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Background

“One particular challenge has arisen across a large part of the world.

That is the extremely low level of nominal interest rates. ... Very low

levels are not innocuous. They put pressure on the business model[s] of

financial institutions ... by squeezing net interest income. And this comes

at a time when profitability is already weak, when the sector has to

adjust to post-crisis deleveraging in the economy, and when rapid

changes are taking place in regulation.”

ECB President Draghi on May 2, 2016.
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Motivation

Banks are highly heterogeneous, differing widely in terms of size,
complexity, activities, organization, funding, and geographical reach.

I How many bank business models can be identified for the Eurozone,
and how do they differ from each other?

I How does the low-interest rate policy affect banks with different
business models?
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Econometric contribution

I We introduce a new model for clustering multivariate panel data on
bank characteristics and apply it to European bank data:
Moderate T , large N, potentially many indicators D, and an
unknown number of clusters J.

I Component means and covariance matrices can be time-varying,
and can be related to explanatory variables.

I Our approach builds on static finite mixture models, and augments
them with outlier-robust score-driven parameter dynamics.
Estimation via a suitable Expectation-Maximization (EM) algorithm.

I Monte Carlo experiments suggest that our modeling framework
works reliably regarding both classification and parameter tracking
in a variety of settings.
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Empirical contribution: main findings

I European banks can be divided into approximately six peer groups:
A) large universal banks, including G-SIBs, B) international
diversified lenders, C) fee-focused lenders, D) domestic diversified
lenders, E) domestic retail lenders, and F) small international banks.

I Banks with different business models reacted differently to the
financial crisis 2008–09, and also the sovereign debt crisis 2010–12.
Small domestic lenders and retail banks were relatively less affected.

I Low long-term interest rates are potentially problematic from a
financial stability perspective. The largest and the smallest lenders
respond the most to falling rates.
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Related literature

1. Linking banks’ business models and their riskiness: Demirguc-Kunt
& Huizinga (2010), Beltratti & Stulz (2012), Laeven, Ratnovski &
Tong (2015).

2. Identifying bank business models using static clustering methods:
Ayadi & De Groen (2011, 2014, 2015), Roengpitya, Tarashev &
Tsatsaronis (2014), Farne & Vouldis (2016).

3. Finite mixture models for panel data: Catania (2016),
Fruehwirth-Schnatter & Kaufmann (2008), Creal, Gramacy, & Tsay
(2014).
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Outline
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I Clustering model
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Finite mixture model for panel data

I Let yit denote a D-vector of observations for unit i at time t and
Yi = (y′i1, ..., y

′
iT )′.

I Yi are assumed to be independent draws from a common
parametric mixture density with J components,

f (Yi ; Ψ) =
J∑

j=1

πj fj(Yi ;θj), (1)

with parameter vector Ψ = (π1, ..., πJ−1,θ
′
1, ...,θ

′
J)′, where πj is the

mixture probability of component density fj .

I If (unknown) cluster indicators zij were known, the likelihood
function would be

log Lc(Ψ) =
N∑
i=1

J∑
j=1

zij [log πj + log fj(Yi ;θj)] . (2)
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EM algorithm

Idea: Given the observed data and some previously determined value
Ψ(k−1) for Ψ, the conditionally expected likelihood

Q(Ψ; Ψ(k−1)) =
J∑

j=1

N∑
i=1

P[zij = 1|Y1, ...,Yn; Ψ(k−1)]

× [log πj + log fj(Yi ;θj)]

is optimized by alternately updating the component probabilities
(’E-Step’) and maximizing the remainder of the function (’M-Step’); see
Dempster, Laird & Rubin (1977).
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E-Step The conditional component probabilities are updated using

τ
(k)
ij := P[zij = 1|Y1, ...,Yn,Ψ = Ψ(k−1)]

=
π

(k−1)
j fj(Yi ;θ

(k−1)
j )∑J

h=1 π
(k−1)
h fh(Yi ;θ

(k−1)
h )

, (3)

with fj(Yi ;θ
(k−1)
j ) =

∏T
t=1 fj(yit ;θ

(k−1)
j ).

