Bank Runs and Macroprudential Instruments in a Global Game General Equilibrium Model

Daisuke Ikeda

Bank of England

3 November 2017

1st Annual Workshop of ESCB Research Cluster 3 on Financial stability, macroprudential regulation and microprudential supervision

The views expressed in this presentation are those of the author and should not be interpreted as those of the Bank of England

Motivation: Two Basic Facts

- Primary objective of macroprudential policy: aligning financial system resilience with systemic risk to promote the real economy
 - Systemic risk event
 - Financial system resilience
 - Market failures

Motivation: Two Basic Facts

- Primary objective of macroprudential policy: aligning financial system resilience with systemic risk to promote the real economy
 - Systemic risk event
 - Financial system resilience
 - Market failures
- Ø Bank runs as a typical symptom of financial crises in history
 - Gorton (2012)
 - Reinhart and Rogoff (2009)

What I Did

- Developed a two-period general equilibrium model that features
 - Bank runs (systemic event) in a global game framework
 - ② Endogenous probability of bank runs (banking system resilience)
 - Market failures?

What I Did

- Developed a two-period general equilibrium model that features
 - Bank runs (systemic event) in a global game framework
 - ② Endogenous probability of bank runs (banking system resilience)
 - Market failures?
- Conducted welfare analyses and studied macroprudential instruments:
 - Leverage restriction (capital requirement)
 - Liquidity requirement
 - Sectoral requirement

Main Results

- Excessive bank leverage
- 2 Insufficient bank liquidity
- So Too high crisis (system-wide bank run) probability
- Seed for policy coordination; risk migration

Main Results

- Excessive bank leverage
- Insufficient bank liquidity
- Too high crisis (system-wide bank run) probability
- Need for policy coordination; risk migration
- Sources of inefficiencies: limited liability + externality specific to a global game; pecuniary externality

Main Results

- Excessive bank leverage
- Insufficient bank liquidity
- Too high crisis (system-wide bank run) probability
- Need for policy coordination; risk migration
- Sources of inefficiencies: limited liability + externality specific to a global game; pecuniary externality
- Applications
 - Sectoral capital requirements and risk weights
 - Risk taking
 - Deposit insurance

Literature and Road Map

- Literature
 - Rochet and Vives (2004)
 - Diamond and Dybvig (1983)
 - Carlsson and Van Damme (1993); Morris and Shin (1998)
 - Christiano and Ikeda (2013, 2016)

э

< 47 ▶

Literature and Road Map

- Literature
 - Rochet and Vives (2004)
 - Diamond and Dybvig (1983)
 - Carlsson and Van Damme (1993); Morris and Shin (1998)
 - Christiano and Ikeda (2013, 2016)
- Road map
 - Benchmark model with a bank leverage choice only
 - Role of leverage restrictions (capital requirements)
 - Extended model to incorporate a bank liquidity choice
 - Extension to study sectoral capital requirements
 - Example of risk-taking
 - Preliminary result on the dynamic model

• Two periods, t = 1, 2

< A IN

э

- Two periods, t = 1, 2
- Three types of agents
 - Households
 - Banks
 - Fund managers

- Two periods, t = 1, 2
- Three types of agents
 - Households
 - Banks
 - Fund managers
- Endowment in t = 1 only
 - Households: y > 0 (income)
 - Banks: n > 0 (bank capital)

- Two periods, t = 1, 2
- Three types of agents
 - Households
 - Banks
 - Fund managers
- Endowment in t = 1 only
 - Households: y > 0 (income)
 - Banks: n > 0 (bank capital)
- All agents are competitive

- Two periods, t = 1, 2
- Three types of agents
 - Households
 - Banks
 - Fund managers
- Endowment in t = 1 only
 - Households: y > 0 (income)
 - Banks: n > 0 (bank capital)
- All agents are competitive
- Ownership: banks are owned by households

(t = 1**)** Households consume c_1 and make deposits d

(日) (四) (日) (日) (日)

э

- **(**t = 1**)** Households consume c_1 and make deposits d
- **2** (t = 1) Deposit management is delegated to fund managers

