Bank Capital in the Short and in the Long Run

Caterina Mendicino¹ Kalin Nikolov¹ Javier Suarez ² Dominik Supera³

¹DG Research – European Central Bank

²CEMFI

³Wharton School – University of Pennsylvania

1st Annual Workshop of the ESCB Research Cluster "Financial stability, macroprudential regulation and microprudential supervision",

2-3 November 2017 | Athens

1 Motivation and overview of the results

- 2 Related literature
- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
 - Transitional dynamics
- 🕖 Optimal CR

B Conclusion

• Since the global financial crisis min TCRs rose from 8% in Basel II to 10.5% in Basel III

- Opposing views on effects of higher capital ratios (CRs)
 - Needed to strengthen soundness of banks and improve incentives
 - Concerns of cutting credit provision to an already weak real economy

• This paper discusses the issues that determine how the above trade off should be resolved

Main question: **how far** and **how quickly** should capital requirements be raised in order to ensure a strong and resilient banking system **without** imposing undue costs on the real economy?

How the (transition) costs and (long-run) benefits of capital requirement policies are affected by...

- the conduct of monetary policy
- the degree of fragility of the banking sector

- In order to understand the effects of changes in capital regulation we build a **quantitative macro-banking model** featuring both nominal and financial frictions.
- The financial side of the model features **borrowers default** (in a CSV setting), **bank default** and **capital regulation** as in Clerc et al, 2015 and Mendicino et al (2016a)
- Introduce monetary policy, nominal debt contracts and nominal price stickiness
- To provide **quantitative results**, the model is calibrated to match **Euro Area** empirical regularities in macro, financial and banking variables.

Tighter Bank Capital Regulation:

- **potential long-run benefits**: Higher bank capital ratios reduce excessive bank leverage, defaults and their social/fiscal costs
- **short-run/transition costs**: Increases in CR resemble a negative demand shock

- In some circumstances (e.g. when the ZLB binds) short-run costs can offset the long-run welfare benefits! Then a more **gradual** and **less sizable** implementation of higher CRs more appropriate
- Benefits of higher CRs are larger and costs are smaller when bank risk is high.

Motivation and overview of the results

2 Related literature

- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
- 6 Transitional dynamics
- 🕖 Optimal CR

B Conclusion

- Macroprudential policy to correct pecuniary externalities Lorenzoni (2008), Bianchi and Mendoza (2011, 2015), Korinek and Jeanne (2010)
- Capital requirements in a macro-banking framework Van den Heuvel (2008), Martinez-Miera and Suarez (2014), Nguyen (2014), Clerc et al (2015), Kiley and Sim (2015), Christiano and Ikeda (2017)
- Macroprudential-monetary policy interactions in DSGE De Paoli and Paustian (2017), Collard et al (2017)
- Impact of policies at the ZLB
 - Fiscal policy: Christiano, Eichenbaum, Rebello (2011), Erceg and Linde (2014)
 - Structural reform: Eggertson, Ferrero and Raffo (2014)

- Motivation and overview of the results
- 2 Related literature
- 3 Model description
 - 4 Calibration
- 5 Long-run Effects of Higher CR
- Transitional dynamics
- 🕖 Optimal CR

Conclusion

- Three different types of household members
 - Workers: supply (insured and uninsured) deposits to banks and labor to the production sector
 - Entrepreneurs: provide equity financing to good-producing firms
 - Bankers: provide equity financing to banks
- Household provides *risk-sharing* to their members (against defaults on deposits)

Model players: Entrepreneurial firms and banks

• Entrepreneurial firms:

- The representative entrepreneurial firm gets equity from entrepreneurs
- Borrow funds from banks under limited liability
- Risky investment in physical capital (default risk)
- firm defaults on its loans when the gross return on its assets (logN distributed iid shocks) is insufficient to repay its debt obligations.