M-Step Given τ
(k)
ij , i = 1, ...,N, j = 1, ..., J, estimates of mixture

probabilities are obtained:

π
(k)
j =

1

N

N∑
i=1

τ
(k)
ij ,

and the parameters θ1, ...,θJ are estimated by maximizing the remaining

part of the likelihood function.
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Score-driven finite mixture model

Extension to time-varying cluster parameters via score dynamics; see
Creal, Koopman & Lucas (2013), Harvey (2013), Creal, Schwaab,
Koopman & Lucas (2014), and Lucas & Zhang (2015):

θj,t+1 = Ajsθjt + θjt ,

where

I Aj = aj · ID is a diagonal matrix to be estimated, and

I sθjt = Sθjt∇θjt is the scaled first derivative of the conditionally
expected likelihood function, with

∇(k)
θjt

=
∂Q(Ψ; Ψ(k−1))

∂θjt
and S

(k)
θjt

= −E

(
∂Q(Ψ; Ψ(k−1))

∂θjtθ′jt

)−1

.
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The simplest case

Simple benchmark model: A mixture of Gaussian densities with
time-varying means, static covariance matrices, and a common
smoothing parameter, so that

I ∇(k)
µjt = Ω−1

j

∑N
i=1 τ

(k)
ij (yit − µjt) , S

(k)
µjt = Ωj/

∑N
i=1 τ

(k)
ij

I Score-driven mean: µ
(k)
j,t+1 = a ·

∑N
i=1 τ

(k)
ij (yit−µjt)∑N
i=1 τ

(k)
ij

+ µjt ,

I Parameter vector: Ψ = (π1, ..., πJ−1, a, µ1,0, ..., µJ,0, ξ
′
1, ..., ξ

′
J)′,

where ξj contains the distinct entries in the jth cluster-specific
covariance matrix Ωj .
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t-distributed mixture densities

I Assuming normal mixture components may not be appropriate for
fat-tailed accounting data.

I EM algorithm can easily be adapted to include outlier-robust
parameter dynamics by considering mixtures of t-distributions,
yielding

∇(k)
µjt

= Ω−1
jt

N∑
i=1

τ
(k)
ij wijt · (yit − µjt) , with

wijt = (1 + ν−1
j D)

/(
1 + ν−1

j (yit − µjt)
′Ω−1

jt (yit − µjt)
)
.

I Further extensions (in the paper):

. score-driven component covariance matrices Ωjt ,

. additional explanatory variables to model µjt .
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Outline
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I Simulations
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Simulation: Classification and tracking
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Simulation: Classification and tracking



Model 18

Simulation: Classification and tracking
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Simulation: Classification and tracking
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Outcomes: Classification and tracking
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Simulation: Classification and tracking

N = 400
misspecification 1

T=10 T=30
rad. dist. MSE % C1 % C2 MSE % C1 % C2

4 8 0.32 100 100 0.35 100 100
4 0 0.32 100 100 0.35 100 100
1 8 0.03 100 100 0.03 100 100
1 0 0.06 94.16 91.68 0.03 99.71 99.61

misspecification 2
T=10 T=30

rad. dist. MSE % C1 % C2 MSE % C1 % C2
4 8 0.41 100 100 0.44 100 100
4 0 0.41 100 100 0.44 100 100
1 8 0.03 100 100 0.04 100 100
1 0 0.05 95.03 95.18 0.06 97.74 97.78
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Outline
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I Bank business models at zero interest rates

I Conclusion
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Dataset

I Quarterly accounting data from SNL Financial. Mostly public data.

I N = 208 banks between 2008,Q1 – 2015,Q4 (T = 32).

I Unbalanced panel. Missing values, e.g. due to different reporting
frequencies. Substitute the most recently available observation.

I Dimensions for distinguishing bank business models: size,
complexity, activities, geographical reach, funding structure,
ownership. D = 13 indicators are selected as clustering variables.
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Indicator variables
Category Variable Transformation
Size 1. Total assets ln (Total Assets)

2. Leverage w.r.t. CET1 capital ln
(

Total Assets
CET1 capital

)
Complexity/ 3. Net loans to assets Φ−1

(
Loans
Assets

)
Non-traditional 4. Risk mix ln

(
Market Risk+Operational Risk

Credit Risk

)
5. Assets held for trading Assets in trading portfolios

Total Assets

6. Derivatives held for trading Derivatives held for trading
Total Assets

Activities 7. Share of net interest income Net interest income
Operating revenue

8. Share of net fees & commission income Net fees and commissions
Operating income

9. Share of trading income Trading income
Operating income

10. Retail loans Retail loans
Retail and corporate loans

Geography 11. Domestic loans ratio Φ−1
(

Domestic loans
Total loans

)
Funding 12. Loan-to-deposits ratio Total loans

Total deposits

Ownership 13. Ownership index categorial, plus noise
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Model specification with J = 6

Density ν value A1 Σj ; Σjt loglik ∆loglik

N - ∞ scalar static 1,579.1

t fixed ≡ 5 scalar static 13,912.6 12,333.5

t fixed ≡ 5 vector static 13,932.8 20.2

t est 6.6 scalar static 13,962.6 29.8

t est 6.6 vector static 13,993.6 31.0

N - ∞ scalar dynamic 21,852.7 7,859.1

t fixed ≡ 10 scalar dynamic 28,887.5 7,034.8

t est 5.7 scalar dynamic 29,190.3 302.8
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Cluster labels

(A) Large universal banks, including G-SIBs (comprising e.g. Barclays plc,
Credit Agricole SA, Deutsche Bank AG.)