- 31

< □ > < □ > < □ > < □ > < □ > < □ >

- **(**t = 1**)** Households consume c_1 and make deposits d
- (t = 1) Deposit management is delegated to fund managers
- (1) t = 1) Banks make loans with the return given by

$$R^k \sim N(ar{R}^k, \sigma^2_{R^k})$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

- **(**t = 1**)** Households consume c_1 and make deposits d
- **2** (t = 1) Deposit management is delegated to fund managers
- **(**t = 1**)** Banks make loans with the return given by

$$R^k \sim N(ar{R}^k, \sigma^2_{R^k})$$

• (t = 2) Bank asset return R^k is realized, but yet to be known

- **(**t = 1**)** Households consume c_1 and make deposits d
- **2** (t = 1) Deposit management is delegated to fund managers
- **(**t = 1**)** Banks make loans with the return given by

$$R^k \sim N(ar{R}^k, \sigma^2_{R^k})$$

 (t = 2) Bank asset return R^k is realized, but yet to be known
 (t = 2) Fund manager receives signal s_i = R^k + ε_i, where ε_i ~ N(0, σ_ε²),

- **(**t = 1**)** Households consume c_1 and make deposits d
- **2** (t = 1) Deposit management is delegated to fund managers
- **(**t = 1**)** Banks make loans with the return given by

$$R^k \sim N(\bar{R}^k, \sigma^2_{R^k})$$

(t = 2) Bank asset return R^k is realized, but yet to be known
 (t = 2) Fund manager receives signal s_i = R^k + ε_i, where ε_i ~ N(0, σ_ε²),

(t = 2) Fund managers decide whether to withdraw deposits or not

- **(**t = 1**)** Households consume c_1 and make deposits d
- **2** (t = 1) Deposit management is delegated to fund managers
- **(**t = 1**)** Banks make loans with the return given by

$$R^k \sim N(ar{R}^k, \sigma^2_{R^k})$$

- (t = 2) Bank asset return R^k is realized, but yet to be known
 (t = 2) Fund manager receives signal s_i = R^k + ε_i, where ε_i ~ N(0, σ_ε²),
- (t = 2) Fund managers decide whether to withdraw deposits or not
 (t = 2) Households receive interest and profits and consume c₂

Households

$$\max_{\{c_1, c_2, d\}} u(c_1) + \mathbb{E}(c_2),$$
s.t.

$$c_1 + d \leq y, \quad c_2 \leq vRd + \pi,$$

where

$$v = egin{cases} 1 & \mbox{with prob}.1 - P \ (\mbox{no bank default}) \ < 1 & \mbox{with prob}.P \ (\mbox{bank default}) \end{cases}$$

Solution: supply curve of funds:

$$R = \frac{u'(y-d)}{1 - P + \mathbb{E}(v | \mathsf{default})P}$$

Image: A matrix and a matrix

2

Fund Managers: Action and Payoff

- Fund managers are risk neutral
- Payoff structure for fund manager $i \in (0, 1)$:

Net benefit of "Withdraw" over "Not withdraw" = $\begin{cases} \Gamma_0 & \text{if bank defaults} \\ -\Gamma_1 & \text{if bank survives} \end{cases}$

• Fund manager *i* withdraws iff

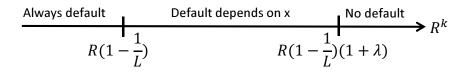
$$\underbrace{P_i}_{\text{Prob. of bank default perceived by }i} > \frac{\Gamma_1}{\Gamma_0 + \Gamma_1} \equiv \gamma,$$

 γ is exogenously given

Fund Managers: Threshold for R^k

 Costly liquidation: early liquidation of one unit bank asset generates only a faction 1/(1 + λ) of R^k, where λ > 0

Fund Managers: Threshold for R^k


- Costly liquidation: early liquidation of one unit bank asset generates only a faction 1/(1 + λ) of R^k, where λ > 0
- x = number of fund managers who withdraw deposits
- Let $L \equiv (n+d)/n$. In period t = 2, bank defaults iff

$$R^k(ar{n}+d)-(1+\lambda)xRd < (1-x)Rd,$$
 or $R^k < R\left(1-rac{1}{L}
ight)(1+\lambda x)$

