< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Monetary Policy, Stock Market and Sectoral Comovement

Pierre Guérin Danilo Leiva-Leon

OECD Banco de España

Nov 2, 2017

1st Annual Workshop of ESCB Research Cluster 3

The opinions expressed in this presentation do not necessarily reflect the views of the OECD, Banco de España or the Eurosystem.

What we do

- The stock market is a key element in the transmission mechanism of monetary policy to the real economy
- The degree of comovement between sector-specific asset returns may vary significantly over time
- What is the role that sectoral comovement plays in the propagation of monetary policy shocks on the stock market?
- We study the effect of monetary policy shocks on stock returns in periods:
 - (i) when industries tend to move together.
 - (ii) when industries follow more idiosyncratic dynamics.
- Important implications: this information would allow policy makers to identify circumstances in which MP decisions are the most potent on financial markets.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

- High Frequency Analysis (Two steps)
 - Connectedness Index
 - Event study
- 2 Low Frequency Analysis (One step)
 - Nonlinear FAVAR
 - Impulse response analysis

Onclusions

30-industry Fama-French portfolio data

Abbreviation Industry definition Abbreviation		n Industry definition	
Food	Food Products	Autos	Automobiles and Trucks
Beer	Beer and Liquor	Carry	Aircraft, ships, and railroad equipment
Smoke	Tobacco Products	Mines	Precious Metals, Non-Metallic,
			Industrial Metal Mining
Games	Recreation	Coal	Coal
Books	Printing and Publishing	Oil	Petroleum and Natural Gas
Hshld	Consumer Goods	Util	Utilities
Clths	Apparels	Telcm	Communication
Hlth	Health care, Medical Equipment,	Servs	Personal and Business Services
	Pharmaceutical Products		
Chems	Chemicals	BusEq	Business Equipment
Txtls	Textiles	Paper	Business Supplies and Shipping Containers
Cnstr	Construction and Construction Materials	Trans	Transportation
Steel	Steel Works Etc	Whisi	Wholesale
FabPr	Fabricated Products and Machinery	Rtail	Retail
ElcEq	Electrical Equipment	Meals	Restaurants, Hotels, Motels
Fin	Banking, Insurance, Real Estate, Trading	Other	Everything Else
			· · · · · · · · · · · · · · · · · · ·

Stock Market Connectedness

- Industry stock returns are subject to complex interactions over time
- We estimate an index of "connectedness" by relying on a VAR at a daily frequency using the returns of the 30 industries portfolio from Fama-French:
 - We follow the line of Korobilis and Yilmaz (2016) where time-variation in the parameters of the VAR is approximated by forgetting factors
- The TVP-VAR can be represented as

$$y_t = \beta_t x_t + \epsilon_t,$$

$$\beta_t = \beta_{t-1} + \eta_t,$$

where $\epsilon_t \sim N(0, \Omega_t)$.

イロト イポト イヨト イヨト

Appendix

Daily Connectedness Index

- Stock market connectedness experiences significant changes over time
- It tends to pick up during stock market turmoils (October 1987, October 2008)

Event study - regressions

 Monetary policy surprises can be calculated using the 30 days Federal Funds Futures (Bernanke and Kuttner (2005))

$$\Delta i^u = \frac{D}{D-d}(f^0_{m,d}-f^0_{m,d-1}).$$

• The expected component of the rate change is

$$\Delta i^e = \Delta i - \Delta i^u.$$

 The effects of monetary policy on industry-specific stock returns (spⁱ_t) are obtained from

$$sp_t^i = \alpha + \beta^e \Delta i_t^e + \beta^u \Delta i_t^u + \epsilon_t.$$

Event study – What role for connectedness?

- Are strongly interconnected systems more prone to the propagation of monetary policy shocks?
- We include information about connectedness in the regression:

$$sp_t^i = \alpha + \beta^e \Delta i_t^e + \beta^u \Delta i_t^u + \beta^C \Delta C_t + \beta^{Cu} \Delta C_t \Delta i_t^u + \epsilon_t$$

- The term ΔC_t denotes the daily change in total connectedness on days of U.S. monetary policy announcements.
- The interaction term $\Delta C_t \Delta i_t^u$ captures the extent to which the effects of monetary policy surprises vary with different degrees of stock market connectedness.