(B) International diversified lenders (e.g. ABN Amro Group NV, BBVA AS,
Cooperatieve Rabobank UA.)

(C) Fee-focused lenders (e.g. Monte Dei Paschi di Sienna, Bankinter SA.)

(D) Domestic diversified lenders (e.g. Aareal Bank AG, Allied Irish Bank,
Alpha Bank.)

(E) Domestic retail lenders (e.g. Berner Kantonalbank, Newcastle Building
Society.)

(F) Small international bank (e.g. Alpha Bank Skopje, AS Citadele banka.)
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Box plots; assignment of cluster lables
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Component characteristics

I Cluster means differ from each other, for each indicator.

I Financial crisis 2008–2009 and sovereign debt crisis 2011–2012 had
different impacts on bank business models: Domestic retail lenders
(E) and small international banks (F) were relatively more stable
than banks in A and B.

I Visible de-leveraging effect for all groups (except domestic retail
lenders), possibly due to introduction of Basel III rules.

I Large universal banks stand out in terms of size, inter-nationality,
volume of derivative positions, sources of income, and risk mix.
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Term structure factors as explanatory variables
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I Since 2007: downshift and flattening of yield curve; ’zero lower
bound’ phenomenon.

I Impact of monetary policy on European banks may depend on their
respective business model.
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Dependent var. All A B C D E F
∆4 ln(TA)t -0.0508*** -0.126*** -0.0612*** -0.0501*** -0.0286*** -0.0375 -0.0301

(0.0146) (0.0290) (0.0104) (0.0162) (0.0102) (0.0413) (0.0234)
∆4 ln(Lev)t -0.0260* -0.0678* -0.0358 0.0107 0.00223 -0.0745** -0.0474

(0.0129) (0.0377) (0.0248) (0.0199) (0.0223) (0.0321) (0.0333)
∆4 (TL/TA)t 1.824*** 3.391*** 2.236*** 2.495*** 1.204*** 1.446** 0.0682

(0.275) (0.755) (0.397) (0.344) (0.255) (0.589) (0.544)
∆4 ln(RM)t 0.00586 -0.0807 -0.101*** 0.0567 0.0257 0.0206 0.0850

(0.0117) (0.0610) (0.0228) (0.0343) (0.0160) (0.0299) (0.0512)
∆4 (AHFT/TA)t -0.00688* -0.0290** -0.00814** -0.00926** 0.00168 0.000203 0.00138***

(0.00363) (0.0131) (0.00301) (0.00367) (0.00158) (0.00120) (0.000407)
∆4 (DHFT/TA)t -0.0111** -0.0474*** -0.0165*** -0.0107*** -0.00197 0.00135** 0.000454

(0.00399) (0.0149) (0.00470) (0.00267) (0.00145) (0.000538) (0.000336)
∆4 (NII/OR)t 1.931 -6.797 4.614 5.992** 2.985 0.184 -2.010

(2.198) (5.969) (5.600) (2.298) (1.777) (4.846) (3.324)
∆4 (NFC/OI)t 0.371 1.447 1.703 0.234 -0.986 0.184 2.591

(0.808) (1.747) (1.858) (0.808) (1.187) (1.677) (2.715)
∆4 (TI/OI)t -0.0509 12.40*** 0.623 -1.792 -1.755 -4.171 1.448

(1.853) (3.826) (2.582) (2.528) (1.699) (2.986) (1.572)
∆4 (RL/TL)t 0.00562** 0.00129 0.00252 0.0108*** 0.00141 0.0113** -0.00195

(0.00260) (0.00452) (0.00479) (0.00383) (0.00378) (0.00536) (0.00936)
∆4 (DL/TL)t 1.225*** 1.158* 3.736** 1.418** 0.384 0.0161 2.581*

(0.411) (0.597) (1.706) (0.586) (0.523) (0.197) (1.341)
∆4 (L/D)t -0.230 -1.754 -3.275** 2.924 -1.534 0.347 0.620

(0.615) (2.190) (1.527) (2.118) (1.508) (1.642) (1.576)
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Results from disaggregated panel regressions:

As the level of long-term interest rates declines,

I banks tend to grow larger: impact is most pronounced for large
banks (clusters A, B)

I the shares of total loans decrease for all business models, mostly so
for large banks;

I banks tend to take on more leverage: impact is most pronounced for
domestic retail lenders (cluster E);

I large banks (clusters A, B) tend to increase their AHFT relative to
loans, smaller ones don’t;

I the largest banks (cluster A) become more international;

I no significant effect on net interest income (except for cluster B).
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Conclusion

I Robust clustering model for bank panel data.

