Liquidity Management in Banking: the Role of Leverage?

Fabiana Gomez ¹ Quynh-Anh Vo ²

¹University of Bristol

²Bank of England

ESCB Research Cluster Workshop, November 2 - 3, 2017

The views expressed are not necessarily those of the Bank of England

- In response to the global financial crisis of 2007-2009, the Basel Committee has proposed to:
 - Introduce a new global set of liquidity requirements: Liquidity Coverage Ratio (LCR) and Net Stable Funding Ratio (NSTR):
 - Aimed at promoting better *liquidity risk* management.
 - Strengthen the capital requirement:
 - Address the banks' *solvency*.
- Questions:
 - Should one append a liquidity measure to the solvency one?
 - or put differently
 - Can the capital requirement be used to induce a better liquidity risk management by banks?

- モラト - モラト -

- What are rationales for the capital regulation?
 - A bank's capital forms a kind of cushion against losses.
 - The capital regulation is seen as an incentive device to curb the excessive risk-taking by banks.

 \implies So far, the banking literature focuses on the effects of banks' leverage on their choice of *credit risk.*

• How about the banks' choice of *liquidity risk*?

 \implies In this paper, I construct a model to examine whether the banks' incentives to manage their liquidity risk is affected by their leverage.

- Rationales for the capital regulation: e.g. Rochet (1992), Besanko and Kanatas (1996), Blum (1999), Repullo (2004).
- Hölmstrom and Tirole (1998).
- Cash-in-the-market-pricing and financial fragility: E.g. Bolton et al. (2011), Acharya et Viswanathan (2011).
- Banks' liquidity holdings: E.g. Acharya et al. (2010), Malherbe (2014), Heider et al. (2015), Acharya et al. (2015).
- Optimal design of bank liquidity requirement: Calomiris et al. (2015), Walther (2015).

白 と く ヨ と く ヨ と …

- Basic Model: a model with a single bank:
 - Description
 - Optimal Cash Holding Policy
- Multiple Banks Setting
 - Description
 - Asset Sales
 - Rational Expectation Equilibria
- Conclusion

э

(B)

- Time: 3 dates *t* = 0, 1, 2
- A bank with internal capital E.
- Bank's liabilities
 - The size of the bank's balance sheet is normalized to 1.
 - The bank is funded at date 0 with:
 - Equity of amount E.
 - Short-term debt of amount 1 E, payable at date t = 1. Face value of short-term debt is denoted by D.

3

(E) < E)</p>

Basic Model

- Two investment opportunities:
 - Storage technology (liquid assets or cash): Return equal to 1.
 - Investment project (long-term asset): constant return to scale:

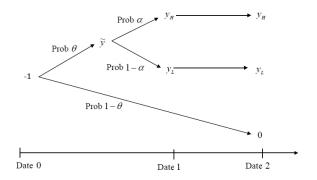


Figure: Risky Investment Opportunity

• Assumption 1: Positive NPV: $E(\theta \tilde{y}) = \alpha \theta y_H + (1 - \alpha) \theta y_L > 1$

- Rollover Problem: Bank repays its short-term debt at date 1:
 - Two sources of liquidity:
 - Cash held from date 0.
 - Issuing new debt by pledging the date 2 cash flow.
 - The bank's funding capacity at date 1 may be limited by the moral hazard problem.
- Moral hazard
 - Between date 1 and date 2, the bank can switch investment to a (possibly) riskier asset:
 - This asset has the probability of success equal to θ_1 and the success cash flow equals to $y_1.$
- Assumption 2: Moral hazard problem matters only in the low state:

$$\theta > \theta_1$$
; $y_H > y_1 > y_L$ and $\frac{1}{2}\theta y_L > \theta_1 y_1$