Monetary policy surprises, the stock market, and connectedness

	β^{u}	β^{Cu}	F-test	Differential in stock returns
	1 072	10 576***	12 454	0.365
AUTUS	(1.163)	(1.407)	15.454	-2.305
BUSEQ	-2.335	-26.082***	35.541	-4.905
	(2.208)	(2.890)		
FABPR	-2.972***	-12.936***	20.338	-2.433
	(0.929)	(1.262)		
FIN	-2.114*	-8.161***	5.897	-1.535
	(1.126)	(1.639)		
SP500	-3.495***	-9.720***	21.710	-1.828
	(0.804)	(2.031)		

Notes: Standard errors are in parenthesis. The F-test is a joint test for no effect of the monetary policy surprise (i.e., $(\beta^u, \beta^{Cu}) = (0, 0)$). The 5 percent critical value for an *F* distribution with 2 and 121 degrees of freedom is given by 3.07. The differential in stock returns column measures how much more a given industry reacts to monetary policy surprises when the change in total connectedness is in the 75th percentile compared with a situation where connectedness is in the 25th percentile (i.e. less connectedness) (a, b, c, d) = (a, b, c)

Summary High Frequency Analysis

- The interaction term is negative for nearly all industries, suggesting that an increase in connectedness is associated with more negative responses of industry level stock returns to monetary policy surprises.
- The differential in stock returns column between high and low connectedness indicates that stronger connectedness leads to a more negative response of stock returns.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Model (Non-linear FAVAR)

• It assesses shocks propagation, accounting for comovement:

$$\begin{bmatrix} Y_t \\ X_t \end{bmatrix} = \begin{bmatrix} I & 0 \\ \Lambda^Y & \Lambda^F_{S_t} \end{bmatrix} \begin{bmatrix} Y_t \\ F_t \end{bmatrix} + \begin{bmatrix} 0 \\ e_t^F \end{bmatrix}, \begin{bmatrix} 0 \\ e_t^F \end{bmatrix} \sim N(0, \Omega)$$
$$\begin{bmatrix} Y_t \\ F_t \end{bmatrix} = \Phi_{S_t^*}(L) \begin{bmatrix} Y_{t-1} \\ F_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix}, \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix} \sim N(0, \Sigma_{S_t^*})$$

The Model (Non-linear FAVAR)

• It assesses shocks propagation, accounting for comovement:

$$\begin{bmatrix} Y_t \\ X_t \end{bmatrix} = \begin{bmatrix} I & 0 \\ \Lambda^Y & \Lambda^F_{S_t} \end{bmatrix} \begin{bmatrix} Y_t \\ F_t \end{bmatrix} + \begin{bmatrix} 0 \\ e_t^F \end{bmatrix}, \begin{bmatrix} 0 \\ e_t^F \end{bmatrix} \sim N(0, \Omega)$$
$$\begin{bmatrix} Y_t \\ F_t \end{bmatrix} = \Phi_{S_t^*}(L) \begin{bmatrix} Y_{t-1} \\ F_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix}, \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix} \sim N(0, \Sigma_{S_t^*})$$

• The dynamics of the factor loadings are given by

 $\Lambda_{S_t}^F = (\lambda_{1,S_{1,t}}^F, \lambda_{2,S_{2,t}}^F, ..., \lambda_{N,S_{N,t}}^F), \quad \lambda_{i,S_{i,t}} = \lambda_{i,0}^F + \lambda_{i,1}^F S_{i,t}$

The Model (Non-linear FAVAR)

• It assesses shocks propagation, accounting for comovement:

$$\begin{bmatrix} Y_t \\ X_t \end{bmatrix} = \begin{bmatrix} I & 0 \\ \Lambda^Y & \Lambda^F_{S_t} \end{bmatrix} \begin{bmatrix} Y_t \\ F_t \end{bmatrix} + \begin{bmatrix} 0 \\ e_t^F \end{bmatrix}, \begin{bmatrix} 0 \\ e_t^F \end{bmatrix} \sim N(0, \Omega)$$
$$\begin{bmatrix} Y_t \\ F_t \end{bmatrix} = \Phi_{S_t^*}(L) \begin{bmatrix} Y_{t-1} \\ F_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix}, \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix} \sim N(0, \Sigma_{S_t^*})$$

The dynamics of the factor loadings are given by

$$\Lambda_{S_t}^F = (\lambda_{1,S_{1,t}}^F, \lambda_{2,S_{2,t}}^F, ..., \lambda_{N,S_{N,t}}^F), \quad \lambda_{i,S_{i,t}} = \lambda_{i,0}^F + \lambda_{i,1}^F S_{i,t}$$

• The dynamics of the VAR equation are given by

$$\Phi_{S_t^*} = \Phi_0(1 - S_t^*) + \Phi_1 S_t^*, \quad \Sigma_{S_t^*} = \Sigma_0(1 - S_t^*) + \Sigma_1 S_t^*$$

The Model (Non-linear FAVAR)