Banking sector:

- Competitive 1 period banks that supply (risky) loans to entrepreneurial firms
- Use deposit funding and equity funding
- Subject to capital regulation
- Borrowers riskiness + iid portfolio return shock (logN distributed) ⇒ banks default risk (*limited liability on deposits*)

- (Standard) Goods and Capital producing firms (price stickiness)
- Macroprudential Authority : sets capital requirements for banks
- Monetary Policy Authority : sets the short-term policy rate Taylor Rule

1 Individual bank default risk is not priced efficiently

- Part of bank debt = insured deposits (pays back promised interest rate)
- Uninsured bank debt priced according to average (rather than individual) bank risk
- \implies banks have an incentive to take excessive risk (benefits of Higher CRs)
- **2** Limited participation in the equity market \implies equity more expensive than debt (cost of Higher CRs)
- Nominal debt and nominal price rigidities (important for short term costs of Higher CRs)

Motivation and overview of the results

- 2 Related literature
- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
- 6 Transitional dynamics
- 🕖 Optimal CR

Conclusion

- Based on quarterly data for the Euro area (1992:1-2016:4)
- Reproduces salient features of macro, financial and banking data
- Implemented in two stages:
 - Parameters fixable by convention
 - Rest of parameters found so as to match targeted moments (by minimizing equally weighted sum of distances between empirical model-based moments)

Table: Model fit

Targets	Definition	Data	Model
Real risk-free rate	$(eta^{-1}-1) imes$ 400	2.32	2.32
Inflation	$(\overline{\pi}-1) imes$ 400	1.77	1.77
Capital requirements	ϕ	0.08	0.08
Share of insured deposits	κ	0.54	0.54
NFCs' default	$F_f(\overline{\omega}_f) imes 400$	2.646	2.675
NFC loans to GDP	b _f / GDP	1.897	1.868
Spread NFC loans	$(R^f - R) imes 400$	1.215	1.244
Banks' default	$F_b(\overline{\omega}_b) imes 400$	0.665	0.664
Equity return of banks	$(ho_{b}-1) imes$ 400	7.066	7.138
Banks price to book ratio	$ u_{b}$	1.148	1.148
Capital share of households	K_s/K	0.22	0.219

Motivation and overview of the results

- 2 Related literature
- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
 - Transitional dynamics
- 🕖 Optimal CR

B Conclusion

We use our quantitative model as a laboratory to explore the **long-run** real and welfare effects of a permanent change in TCRs (between 8 and 11 percent).

Higher CRs affect **bank funding costs/credit supply** in two off-setting ways:

- the implied reduction in the probability of bank default, lowers the cost of deposit funding (deposit spread): no negative implications for credit supply ⇒ dominates when bank prob. default high
- larger share of more expensive equity: tightening in credit supply ⇒ dominates for low bank prob. default

Hump shape in welfare reflects the changing nature of the above trade off.

Long-run welfare impact

Motivation and overview of the results

- 2 Related literature
- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
- **(6)** Transitional dynamics
- 🕖 Optimal CR

Conclusion

• Design:

- t=1 economy at deterministic steady state
- t=2,3,... **2.5 pp permanent change in CR**, implemented gradually (perfect foresight)

• Alternative Environments

- Speed of implementation
 - Provide a macroeconomic rationale for gradual phase-in of general increases in capital requirements (as for Basel III)

Different speeds: 8Q vs 40Q

Design:

- t=1 economy at deterministic steady state
- t=2,3,... **2.5 pp permanent change in CR**, implemented gradually (perfect foresight)
- Alternative Environments
 - Speed of implementation
 - Provide a macroeconomic rationale for gradual phase-in of general increases in capital requirements (as for Basel III)

• Conduct of Monetary Policy

• Short-term costs particularly large when monetary policy is constrained (e.g. ZLB for interest rate policy)

Impact of the ZLB

Experiment

- Design:
 - t=1 economy at deterministic steady state
 - t=2,3,... **2.5 pp permanent change in CR**, implemented gradually (perfect foresight)
- Alternative Environments

• Speed of implementation

• Provide a macroeconomic rationale for gradual phase-in of general increases in capital requirements (as for Basel III)

• Conduct of Monetary Policy

• Short-term costs particularly large when monetary policy is constrained (e.g. ZLB for interest rate policy)

• Degree of Bank Distress

• There is a level of fragility in the banking system above which swift aggregate recapitalisation may be justified

Transition costs under high financial distress

Motivation and overview of the results

- 2 Related literature
- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
- 6 Transitional dynamics

🕖 Optimal CR

8 Conclusion

Design of Optimal Capital Regulation:

• Long run vs Long run + Transition

• Welfare costs during transition reduce the optimal CR wrt optimal long-run level: It is important to include transition costs when assessing the optimal CR increases!

