Can the Fed talk the hinds legs off the stock market?

Sylvester Eijffinger

Motivation: US growth

Motivation: Monetary policy to the rescue?

Motivation: Other options?

Inside the mind of the current chairman of the Federal Reserve: [Bernanke and Reinhart, AER 2004]

Expanding the Size of the Central Bank's Balance Sheet
 → we have seen this (a lot!)

❷ Altering the Composition of the Central Bank's Balance Sheet → we saw this in September (operation twist).

Shaping Interest-Rate Expectations → our focus

Focus of the talk: Communication

Literature: [Eggertsson and Woodford, BPEA 2003] [Blinder et alia, JEL 2008]

Contribution:

link communication - stock prices

 \rightarrow heterogenous responses (across time and stocks)

 \longleftrightarrow

literature

Other contribution: institutional innovation and instability of shocks, outliers, ...

Idea: On FOMC days, changes in interest rates due to central banks.

 \rightarrow central bank talk or central bank action

Regress changes long term interest rates on central bank action, residuals should capture central bank communication.

 \rightarrow gauge effect of central bank talk

Decompose:

 $\Delta Eurodollar$ future $1Y_t = \alpha + \beta Surprise Action_t + \epsilon_t$

```
Surprise Action = Target factor
and
\epsilon = Path factor
```

FOMC meetings above/beyond target surprises.

 \rightarrow Two factors explain bulk of asset movements on FOMC days.

Control variable is a market-based surprise measure of monetary policy: commonly used trick.

Federal funds future: value = 100 - average of effective rate over 30 days before payout

 \rightarrow gauge market expectations.

Change in small window around FOMC meeting: surprise measure.

Methodology: Surprises: Algebra

 ff_t^0 implied rate future contract expiring this month at time t, D_0 is number of days this month contains,

 d_0 is number of days of the month elapsed,

 r_{-1} interest rate prevailing up until FOMC meeting,

ro interest rate prevailing up after FOMC meeting

$$\begin{aligned} \mathrm{ff}_{t-\Delta t}^{0} &= \frac{d_{0}}{D_{0}}r_{-1} + \frac{D_{0} - d_{0}}{D_{0}}\mathbb{E}_{t-\Delta t}(r_{0}) + \mu_{t-\Delta t}^{0}.\\ \mathrm{ff}_{t}^{0} &= \frac{d_{0}}{D_{0}}r_{-1} + \frac{D_{0} - d_{0}}{D_{0}}r_{0} + \mu_{t}^{0}. \end{aligned}$$

Methodology: Surprises: Algebra

 \rightarrow construct surprise

Surprise_t =
$$r_0 - \mathbb{E}_{t-\Delta t}(r_0)$$

= ...
= $\left[\text{ff}_t^0 - \text{ff}_{t-\Delta t}^0 \right] \frac{D_0}{D_0 - d_0}.$

 $\mathsf{Return}_{it} = \alpha + \beta_1 \mathsf{Target}_t + \beta_2 \mathsf{Path}_t + \epsilon_{it}$

Our interest is in the effect of the Path factor

Path factor = communication

Everything what the central bank did, except its actions (things which move fed funds futures), that moved Eurodollar futures \rightarrow communication of outlook, policy inclination,...

Endogeneity, simultaneity? Sufficiently small window.

Literature: Daily window ok, larger window not.

Changes in risk premium? Only relevant at lower frequency

sample: FOMC meetings

Well established approach in the literature, most technical objections are documented and resolved.

Literature finds no significant effect for stock indices of the path factor:

Return $Index_{it} = \alpha + \beta_1 Target_t + \beta_2 Path_t + \epsilon_{it}$

In this paper:

[1] individual stocks

[2] heterogeneity across time: recession vs. no recession

[3] heterogeneity in the cross section: industries (demand channel), firms (credit channel).

 $\mathsf{Return}_{it} = \alpha + \beta_1 \mathsf{Target}_t + \beta_2 \mathsf{Target}_t * \mathsf{Rec}_t + \beta_3 \mathsf{Path}_t + \beta_4 \mathsf{Path}_t * \mathsf{Rec}_t + \epsilon_{it}$

Rec_t: NBER recession indicator.

Stock data: CRSP Financial account variables: COMPUSTAT Sample: S&P 500 (adjusted as composition changes) Futures data: obtained from CME group

Results with heteroskedasticity robust errors and firm fixed effects \rightarrow other error specifications yield similar results

Results with outlier dates dropped: robust results (but good idea?)

Results: Aggregate results

	(1)	(2)
	Late	Late
	b/t	b/t
Target	-14.133***	-13.281***
	(-20.11)	(-23.88)
Target*Rec		-6.549**
		(-3.21)
Path	3.847***	-2.950***
	(16.75)	(-16.10)
Path*Rec		20.517***
		(39.34)
Ν	27016	27016
r2	0.05	0.15

Table: Baseline event study (excluding outliers)

 * p < 0.05, ** p < 0.01, *** p < 0.001

Credit Channel:

[1] Highly bank-dependent borrowers are affected more as banks reduce overall supply of credit.