• It assesses shocks propagation, accounting for comovement:

$$\begin{bmatrix} Y_t \\ X_t \end{bmatrix} = \begin{bmatrix} I & 0 \\ \Lambda^Y & \Lambda^F_{S_t} \end{bmatrix} \begin{bmatrix} Y_t \\ F_t \end{bmatrix} + \begin{bmatrix} 0 \\ e_t^F \end{bmatrix}, \begin{bmatrix} 0 \\ e_t^F \end{bmatrix} \sim N(0, \Omega)$$
$$\begin{bmatrix} Y_t \\ F_t \end{bmatrix} = \Phi_{S_t^*}(L) \begin{bmatrix} Y_{t-1} \\ F_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix}, \begin{bmatrix} u_t^Y \\ u_t^F \end{bmatrix} \sim N(0, \Sigma_{S_t^*})$$

• The dynamics of the factor loadings are given by

$$\Lambda_{S_t}^F = (\lambda_{1,S_{1,t}}^F, \lambda_{2,S_{2,t}}^F, ..., \lambda_{N,S_{N,t}}^F), \quad \lambda_{i,S_{i,t}} = \lambda_{i,0}^F + \lambda_{i,1}^F S_{i,t}$$

• The dynamics of the VAR equation are given by

$$\Phi_{S_t^*} = \Phi_0(1 - S_t^*) + \Phi_1 S_t^*, \quad \Sigma_{S_t^*} = \Sigma_0(1 - S_t^*) + \Sigma_1 S_t^*$$

• Each state variable S_{i,t} follows the dynamics of a two-state Markov chain with constant transition probability, and

$$S_t^* = \mathbb{I}\left(\frac{1}{N}\sum_{i=1}^N S_{i,t} > c\right) I$$

Data

- The sample size extends from January 1960 to December 2014
- The vector Y_t includes: Industrial Production, CPI inflation, Commodity price index, Dividends, Effective feds funds rate (we use the Wu and Xia (2015) shadow interest rate from January 2009 onwards)
- The vector X_t collects the 30 industry-specific equity returns from the Fama-French database (we extract one factor for ease of interpretation)
- We use a recursive identification scheme (same ordering as in Gali and Gambetti (2015))

イロト イポト イヨト イヨト

э

Factor extracted from the 30 industry portfolio

- The estimated factor exhibits a correlation of 0.7 with the returns form the S&P500
- Hence, it can be interpreted as an indicator of the overall performance of the US stock market

Time-varying factor loadings for selected industries

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()

Low-frequency effects

・ロト ・ 一下・ ・ モト ・ モト・

э

Appendix

Changes in comovement across industry stock returns

- The figure plots the latent variable that measure the overall degree of comovement across industries, S_t^* .
- Most of industries experienced a declined in comovement around the early 2000s.

Impulse Responses

• Effect of monetary policy shocks on stock returns during:

- In the high-comovement regime, responses of stock returns are amplified compared with responses in the low-comovement regime
- This finding lines up well with the results from the event study

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Network of industry-specific stock returns

• The model allows to characterize the interactions among industries:

$$q_{i,j}^{(l)} = 1 - \frac{1}{T} \sum_{t=1}^{T} \left(S_{i,t}^{(l)} - S_{j,t}^{(l)} \right)^2$$
(1)

- If industries *i* and *j* are highly interconnected, they should experience similar degrees of comovement with the factor: $q_{i,j} \simeq 1$
- All relationships are collected in an adjacency matrix (network)

$$Q = \begin{pmatrix} 0 & q_{1,2} & q_{1,3} & \cdots & q_{1,m} \\ q_{2,1} & 0 & q_{2,3} & \cdots & q_{2,m} \\ q_{3,1} & q_{3,2} & 0 & \cdots & q_{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{m,1} & q_{m,2} & q_{m,3} & \cdots & 0 \end{pmatrix}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Network of industry-specific stock returns

• The network has a core-periphery structure, with a dense core and a sparse periphery

Bilateral relations with $q_{i,j} > 0.5$

Centrality of network of industry-specific stock returns

• We quantify the interconnection of a given industry by computing its corresponding closeness centrality

- The effect of monetary policy shocks on the stock market is amplified (about twice) when industries exhibit a higher degree of comovement
- There is a set of key industries acting as main conduits in the propagation of monetary policy shocks throughout the stock market
- We propose an econometric framework that allows us to:
 - Identify periods in which monetary policy decisions could be the most potent on the stock market
 - Provide a detailed characterization of the connectedness of industry-specific stock markets

Appendix

Time-varying Centrality of Industries

Financial Industry

(日)、

Time-varying Centrality of Industries

• Oil Industry

(日)、

э

Time-varying Centrality of Industries

• Telecommunications Industry

э

Time-varying Centrality of Industries

• Steel Industry

Appendix

Details on the large TVP-VAR

• The TVP-VAR can be represented as

$$y_t = \beta_t x_t + \epsilon_t,$$

$$\beta_t = \beta_{t-1} + \epsilon_t,$$

where $\eta_t \sim N(0, \Omega_t)$.