Timing

Date 0	Date 1		Date 2	•
Given its liability structure $(E, 1 - E)$, bank chooses its cash holdings <i>c</i> and its investment $1 - c$ in the long-term project.	 Value of y is observed Bank repays its debt by using its cash holdings and (possibly) issuing new debt. If the bank cannot raise sufficient liquidity, it is liquidated. 	Moral Hazard	 The project's cash flow is realized. Payments are settled. 	-

ullet Liquidation value of long-term assets: it is assumed to be equal to ℓ

- Assumption 3: Asset specificity: $\ell < \theta y_L$
- Assumption 4:

$$\alpha\theta y_{H}+\left(1-\alpha\right)\ell-1>0$$

3

A >

Short-term debt:

- Why banks use short-term debt: There exists two explanations:
 - Beneficial incentive effects of short-term debt.
 - Providing liquidity flexibility to creditors who may be hit by liquidity shocks.
- In this model, we don't model the reason for which the bank uses short-term debt. We justify the use of short-term debt as a bank's response to the investors' demand of liquid investment.

(B)

Liquidity shock

- No uncertainty about the debt repayment but uncertainty about the bank's funding capacity at date 1:
 - Good news at date 1, borrowing is not constrained \Rightarrow no problem in rolling over short-term debt.
 - Bad news at date 1, funding capacity is restricted \Rightarrow rolling-over debt is problematic.
- The scenario is analogous to what happened in the 2007-2009 crisis.

Date 0	Date 1		Date 2
Given its liability structure $(E, 1 - E)$, bank chooses its cash holdings <i>c</i> and its investment $1 - c$ in the long-term project.	- Value of \tilde{y} is observed - Bank repays its debt by using its cash holdings and (possibly) issuing new debt.	Moral Hazard	 The project's cash flow is realized. Payments are settled.
	 If the bank cannot raise sufficient liquidity, it is liquidated. 		

2

< ロ > < 回 > < 回 > < 回 > 、

Borrowing Capacity

- Liquidity needs are D-c
- If high state is realized \Rightarrow no problem in rolling over short-term debt.
- If low state is realized, the ICC is as follows:

$$\theta\left(y_L - f\right) \ge \theta_1\left(y_1 - f\right)$$

where f is the face value of the new debt issued against one unit of long-term asset. This is equivalent to:

$$f \leq \frac{\theta y_L - \theta_1 y_1}{\theta - \theta_1} = f^* < y_L$$

- f^{*}: maximum pledgeable income ⇒ the bank's maximum borrowing capacity (per unit of long-term asset) is θf^{*} < θy_L.
- Assumption 5:

$$\ell < \theta f^*$$

- The bank's situation at date 1:
 - If $D-c \leq (1-c) \, \theta f^*$: the bank can always roll over its debt \Rightarrow The bank is liquid.
 - If $D c > (1 c) \theta f^*$: the bank is liquidated when being hit by a liquidity shock \Rightarrow The bank is illiquid.

 If the bank chooses to be liquid, the bank's problem can be written as follows:

$$\underset{c}{M_{ax}} \alpha \theta \left[(1-c) y_{H} - \frac{D-c}{\theta} \right] + (1-\alpha) \theta \left[(1-c) y_{L} - \frac{D-c}{\theta} \right]$$

subject to

$$\alpha D + (1 - \alpha) D = 1 - E \tag{1}$$
$$\frac{D - c}{1 - c} \leq \theta f^* \tag{2}$$

э

• After simplification:

$$\underset{c}{Max} \left\{ \alpha \theta y_{H} + (1-\alpha) \theta y_{L} - 1 + E - c \left(\alpha \theta y_{H} + (1-\alpha) \theta y_{L} - 1 \right) \right\}$$

subject to

$$(1-E-\theta f^*) \leq c (1-\theta f^*)$$

• Trade-off involved in the cash holding decision:

- Cost: long-term asset has higher return than cash.
- Benefit: providing insurance against liquidity shock at date 1.