Kashyap, Stein, Wilcox, AER 1993

[2] Rising interest rates push down present value of collateral, weakening balance sheets. \rightarrow constraint on supply of goods. Bernanke, Gertler, JEP 1993

Demand Channel:

Firms which produce goods which are interest-sensitive should see expected future earnings more affected. \rightarrow on industry level. Ehrmann, Fratzscher, JMCB 2005

Results: Industry effects and cyclicality

Major Group	Target	Target*Rec	Path	Path*Rec
Primary metal	-29.06***	-24.68	-1.397	30.60***
Fabricated metal	-22.89***	-0.614	-3.179***	20.03***
Rubber	-21.19**	5.463	-4.114	20.25***
Petroleum	-18.17***	3.438	0.583	14.30***
Paper	-14.33***	34.10	-2.511*	16.60***
Printing and Publishing	-13.69*	1.973	-0.397	14.10***
Apparel, finished products	-13.35*	-24.58	-0.850	20.04***
Industrial/commercial machinery	-11.81***	-8.183	-4.077***	20.75***
Chemicals	-11.78***	2.718	-0.610	8.275***
Transportation equipment	-11.38***	-39.76***	-0.752	21.62***
Electronic equipment	-7.513***	-4.518	-5.150***	20.60***
Food and Kindred products	-7.424***	1.715	-1.483*	9.501***
Tobacco Products	-6.505	31.03*	-3.648	7.721*
Photo/Medical/Optical Goods, Clocks	-5.843**	-9.568	-3.006***	12.22***

Table: Industry effects: Manufacturing

 * p < 0.05, ** p < 0.01, *** p < 0.001

Cyclical companies should respond more, [Ehrmann and Fratzscher, JMCB 2004].

Test by constructing *industrial growth beta's*. Old idea by [Boudoukh, Richardson, Whitelaw, JF 1994].

Growth Rate Indus. Prod.^{*SectorX*}_t = $\alpha + \beta$ Growth Rate Indus. Prod.^{*Aggregate*}_t + ϵ_t

Classify industries from cyclical to noncyclical based on β .

Results: Why?

	(1) All b/t	(2) Cyclical b/t	(3) Not cyclical b/t
Target	-11.580***	-19.818***	-9.998***
	(-16.45)	(-5.67)	(-8.94)
Target*Rec	-6.223*	-12.145	5.287
	(-2.52)	(-0.98)	(1.02)
Path	-1.958***	-1.801	-1.546***
	(-7.84)	(-1.53)	(-4.19)
Path*Rec	14.184***	25.409***	8.308***
	(25.01)	(10.31)	(9.99)
N	14260	1205	3152
r2	0.11	0.12	0.08

Table: Cyclical vs Non-cyclical manufacturing firms

 * p < 0.05, ** p < 0.01, *** p < 0.001

Results: Firm effects

	(1) Leverage High	(2) Leverage Low	(3) Market Value High	(4) Market Value Low
Target	-11.730***	-10.131***	-10.091***	-11.777***
	(-4.54)	(-4.07)	(-5.91)	(-3.70)
Target*Rec	-22.814*	1.756	13.207*	-36.134*
	(-1.98)	(0.24)	(2.37)	(-2.45)
Path	-2.747*	-1.698	-2.018***	-2.393*
	(-2.07)	(-1.48)	(-3.48)	(-2.09)
Path*Rec	23.181***	11.931***	8.702***	29.796***
	(6.24)	(5.05)	(7.21)	(7.56)
N	910	967	967	910
r2	0.17	0.11	0.12	0.21

Table: Firm effects

 * p < 0.05, ** p < 0.01, *** p < 0.001

Results: Firm effects

	(1) Employees High	(2) Employees Low	(3) Price-earnings High	(4) Price-earnings Low
Target	-6.661**	-13.220***	-4.572	-11.876***
	(-2.99)	(-5.28)	(-1.33)	(-4.43)
Target*Rec	-5.114	-26.565*	-9.769	-14.450
	(-0.71)	(-2.07)	(-1.09)	(-1.47)
Path	-2.961**	0.068	-0.671	-0.989
	(-2.64)	(0.05)	(-0.60)	(-0.81)
Path*Rec	12.818***	21.533 ^{***}	10.216***	14.912***
	(5.32)	(5.93)	(4.51)	(6.58)
N	953	897	852	795
r2	0.11	0.15	0.15	0.14

Table: Firm effects

 * p < 0.05, ** p < 0.01, *** p < 0.001

Controls and robustness checks: asset pricing factors, alternative choice of outliers, \ldots

What to do? Asymmetries, recession indicators, financial dependence variable (Rajan/Zingales), ...

Other contributions: Minor, yet imho relevant. Read the paper when interested.

Conclusion

Take away?

- Short term impact of Fedspeak. Longer term???
- Iffects can be substantial. Depends on x,y,z.
- Heterogeneity in effects in line with effects target surprises, [Ehrmann and Fratzscher, JMCB 2004]
- Is it *really* important?
 - \rightarrow answer from the sincere empiricist: Maybe
 - \rightarrow pragmatic answer: If Bernanke thinks it is, it is!
 - \rightarrow more pragmatic answer: If financial markets think it is, it is!

Questions?

References

Ben Bernanke and Vincent Reinhart (2004) Conducting Monetary Policy at Very Low Short-Term Interest Rates. *American Economic Review* 94(2): 85-90.

Alan S. Blinder and Michael Ehrmann and Marcel Fratzscher and Jakob De Haan and David-Jan Jansen (2008) Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence *Journal of Economic Literature*

J. Boudoukh, M. Richardson and R. Whitelaw (1994) Industry Returns and the Fisher Effect. Journal of Finance 49(5): 1595-1615.

References

Gauti Eggertsson and Michael Woodford (2003) The Zero Bound on Interest Rates and Optimal Monetary Policy. *Brookings Papers on Economic Activity* (1), pp. 139-233.

Michael Ehrmann and Marcel Fratzscher (2004) Taking Stock: Monetary Policy Transmission to Equity Markets Journal of Money, Credit and Banking, p. 719-738

Refet Gürkaynak, Brian Sack and Eric Swanson (2005) Do actions speak louder than words? The response of asset prices to monetary policy actions and statements.

International Journal of Central Banking