I Works well on simulated data, and in practice.

I European banks can be divided into different groups with
heterogeneous dynamic parameters.

I These groups respond differently to declining long-term
interest rates.

I Low long-term interest rates are potentially problematic from
a financial stability perspective.
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Thank you.
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Simulation: Classification and tracking

I Simulation setting: T = {10, 30}, N = {100, 400}.

I Bivariate sinusoid mean functions and disturbance terms with
identity covariance matrix. Data are either Gaussian or t-distributed
with ν = 5 or ν = 3.

I We alter the characteristics of the moving circles to check under
which circumstances our method

. correctly classifies data as belonging to distinct components
and

. enables the accurate tracking of the dynamic cluster means
over time.
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Simulation: Classification and tracking
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Simulation: Classification and tracking
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Simulation: Classification and tracking
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Simulation: Classification and tracking
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Simulation: Classification and tracking

N = 400
misspecification 1

T=10 T=30
rad. dist. MSE % C1 % C2 MSE % C1 % C2

4 8 0.32 100 100 0.35 100 100
4 0 0.32 100 100 0.35 100 100
1 8 0.03 100 100 0.03 100 100
1 0 0.06 94.16 91.68 0.03 99.71 99.61

misspecification 2
T=10 T=30

rad. dist. MSE % C1 % C2 MSE % C1 % C2
4 8 0.41 100 100 0.44 100 100
4 0 0.41 100 100 0.44 100 100
1 8 0.03 100 100 0.04 100 100
1 0 0.05 95.03 95.18 0.06 97.74 97.78
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Simulation: Choice of cluster numbers

We consider three sets of model selection criteria in our simulation
settings with true J = 2, but estimation assuming one, two, and three
components, respectively:

I Likelihood-based (AIC, BIC): Systematic over-estimation of cluster
number.

I Distance-based (within-cluster SSE + penalty): Overall better than
likelihood-based, but not ideal in all settings.

I Cluster validation indices (Davies-Bouldin, Calinki-Harabasz): Most
robust, DBI outperforms all other considered criteria.



Appendix 42

Simulation results: Choice of J

radius=4, distance=8

correct spec. misspec. 1 misspec. 2

no. clusters 1 2 3 1 2 3 1 2 3

AICc 0 65 35 0 66 34 0 54 46
BIC 0 70 30 0 71 29 0 57 43
SSE 0 69 31 0 75 25 0 56 44
AICk 0 100 0 0 100 0 0 94 6
BNG1 0 100 0 0 100 0 0 85 15
BNG2 0 100 0 0 100 0 0 86 14
BNG3 0 100 0 0 99 1 0 84 16
CHI 0 100 0 0 100 0 0 100 0
SI 0 85 15 0 89 11 0 75 25
DBI 0 100 0 0 100 0 0 100 0



Appendix 43

Simulation results: Choice of J

radius=1, distance=0

correct spec. misspec. 1 misspec. 2

no. clusters 1 2 3 1 2 3 1 2 3

AICc 0 53 47 1 55 44 0 59 41
BIC 0 55 45 2 56 42 0 64 36
SSE 0 64 36 0 67 33 14 46 40
AICk 100 0 0 100 0 0 94 6 0
BNG1 1 99 0 61 39 0 67 28 5
BNG2 4 96 0 66 34 0 70 25 5
BNG3 0 100 0 45 55 0 58 35 7
CHI 0 100 0 0 98 2 0 100 0
Silhouette 0 100 0 0 100 0 0 99 1
DBI 0 100 0 0 100 0 0 100 0



Appendix 44

Model selection: Number of clusters

Σjt dynamic, ν = 5

J loglik AICc BIC AICk BaiNg2 CHI DBI SSE

2 1,114.9 -1,791.9 -363.6 2,411.3 -0.288 19.56 3.25 1,579.3

3 9,057.1 -17,448.6 -15,323.7 2,696.6 -0.249 13.59 3.15 1,448.6

4 13,542.2 -26,183.0 -23,369.3 3,126.3 -0.115 15.67 3.34 1,442.3

5 16,014.2 -30,883.7 -27,389.2 3,493.0 -0.024 15.89 3.33 1,413.0

6 18,053.8 -34,710.8 -30,544.0 3,884.7 0.083 28.19 3.19 1,388.7

7 20,431.7 -39,205.6 -34,375.4 4,308.2 0.214 33.50 3.28 1,396.2

8 23,831.2 -45,734.2 -40,250.1 4,733.3 0.345 20.10 3.34 1,405.3

9 23,772.0 -45,339.2 -39,211.0 5,177.0 0.490 24.88 2.86 1,433.0

10 25,832.7 -49,165.9 -42,404.3 5,587.1 0.611 5.41 3.13 1,427.1
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