- Initial conditions for the model are given by $\beta_0 \sim N(m_0, C_0), \Sigma_0 \sim iW(S_0, n_0)$
- Time t priors are given by

$$\begin{split} \beta_t | D_{t-1} \sim \mathcal{N}(m_{t|t-1}, C_{t|t-1}) \\ \Sigma_t | D_{t-1} \sim i \mathcal{W}(S_{t|t-1}, n_{t|t-1}) \\ \end{split}$$
 where $m_{t|t-1} = m_{t-1}$, $C_{t|t-1} = \frac{1}{\lambda} C_{t-1}$, $S_{t|t-1} = S_{t-1}$, and $n_{t|t-1} = \delta n_{t-1}$

• Variance discounting/forgetting factors (approximations), $\lambda,$ $\delta \in (0,1]$

From variance decompositions to Connectedness index

	<i>x</i> ₁	<i>x</i> ₂		×N	From others	
<i>x</i> ₁	d_{11}^H	d_{12}^H		d_{1N}^H	$\sum_{j \neq 1} d_{1j}^H$	
x ₂ :	<i>d</i> ₂₁	d'1 :	 •	a _{2N}	$\sum_{j\neq 2} d_{2j}^{\prime\prime}$	
×N	d_{N1}^H	d_{N2}^H		d_{NN}^H	$\sum_{j eq N} d^H_{Nj}$	
To others	$\sum_{i \neq 1} d_{i1}^H$	$\sum_{i\neq 2} d_{i2}^H$		$\sum_{i\neq N} d^H_{iN}$	$1/N\sum_{i eq j}d^H_{ij}$	
• "From" connectedness: $\sum_{j=1, j \neq i}^{N} d_{ij}^{H}$ • "To" connectedness: $\sum_{i=1, j \neq i}^{N} d_{ij}^{H}$ • "Net" connectedness: "To" connectedness - "From" connectedness • "Total" connectedness: $\frac{1}{N} \sum_{i=1, i \neq i}^{N} d_{ij}^{H}$						

Variance Decomposition / Connectedness Table

From variance decompositions to Connectedness index

	<i>x</i> ₁	<i>x</i> ₂		×N	From others	
<i>x</i> ₁	d_{11}^H	d_{12}^H		d_{1N}^H	$\sum_{j eq 1} d^{\mathcal{H}}_{1j}$	
<i>x</i> ₂	d_{21}^H	d_{22}^H		d_{2N}^H	$\sum_{j eq 2} d^H_{2j}$	
÷	:	:	14		:	
х _N	d_{N1}^H	d_{N2}^H		d_{NN}^H	$\sum_{j eq N} d^H_{Nj}$	
To others	$\sum_{i \neq 1} d_{i1}^H$	$\sum_{i\neq 2} d_{i2}^H$		$\sum_{i\neq N} d^H_{iN}$	$1/N\sum_{i eq j}d^H_{ij}$	
• "From" connectedness: $\sum_{j=1, j \neq i}^{N} d_{ij}^{H}$ • "To" connectedness: $\sum_{i=1, j \neq i}^{N} d_{ij}^{H}$ • "Net" connectedness: "To" connectedness - "From" connectedness • "Total" connectedness: $\frac{1}{N} \sum_{i=1, i \neq i}^{N} d_{ij}^{H}$						

Variance Decomposition / Connectedness Table

Multi-State Markov-Switching FAVAR (MS2-FAVAR)

The MS2-FAVAR can be represented in a state-space form:

$$\begin{aligned} Z_t &= H_{\mathbf{S}_t}W_t + v_t, \quad v_t \sim \mathcal{N}(0,\Theta) \\ W_t &= G_0 + GW_{t-1} + u_t, \quad u_t \sim \mathcal{N}(0,\Sigma), \end{aligned}$$

The measurement equation can be alternatively expressed as

$$Z_t = (H_0 \odot (\mathbf{1} - \iota' \otimes S_t^*) + H_1 \odot (\iota' \otimes S_t^*)) \odot W_t + v_t$$

where $Z_t = (Y_t, X_t)'$, $W_t = (Y_t, F_t)'$, $v_t = (0, e_t^F)'$, $S_t^* = (0, \mathbf{S}_t)'$