Long-run vs Transition

Design of Optimal Capital Regulation:

• Long run vs Long run + Transition

• Welfare costs during transition reduce the optimal CR wrt optimal long-run level: It is important to include transition costs when assessing the optimal CR increases!

• Normal Times (Taylor Rule) vs ZLB

• Being close to the ZLB further reduces the optimal CR

Impact of the ZLB

Design of Optimal Capital Regulation:

• Long run vs Long run + Transition

• Welfare costs during transition reduce the optimal CR wrt optimal long-run level: It is important to include transition costs when assessing the optimal CR increases!

• Normal Times (Taylor Rule) vs ZLB

• Being close to the ZLB further reduces the optimal CR

Degree of Bank Distress

• The higher the degree of bank fragility the higher the optimal CR even with ZLB

High financial distress (comparison with normal times)

Motivation and overview of the results

- 2 Related literature
- 3 Model description
- 4 Calibration
- 5 Long-run Effects of Higher CR
- 6 Transitional dynamics
- 7 Optimal CR

Capital requirement increases: **long-run benefits** BUT **short term costs** on the real economy

- Short-run real and welfare effects of higher CRs depend on the speed of implementation:
 - a slower speed of implementation can mitigate the short-run costs
- ... on the conduct of monetary policy:
 - smaller when monetary policy is accommodative
 - $\bullet\,$ very large when the ZLB is binding \Longrightarrow Slow implementation more appropriate
- ... and on the **fragility of the banking system**:
 - with more fragile banks the long term benefits of higher CRs are larger
 - ... while the short term costs reduced \implies Faster implementation optimal

- Three different types of members
 - Workers: supply deposits to banks and labor to the production sector and transfer their wage income to the household
 - Entrepreneurs: provide equity financing to good-producing firms
 - Bankers: provide equity financing to banks [limited participation]
- Each period
 - Some entrepreneurs and bankers retire in each period and their wealth is shared among the dynasty members ⇒ avoid over-accumulation of wealth,
 - Some workers become bankers and entrepreneurs (with some initial wealth endowment) ⇒ constant size of the population.
- Household provides *risk-sharing* to their members (against defaults on deposits)

$$E_{t}\left[\sum_{\tau=0}^{\infty}\beta^{t+\tau}\left[\log\left(C_{t+\tau}\right)-\frac{\varphi}{1+\eta}\left(L_{t+\tau}\right)^{1+\eta}\right]\right]$$

subject to the budget constraint:

$$\begin{array}{l}
P_t C_t + (Q_t + P_t s_t) \, K_{s,t} + D_t + B_t \leq (P_t r_{k,t} + (1 - \delta_t) \, Q_t) \, K_{s,t-1} + \\
W_t L_t + \widetilde{R}_t^d D_{t-1} + R_{t-1} B_{t-1} - P_t \, T_{s,t} + P_t \Pi_t + P_t \Xi_t
\end{array} \tag{1}$$

where:

 $\begin{array}{lll} C_t: \mbox{ consumption } & L_t: \mbox{ hours worked } \\ \widetilde{R}^d_t: \mbox{ Net of default return on deposits } & D_t: \mbox{ portfolio of deposits } \\ K_{s,t} \mbox{ capital held by households, subject to a cost } s_t & Q_t: \mbox{ nominal capital price } \\ B_t: \mbox{ risk free asset (in zero net supply) } & R_t: \mbox{ Risk free rate } \\ T_t: \mbox{ lump-sum tax used to ex-post balance the DIA's budget } \\ \Pi_t: \mbox{ aggregate net transfers from entrepreneurs and bankers } \end{array}$

 Ξ_t :dividends from firms that manage the capital stock on behalf of households

- Fraction κ: insured deposits that always pay back the promised gross deposit rate R^d_{t-1}.
- Fraction 1κ : **uninsured bank debt** that pays back
 - the promised rate R_{t-1}^d if the issuing bank is solvent
 - 1κ of the the average default loss (per unit of bank debt net recovery value of bank assets) in case of default [*Individual bank default risk not efficiently priced*]
 - \Longrightarrow the gross return on bank debt is given by

$$\widetilde{R}_t^d = R_{t-1}^d - (1-\kappa)\Omega_t, \qquad (2)$$

For $\kappa < 1$, bank debt is overall risky: $R_{t-1}^d \ge R_{t-1}$.