(B)

Optimal Cash Holding Policy

Constraint

$$(1 - E - \theta f^*) \leq c (1 - \theta f^*)$$

matters if and only if

- $\theta f^* < 1$: holding some cash makes sense if and only if the maximum liquidity raised from one unit of long-term asset is less than 1.
- Assumption 6:

$$heta f^* < 1$$

At the optimum

$$c = \max(\frac{1-E-\theta f^*}{1-\theta f^*},0)$$

The bank's expected profit when choosing to be liquid is:

$$\Pi^{Ii} = \alpha \theta y_{H} + (1 - \alpha) \theta y_{L} - 1 + E - \max(\frac{1 - E - \theta f^{*}}{1 - \theta f^{*}}, 0) (\alpha \theta y_{H} + (1 - \alpha) \theta y_{L} - 1)$$

• If the bank chooses to be illiquid:

$$\underset{c}{Max} \alpha \theta y_{H} + (1-\alpha) \ell - 1 + E - c (\alpha \theta y_{H} + (1-\alpha) \ell - 1)$$

subject to

$$(1-E- heta f^*) > c (1- heta f^*)$$

• At the optimum

c = 0

• The bank's expected profit when choosing to be illiquid is:

$$\Pi^{illi} = \alpha \theta y_H + (1-\alpha) \ell - 1 + E$$

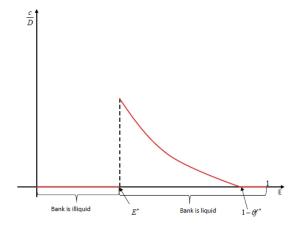
э

The bank chooses to be liquid if and only if

 $\Pi^{li} \geq \Pi^{illi}$

which is equivalent to

$$\geq \underbrace{\underbrace{(1-\alpha) \theta y_L - (1-\alpha) \ell}_{\text{the value loss due to early liquidation}}_{\max(\frac{1-E-\theta f^*}{1-\theta f^*}, 0) (\alpha \theta y_H + (1-\alpha) \theta y_L - 1)}_{\text{the cost of buying insurance (i.e. holding cash)}}$$


or

$$E \geq (1 - \theta f^*) \frac{\alpha \theta y_H + (1 - \alpha) \ell - 1}{\alpha \theta y_H + (1 - \alpha) \theta y_L - 1} = E^*$$

3

白 ト ・ ヨ ト ・ ヨ ト …

Optimal Cash Holding Policy

• *Policy implication*: A properly designed capital requirement is sufficient to induce a better liquidity management.

20/38

э

프 > > ㅋ ㅋ >

$$E^* = (1 - \theta f^*) \frac{\alpha \theta y_H + (1 - \alpha) \ell - 1}{\alpha \theta y_H + (1 - \alpha) \theta y_L - 1}$$

Corollary

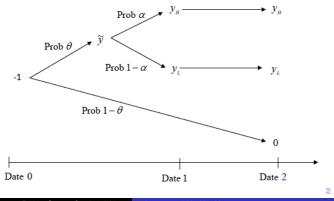
The capital ratio threshold E^* is decreasing with the probability $(1 - \alpha)$ that the liquidity shock happens.

э

御 と く き と く き とう

- In the basic model: no secondary market for long-term assets at date 1.
- In practice, when in need of liquidity, beside cash holdings and issuance of new debts, banks can also sell their long-term assets.

 \Rightarrow Examine the consequences of permitting the sales of long-term assets.


(B)

- Two potential implications:
 - The price of the assets depends on the aggregate liquidity of the banking system ⇒ The distribution of leverage in the banking system should matter for banks' liquidity profile.
 - Beside the precautionary motive, banks can hold cash for speculative motive: buying the assets that are sold below their true value.

