion

✓ Debt brake requirement

Agent otherwise may overborrow from market (negative externality on *P*).

Seniority rule does not solve problem.

✓ No need for JL

JL would allow agent to borrow more, so surplus would be higher; but the agent would have to borrow more to compensate the principal (utility is non-transferable)

Mixed financing.

III. CONTRACTUAL SOLIDARITY

- ✓ Symmetric two-country version (behind veil of ignorance).
 Borrowing *b_i* yields *Rb_i*.
- ✓ Probability p_k that *k* countries have income *y* (with $\Sigma_0^2 p_k = 1$) Arbitrary pattern of correlation.

 $\checkmark \text{ Default costs: } \begin{cases} \text{own cost } \Phi \\ \text{collateral damage cost } \phi \end{cases}$

Let $\widehat{\Phi} \equiv \Phi + \phi$ (upper bound on WTP).

Notation: In "state" k

$$d_k \equiv$$
 expected per-country repayment ($d_0 = 0$ obviously)
 $x_k \equiv$ expected number of defaults ($x_k \in [0, 2]$)
 $\widehat{\Phi}_k \equiv$ expected per-country total cost of default
[example: $\widehat{\Phi}_k = \widehat{\Phi}$ if both countries default]

Let $2\widehat{\Phi}_1 \equiv \widehat{\Phi}_1^y + \widehat{\Phi}_1^0 = x_1\widehat{\Phi}$

Payoff:
$$\max\left\{R\left[\Sigma_{k=0}^2 p_k d_k\right] - \Sigma_{k=0}^2 p_k \left(d_k + \widehat{\Phi}_k\right)\right\}$$

Assume $R > \frac{1+p_0}{1-p_0} \ge 1$. Then borrowing is optimal and

• no default when both are intact $(\widehat{\Phi}_2 = 0)$

• full default when both are distressed $(\widehat{\Phi}_0 = \widehat{\Phi})$.

Furthermore, binding constraints are:

$$d_2 \le d_1 + \frac{x_1}{2}\widehat{\Phi}$$

and

$$2d_1 + \widehat{\Phi}_1^y \le \widehat{\Phi}$$

where cost to intact country when other is distressed is minimized conditional on number of defaults x_1 :

$$\widehat{\Phi}_1^y = \begin{cases} x_1 \phi & \text{if } x_1 \leq 1 \\ \phi + (x_1 - 1) \Phi & \text{if } 1 \leq x_1 \leq 2 \end{cases}$$

Optimal contract

Let $\ell \equiv \frac{p_1}{p_2}$ (likelihood ratio) and $r \equiv \frac{\phi}{\Phi}$ (spillover-default cost ratio)

:
$$k = 2$$

: $k = 1$

IV. ENDOGENOUS SPILLOVERS

- ✓ Spillover costs are in part endogenous
 - Mengus (2012), Gennaioli et al (2011): Part of φ depends on country's banks' investment in other country.
 - Unilateral incentive to reduce exposure so as to strengthen one's position?
 - Collective incentive (behind veil of ignorance)?
- We here focus on choice of spillovers by principal (in fact, both the principal and the agent impact spillovers)
 - Some spillovers cannot be controlled by country: ϕ_0
 - Others can be controlled: $z_i \in [0, 1] = exposure$

$$\phi_i = \phi_0 + z_i(\phi - \phi_0)$$

[example: investment in other country's debt.]

- (1) One-way insurance
 - Intuition: should choose $z_P = 0$ (i.e., $\phi_P = \phi_0$) so as to contain soft-budget-constraint exposure.
 - Broadly correct, but may choose $z_P > 0$ in order to incentivize agent to choose the safe policy.
- (2) *Two-way insurance*: In solidarity region (no default), countries jointly decide to maximize their cross exposure: $\phi_i = \phi$.

V. SUMMARY AND APPLICATIONS

Summary

(1) Collateral damage is collateral

- Bailouts driven by fear of externalities.
- We have provided formal content to notion that a country's debt capacity depends on spillovers associated with its default.
- (2) Joint liability requires being behind veil of ignorance
 - Joint liability increases total surplus, creates domino effects
 - Risky countries cannot compensate safe ones for accepting joint liability (would have to borrow more: compensation in funny money).
- (3) Endogenous spillovers.

Many possible extensions, including:

- Extended solidarity (inner/outer solidarity area, Eurozone/ international community)
- ✓ Asymmetric information about spillovers and posturing.