Fund Managers: Threshold for R^k

- Costly liquidation: early liquidation of one unit bank asset generates only a faction 1/(1 + λ) of R^k, where λ > 0
- x = number of fund managers who withdraw deposits
- Let $L \equiv (n+d)/n$. In period t = 2, bank defaults iff

$$egin{aligned} & R^k(ar{n}+d) - (1+\lambda)xRd < (1-x)Rd, \ & ext{or} \quad R^k < R\left(1-rac{1}{L}
ight)(1+\lambda x) \end{aligned}$$

• Threshold strategy: withdraw if $s_i < \bar{s}$

э

→ ∃ →

< (17) × <

- Threshold strategy: withdraw if $s_i < \bar{s}$
- Solution:

$$\begin{aligned} & \Pr\left(R^k < R\left(1 - \frac{1}{L}\right) \left[1 + \lambda x(R^k, \bar{s}^*)\right] |\bar{s}^*\right) = \gamma, \\ & x(R^k, \bar{s}^*) = \Pr(R^k + \epsilon_i < \bar{s}^*) \end{aligned}$$

э

→ ∃ →

< f³ ► <

- Threshold strategy: withdraw if $s_i < \bar{s}$
- Solution:

$$\begin{aligned} & \Pr\left(R^k < R\left(1 - \frac{1}{L}\right) \left[1 + \lambda x(R^k, \bar{s}^*)\right] | \bar{s}^*\right) = \gamma, \\ & x(R^k, \bar{s}^*) = \Pr(R^k + \epsilon_i < \bar{s}^*) \end{aligned}$$

• Bank goes bankrupt iff $R^k < R^{k*}$

$$P = \Phi\left(\frac{R^{k*} - \bar{R}^k}{\sigma_{R^k}}\right) \equiv F(R^{k*})$$

- Threshold strategy: withdraw if $s_i < \bar{s}$
- Solution:

$$\begin{aligned} & \Pr\left(R^k < R\left(1 - \frac{1}{L}\right) \left[1 + \lambda x(R^k, \bar{s}^*)\right] | \bar{s}^*\right) = \gamma, \\ & x(R^k, \bar{s}^*) = \Pr(R^k + \epsilon_i < \bar{s}^*) \end{aligned}$$

• Bank goes bankrupt iff $R^k < R^{k*}$

$$P = \Phi\left(\frac{R^{k*} - \bar{R}^k}{\sigma_{R^k}}\right) \equiv F(R^{k*})$$

• Limit solution $\sigma_{\epsilon} \rightarrow 0$:

$$ar{s}^* = R^{k*} = R\left(1-rac{1}{L}
ight)\left[1+\lambda(1-\gamma)
ight]$$

Bank's Problem

- Bank defaults iff $R^k < R^{k*}$
- Bank's problem:

$$\mathbb{E}(\pi) = \max_{\{L\}} \int_{R^{k*}(L)}^{\infty} \left\{ R^k L - R \left[1 + \lambda x \left(R^k, \bar{s}^*(L) \right) \right] (L-1) \right\} \, ndF(R^k)$$

subject to $L \leq L_{\max}$

- 20

< ∃⇒

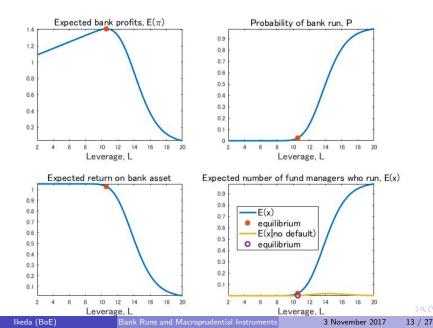
Image: A matrix and a matrix

Bank's Problem

- Bank defaults iff $R^k < R^{k*}$
- Bank's problem:

$$\mathbb{E}(\pi) = \max_{\{L\}} \int_{R^{k*}(L)}^{\infty} \left\{ R^k L - R \left[1 + \lambda x \left(R^k, \bar{s}^*(L) \right) \right] (L-1) \right\} n dF(R^k)$$

subject to $L \leq L_{\max}$


• Optimality condition:

$$D = \int_{R^{k*}}^{\infty} R^{k} dF(R^{k}) - (1 - P)R - R\lambda \int_{R^{k*}}^{\infty} x\left(R^{k}, \bar{s}^{*}(L)\right) dF\left(R^{k}\right),$$
$$-R\lambda \left(L - 1\right) \int_{R^{k*}}^{\infty} \frac{\partial x\left(R^{k}, \bar{s}^{*}\right)}{\partial \bar{s}^{*}} \frac{\partial \bar{s}^{*}\left(L\right)}{\partial L} dF\left(R^{k}\right)$$