(B) < B)</p>

Multiple Banks Setting

- Time: 3 dates *t* = 0, 1, 2.
- 3 banks A, B and C: E_i is internal capital of bank i (i = A, B, C).
 - Banks have access to the same investment technologies and are subject to the same moral hazard problem as described in the basic model.
 - Liquidity shock represents a common exposure of three banks:

Multiple Banks Setting

- Three sources of liquidity:
 - Cash holdings.
 - New debt issuance.
 - Sale of long-term assets.
- Secondary market for long-term assets
 - Asset specificity: potential purchasers of a bank's long-term assets are the other bank.
 - Asset sale vs. asset liquidation:
 - Asset sale: Transfer of the asset from one specialist to the other with the same ability to redeploy it.
 - Asset liquidation: Transfer of the asset to a non-specialist who can extract a much lower surplus from the asset.

25 / 38

(B) < B)</p>

- As in the basic model:
 - If the high state is realized, all banks can roll over their debt.
 - If the low state is realized, the maximum borrowing capacity (per unit of long-term asset) for each bank is θf*.

(B) < B)</p>

• ρ_i : bank i's liquidity demand (per unit of long-term asset) at date 1:

$$o_i = \frac{D_i - c_i}{1 - c_i}$$

- p: per unit price of long-term asset.
- Sellers: banks with $\rho > \theta f^*$
 - β_i : fraction of long-term assets sold by bank *i*.
- Buyers: banks with $\rho \leq \theta f^*$
 - γ_i : volume of long-term assets bought by bank *i*.

• Individual Supply: β_i is determined as follows:

$$\beta_i (1-c_i) p + (1-c_i) (1-\beta_i) \theta f^* \ge D_i - c_i$$

which is equivalent to

$$eta_i = \min\left(1, rac{
ho_i - heta f^*}{p - heta f^*}
ight)$$

- Funding liquidity expands with asset sales if $p > \theta f^*$.
- Bank *i* will be closed if $\rho_i \ge p$.

Invidual Demand:

$$(1-c_i+\gamma_i)\,\theta f^*-(D_i-c_i)=\gamma_i p$$

which implies

$$\gamma_i = (1 - c_i) \frac{\theta f^* - \rho_i}{p - \theta f^*}$$

• Hence:

$$\gamma_i = \begin{cases} 0 & \text{if} \quad p > \theta y_L \\ (1 - c_i) \frac{\theta f^* - \rho_i}{p - \theta f^*} & \text{if} \quad \theta f^*$$

3

< 注 → < 注 → …

Lemma

The equilibrium price of long-term assets has the following properties:

- It is increasing in the funding liquidity of the long-term asset.
- It is lower than the asset's value when the spare liquidity in the banking system is low.

< 注→ < 注→ -

Speculative Motive of Cash Holdings

- Compare bank *i*'s expected profit if choosing to be liquid between two situations:
 - No possibility of buying assets: two other banks also choose to be liquid:

$$\Pi_{i}^{li-ntr} = Max \left\{ \begin{array}{c} \alpha\theta y_{H} + (1-\alpha)\theta y_{L} - 1 + E_{i} \\ -c_{i}(\alpha\theta y_{H} + (1-\alpha)\theta y_{L} - 1) \end{array} \right\}$$

subject to

$$c_i \geq \frac{1 - E_i - \theta f^*}{1 - \theta f^*}$$

• With opportunity to purchase assets: At least one of the two other banks chooses to be illiquid:

$$\Pi_{i}^{li-tr} = Max \left\{ \begin{array}{l} \alpha \theta y_{H} + (1-\alpha) \theta y_{L} - 1 + E_{i} \\ -c_{i} (\alpha \theta y_{H} + (1-\alpha) \theta y_{L} - 1) \\ + (1-\alpha) \gamma_{i} (\theta y_{L} - p) \end{array} \right\}$$

subject to

$$c_i \geq \frac{1-E_i-\theta f^*}{1-\theta f^*}$$

• Trading Profit:
$$TP_i = \gamma_i (\theta y_L - p)$$
:

$$\frac{dTP_i}{dc_i} = \left(\theta y_L - p\right) \frac{1 - \theta f^*}{p - \theta f^*} - \left[\left(\theta y_L - p\right) \frac{\gamma_i}{p - \theta f^*} + \gamma_i \right] \frac{dp}{dc_i}$$