Banks

Competitive sector of banks supplying loans $B_{f,t}$ to entrepreneurial firms using deposit funding D_t and equity funding $E_{b,t}$. Max expected equity pay-off:

$$\max_{B_{f,t},D_t,E_{b,t}} E_t \Lambda_{b,t+1} \max \left[\omega_{b,t+1} \widetilde{R}_{t+1}^b B_{f,t} - R_t^d D_t, 0 \right]$$

subject to:

$$E_{b,t} + D_t = B_{f,t}$$

$$E_{b,t} \ge \phi_t B_{f,t}$$

$$E_t[\rho_{b,t+1}E_{b,t}] \ge \overline{\rho}_{b,t}E_{b,t}$$

balance sheet constraint regulatory capital constraint bankers' participation constraint

where: $\omega_{b,t+1}$: idiosyncratic portfolio return shock (mean=1)

 \widetilde{R}^{b}_{t+1} : realized return on well diversified portfolio of loans to entrepreneurs

 $\overline{\rho}_{b,t} :$ bankers' required rate of return on equity $\Lambda_{b,t+1}$ is bankers' stochastic discount factor

Banks (cont'd)

Banks' willingness to invest in loans with returns \tilde{R}_{t+1}^{b} and subject to a capital requirement ϕ_t requires having

$$E_t \Lambda_{b,t+1} \left[1 - \Gamma_{b,t+1}(\overline{\omega}_{b,t+1}) \right] \widetilde{R}_{t+1}^b \ge \phi_t v_{b,t}, \tag{3}$$

which explains the expressions for the participation constraints introduced in the borrowers' problem. Rate of return on banker equity is:

$$\rho_{b,t+1} = \frac{(1 - \Gamma_b(\overline{\omega}_{b,t+1}))\widetilde{R}_{t+1}^b}{\phi_t}.$$

where

$$\Gamma_{b}(\overline{\omega}_{b,t}) = \int_{0}^{\overline{\omega}_{b,t}} \omega_{b,t} f_{b}(\omega_{b,t}) d\omega_{b,t} + \overline{\omega}_{b,t} \int_{\overline{\omega}_{b,t}}^{\infty} f_{b}(\omega_{b,t}) d\omega_{b,t}$$

is the share of bank profits that accrue to depositors

The representative entrepreneurial firm gets equity A_t from entrepreneurs and borrow $B_{f,t}$ from banks to buy capital $K_{f,t}$ (return affected by an i.d.d. shock $\omega_{f,t+1}$ with mean 1).

- Can optimally default if net profits are negative, in which case the banks pay a bankruptcy cost and cease the underlying asset.
- The default decision depends on both iid and aggregate reasons:

$$\omega_{f,t} \le \overline{\omega}_{f,t} = \frac{R_{t-1}^f \frac{B_{f,t-1}}{P_{t-1}}}{R_{K,t} K_{f,t-1}} \frac{1}{\pi_t}$$
(4)

where $R_{K,t} = \frac{(1-\delta_t)Q_t + P_t r_{k,t}}{Q_{t-1}}$ is the aggregate nominal return on capital.

$$\max_{K_{f,t},R_{t}^{f}} E_{t} \left[\Lambda_{e,t+1} (1 - \Gamma_{f,t+1} \left(\overline{\omega}_{f,t+1} \right)) \left((1 - \delta_{t+1}) \frac{Q_{t+1}}{P_{t+1}} + r_{k,t+1} \right) \pi_{t+1} \right] K_{f,t}$$
(5)

subject to:

- Budget constraint: $B_{f,t} = Q_t K_{f,t} A_t$
- Banks IC constraint:

$$E_t \begin{bmatrix} \Lambda_{b,t+1} (1 - \Gamma_b(\overline{\omega}_{b,t+1})) (\Gamma^f(\overline{\omega}_{f,t+1}) - \mu_f \mathcal{G}_f(\overline{\omega}_{f,t+1})) \mathcal{R}_{K,t+1} \\ \text{Levered returns} & \text{net return on a loan portfolio} \end{bmatrix} q_t \mathcal{K}_{f,t} \geq \overline{\rho}_{b,t} \phi_t \mathcal{B}_{f,t}$$