< 1 k

3

Bank's Problem, cont'd

Competitive Equilibrium

• Bank optimality condition (limit case $\sigma_{\epsilon} \rightarrow 0$):

$$\int_{R^{k*}}^{\infty} R^{k} dF(R^{k}) = \left[1 - F\left(R^{k*}\right)\right] R$$
$$+\lambda \left(1 - \gamma\right) f\left(R^{k*}\right) \left[1 + \lambda \left(1 - \gamma\right)\right] R^{2} \frac{L - 1}{L^{2}}$$

• Household optimality condition:

$$R = \frac{u'(y - (L - 1)n)}{1 - P + \mathbb{E}(v | \text{default})P}$$

Recovery rate

$$v = \min\left\{1, \frac{R^k}{R} \frac{L}{L-1} - \lambda x(R^k, \bar{s}^*)\right\}$$

Welfare Analysis

• Social planner problem:

$$\max_{L} SW = u(\bar{y} - (L-1)n) + \left[\mathbb{E}(R^{k})L - \lambda\mathbb{E}(x)R(L-1)\right]n,$$

$$\mathbb{E}(x) \equiv \mathbb{E}[x(R^k, \bar{s}^*(L))],$$

 $R = u'(y - d)/[1 - P + \mathbb{E}(v | default)P]$

∃ ► < ∃ ►</p>

2

Welfare Analysis

• Social planner problem:

$$\max_{L} SW = u(\bar{y} - (L-1)n) + \left[\mathbb{E}(R^{k})L - \lambda\mathbb{E}(x)R(L-1)\right]n,$$

s.t.

$$\mathbb{E}(x) \equiv \mathbb{E}[x(R^k, \bar{s}^*(L))],$$

 $R = u'(y - d)/[1 - P + \mathbb{E}(v | \mathsf{default})P]$

• In the limit equilibrium $\sigma_{\epsilon} \rightarrow 0$:

$$SW = \underbrace{u(y - (L - 1)n) + \mathbb{E}(R^k)Ln}_{\text{Benefit of financial intermediation}} - \underbrace{P \times \lambda R(L - 1)n}_{\text{Cost of crisis}}$$

3

< 17 ▶

Excessive Bank Leverage

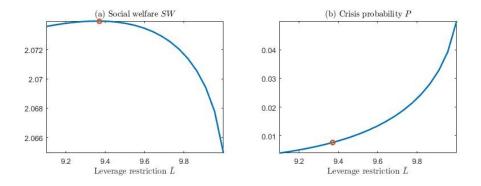
Proposition (Excessive leverage)

Suppose that the supply curve is upward sloping. Then, the bank leverage is excessive. Restricting bank leverage can improve social welfare.

Excessive Bank Leverage

Proposition (Excessive leverage)

Suppose that the supply curve is upward sloping. Then, the bank leverage is excessive. Restricting bank leverage can improve social welfare.


Intuition:

- Average cost of bank default is endogenised, but,
- Marginal effect (cost) of leverage is underestimated due to limited liability and the global game setup
- Default cost pecuniary externality

Effects of Leverage Restrictions

Competitive equilibrium:

L = 10, P = 5%

э

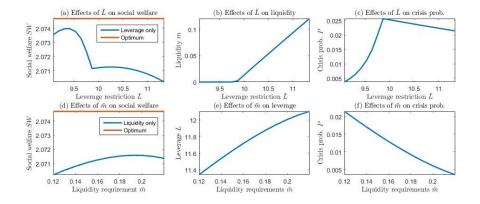
< 回 > < 三 > < 三 >

Extended Model with Leverage and Liquidity

- ullet Banks have an access to safe asset technology with gross return 1
- Banks use safe assets in response to early withdrawals
- Trade-off: less return vs lower probability of bank runs
- Liquidity-deposit ratio $m \equiv M/d$