э

* 注 * * 注 *

Proposition

In a model with three banks, if a bank i chooses to be liquid, its cash holdings are as follows:

- 1. Given that two other banks choose to be liquid: $c_i^{li_ntr} = \frac{1-E_i- heta f^*}{1- heta f^*}$
- 2. Given that at least one of two other banks chooses to be illiquid:

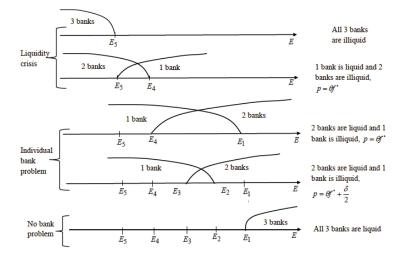
a) If both banks j and k choose to be illiquid or as long as
$$p = \theta y_L$$
: $c_i^{li} - \frac{ntr}{1 - \theta f^*} = \frac{1 - E_i - \theta f^*}{1 - \theta f^*}$

b) In the other case, i.e. among two other banks, one bank chooses to be liquid, say bank j, one bank chooses to be illiquid and is closed, say bank k:

$$c_{i}^{li-tr} = \max\left[\frac{1-E_{i}-\theta f^{*}}{1-\theta f^{*}}, \frac{1-E_{i}-\theta f^{*}}{1-\theta f^{*}} + \frac{\sqrt{\delta(1-c_{k})\varepsilon_{j}}-\varepsilon_{j}}{1-\theta f^{*}}\right]$$

where $\boldsymbol{\epsilon}_{j}$ is the excess liquidity held by bank j, i.e.

$$arepsilon_{j}=\left(1-c_{j}
ight)\left(heta f^{*}\!-\!
ho_{j}
ight)$$


()

- Equilibrium definition: a quadruple (c^{*}_A, c^{*}_B, c^{*}_C, p^{*}) is a rational expectation equilibrium if and only if:
 - (1) c_i^* is the optimal cash holding of bank i (i = A, B, C) given p^*
 - (2) p^* is the equilibrium price induced by the choices (c_A^*, c_B^*, c_C^*)
- Focus on pure strategy equilibria:
 - 3 banks are liquid
 - 2 banks are liquid and one bank is illiquid
 - 1 bank is liquid and two banks are illiquid
 - 3 banks are illiquid

Lemma

No equilibrium where $p = \theta y_L$ exists.

向下 イヨト イヨト

< 17 →

★ E → < E →</p>

æ

- A banking system where banks are highly leveraged can be prone to liquidity crises.
- The pattern of the crises

high leverage \Rightarrow low ex-ante liquidity holdings \Rightarrow serious fire-sale problem following a liquidity shock \Rightarrow closure of illiquid banks

 \implies consisten with what was observed during the 2007 - 2009 crisis

- Lender of last resort:
 - Not helpful. The maximum borrowing capacity (per unit of long-term asset) is θf*.
- Injecting liquidity in exchange of ownership or acquisition of long-term assets:
 - Avoid banks' failure but destroy ex-ante incentives of banks to hold cash.

- Analysing the impacts of banks' leverage on their incentives to manage their liquidity.
- Main findings:
 - Banks with higher capital ratio tend to better manage their liquidity risk.
 - A banking system composed of highly leveraged banks is prone to liquidity crises.
- Future research agenda:
 - Partial equilibrium analysis:
 - Banks choose their leverage: signaling device of their ex-ante monitoring effort .
 - Choice between short-term and long-term debts: Are holding liquid assets and funding by long-term debts perfect substitute from a liquidity risk perspective?
 - General equilibrium analysis:
 - Optimal amount of aggregate liquidity holdings.
 - Empirical studies: measures of banks' liquidity risk.

3