where

$$\begin{split} &\Lambda_{e,t+1}: \text{the entrepreneurs' stochastic discount factor} & B_{f,t} \text{ non-contingent debt with interest} \\ &G_f\left(\overline{\omega}_{f,t+1}\right): \text{capital share that end up in default} & \mu_f: \text{ repossession cost} \\ &\overline{\rho}_{b,t}: \text{ required expected rate of return on the equity} \\ &\Gamma_f(\overline{\omega}_{f,t}) = \int_0^{\overline{\omega}_{f,t}} \omega_{f,t} f_f(\omega_{f,t}) d\omega_{f,t} + \overline{\omega}_{f,t} \int_{\overline{\omega}_{f,t}}^\infty f_f(\omega_{f,t}) d\omega_{f,t}: \text{ share of total returns of levered} \\ &\text{ asset that accrues to banks} \end{split}$$

The final good, Y_t , is produced by perfectly competitive firms using

- $y_t(i)$ units of each type of intermediate good *i*
- a constant return to scale, diminishing marginal product, and constant-elasticity-of-substitution technology:

$$Y_t \leq \left[\int_0^1 y_t(i)^{\frac{1}{1+\theta}} di\right]^{1+\theta} , \qquad (6)$$

where θ is the price elasticity of demand.

The intermediate goods, y(i), is produced by monopolistically competitive firms indexed by *i* using the following technology

$$y(i)_{t} = z_{t} \left(I(i)_{t} \right)^{1-\alpha} k(i)_{t-1}^{\alpha} , \qquad (7)$$

where k is rented capital, l is labour supplied by households.

Price rigidities as in the New Keynesian literature. At time t each intermediate firm is allowed to revise its price with probability $(1 - \xi)$ as in Calvo (1983), leading to the following New Keynesian Phillips curve:

$$\log\left(\frac{P_t}{P_{t-1}}\right) = \beta\left[E_t \log\left(\frac{P_{t+1}}{P_t}\right)\right] + \epsilon_\pi \log\left(\frac{X_t}{X}\right) \tag{8}$$

where $\epsilon_{\pi} = \frac{(1-\xi)(1-\beta\xi)}{\xi}$ and X_t represents the marginal cost of production. Intermediate firms are owned by the households. Monetary Policy Authority : sets the short-term policy rate - Taylor Rule

$$R_{t} = \rho_{R}R_{t-1} + (1 - \rho_{R}) \left[\bar{R} \left(\frac{\pi_{t}}{\bar{\pi}} \right)^{\alpha_{\pi}} \left(\frac{GDP_{t}}{GDP_{t-1}} \right)^{\alpha_{GDP}} \right]$$

Macroprudential Authority : sets capital requirements for banks ϕ_t

Table: Model parameters

Preset parameters					
Disutility of labor	φ	1	Banks bankruptcy cost	μ_b	0.3
Frisch elasticity of labor	η	1	Capital adjustment cost param.	ψ_k	4.567
Capital share in production	α	0.3	Price elasticity of demand	θ	1.005
Depreciation rate of capital	δ	0.03	Calvo probability	ξ	0.2
Population of entrepreneurs	n _e	1	Smoothing param. (Taylor rule)	ρ_R	0.75
NFC bankruptcy cost	μ_{f}	0.3	Inflation response (Taylor rule)	α_{π}	1.5
Survival rate of entrepreneurs	θ_e	0.975	Output growth response (Taylor rule)	α_{GDP}	0.1
Population of bankers	n_b	1			
Calibrated parameters					
Discount factor of consumers	β	0.994	STD iid risk for banks	σ_b	0.028
Capital requirement for banks	ϕ	0.08	Survival rate of bankers	θ_b	0.908
Share of insured deposits	κ	0.54	Transfer from HH to entrepreneurs	χe	0.001
Steady-state inflation	$\overline{\pi}$	1.004	Transfer from HH to bankers	χь	0.856
STD iid risk for entrepreneurs	σ_f	0.305	Capital managerial cost (coef.)	ς	0.006

Appendix - Comparative statics

Appendix - Impact of monetary policy response

Appendix - Impact of monetary policy response, at the ZLB

Appendix - Sensibility to price flexibility

Appendix - Long-run vs Transition (20Q)

Appendix - Long-run vs Transition (40Q)

Lenght of implementation at the ZLB

High financial distress and the ZLB