Extended Model with Leverage and Liquidity

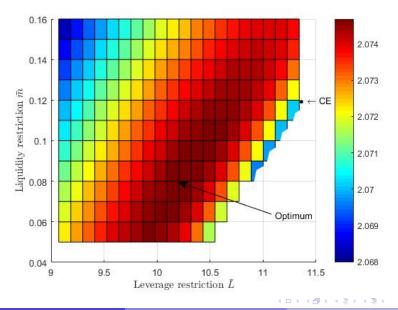
- ullet Banks have an access to safe asset technology with gross return 1
- Banks use safe assets in response to early withdrawals
- Trade-off: less return vs lower probability of bank runs
- Liquidity-deposit ratio $m \equiv M/d$


Proposition (Excessive leverage and insufficient liquidity)

- Given bank liquidity, bank leverage is excessive
- Given bank leverage, bank liquidity is insufficient

Leverage or Liquidity Requirements Only: Risk Migration

Competitive equilibrium:


$$L = 11.3, m = 0.12, P = 2.2\%$$

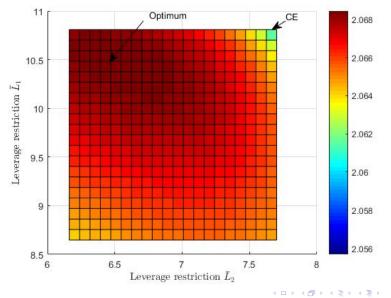
3

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Joint Effects of Leverage and Liquidity Requirements

Ikeda (BoE)

Bank Runs and Macroprudential Instruments

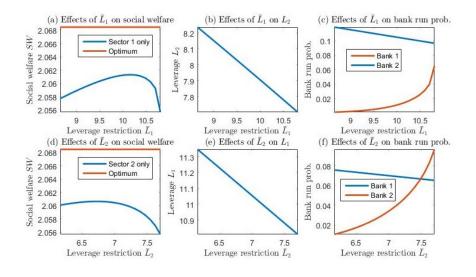

3 November 2017 20 / 27

Application 1: Sectoral Capital Requirements

- Two sectors and two types of banks
- Type-j bank specializes in lending to sector $j \in \{1,2\}$
- Sector 2 is risker than sector 1
- Competitive equilibrium:

$$L_1 = 10.8, \quad P_1 = 6.5\%, \quad L_2 = 7.7, \quad P_2 = 9.6\%$$

Effects of Sectoral Leverage Restrictions

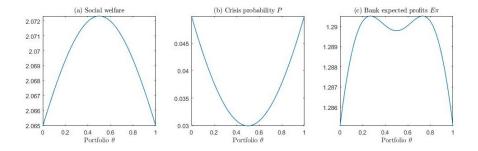

Ikeda (BoE)

Bank Runs and Macroprudential Instruments

3 November 2017

э

Effects of Leverage Restrictions in One Sector Only

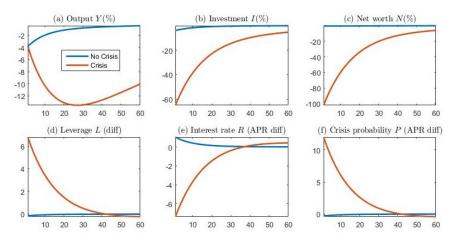


イロト イヨト イヨト

Application 2: Risk Taking

- One type of bank but two types of loans
- For simplicity, $R_j^k \sim N(\bar{R}^k, \sigma_{R^k}^2)$ for $j \in \{1, 2\}$.
- Loan portfolio $[\theta,1-\theta]$ on loans 1 and 2
- Portfolio $\theta = 1/2$ minimizes the risk (volatility) of bank loans
- Social optimum: $\theta = 1/2$. Do banks choose $\theta = 1/2$?

Banks prefer a higher risk than the socially optimal level



э

A D N A B N A B N A B N

25 / 27

Bank Runs in an Infinite Horizon Model (work in progress)

Figure: Impulse responses to a severe negative TFP shock

Macroprudential Instruments 3 November 2017

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- ∢ ⊒ →

26 / 27

Conclusion and Future Research Agenda

• This model provides a unified framework for analysing banking crises, banks' behaviour and macroprudential policy

- Further research
 - Ex-ante and ex-post policy coordination
 - 2 Dynamic model; dynamic properties of macroprudential policy
 - Macroprudential policy and monetary policy