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Abstract 

The purpose of this study is to investigate how the ECB sets interest rates in the 
context of both linear and nonlinear policy reaction functions. It contributes to the 
current debate on central banks having additional objectives over and above inflation 
and output. Three findings emerge.  First, the ECB takes financial conditions into 
account when setting interest rates. Second, amongst Taylor rule models, linear and 
nonlinear models are empirically indistinguishable within sample and model 
specifications with real-time data provide the best description of in-sample ECB 
interest rate setting behaviour. Third, the 2007-2009 financial crisis witnesses a shift 
from inflation targeting to output stabilisation and a shift, from an asymmetric policy 
response to financial conditions at high inflation rates, to a more symmetric response 
irrespectively of the state of inflation.  Finally, guidance is provided about models to 
forecast interest rates in the Eurozone area. Without imposing an a priori choice of 
parametric functional form, semiparametric models and autoregressive processes 
forecast out-of-sample ECB interest rate setting behaviour better than linear and 
nonlinear Taylor rule models. 
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1. Introduction 

Monetary policy reaction functions typically assume that interest rates relate linearly 

to the gap between actual and desired values of inflation and output (see e.g. Taylor, 

1993, Clarida et al, 2000, and Swamy et al, 2005).  Nonlinear policy rules emerge 

from either asymmetric central bank preferences (e.g. Nobay and Peel, 2003, and 

Cukierman and Muscatelli, 2008) or a nonlinear (convex) aggregate supply or 

Phillips curve (e.g. Dolado et al, 2005), or still when central banks follow the 

opportunistic approach to disinflation (Aksoy et al, 2006).  Dolado et al (2004) 

discuss a model, which comprises both asymmetric central bank preferences and a 

nonlinear Phillips curve.  Another strand of the monetary policy literature, dynamic 

stochastic general equilibrium models (see e.g. Smets and Wouters, 2003) make 

use of linear policy reaction function. 

 

Orphanides (2001) warns that ex post revised data sets (commonly used in the 

empirical literature) provide a misleading description of the Federal Reserve Bank‟s 

behavior in real time.  Orphanides and van Norden (2005) demonstrate that ex post 

revised estimates of the output gap significantly overstate the ability of the output 

gap to predict inflation.  Herrmann et al (2005) reiterate the importance of using real-

time data to understand the behavior of policymakers in real time.   

 

The recent financial crisis has added to the debate on whether Central Banks can 

improve macroeconomic stability by targeting financial asset prices. Amongst others, 

De Grauwe (2007) argues that asset prices should be targeted as Central Banks 

cannot avoid taking more responsibilities beyond inflation targeting. On the other 

hand, Federal Reserve governor Mishkin (2008) points out that asset price bubbles 

are hard to identify and even if they are identified, their response to interest rates is 

far from certain. Amongst others, earlier joint research by Federal Reserve Chairman 

Bernanke and Gertler (2001) concludes that “there is no significant additional benefit 

to responding to asset prices”.   

 

However the concern that Central Banks should have additional objectives (and 

instruments) is gaining momentum (Walsh, 2009). ECB President Trichet (2005) 

takes a more cautious view noting that “the ECB‟s monetary policy strategy does 
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allow for taking into account [asset price] boom developments without any 

amendments to the strategy and without providing any additional role to asset 

prices”.  ECB Vice President Papademos (2009) moves a step closer towards 

acknowledging the importance of monitoring asset prices as part of ECB‟s monetary 

policy.  He notes that “leaning against the wind” of booming asset prices by raising 

the policy interest rates would, even in the short to medium term, be compatible with 

the ECB‟s monetary policy strategy aiming at consumer price stability”.  He then 

adds that the “leaning against the wind” policy “would be expected to be more 

effective in maintaining price stability over the longer term, by helping to prevent the 

materialisation of deflation risks when the asset bubble bursts”.  Martin and Milas 

(2010b) formally develop a theoretical model in which policymakers have 

preferences for financial conditions being close to equilibrium, reflecting their desire 

to stabilise the financial system and Castro (2010) shows that ECB policymakers do 

indeed pay close attention to financial conditions.  

 

Perhaps surprisingly, Taylor-type monetary policy rules have mainly been concerned 

with in-sample fits of linear and nonlinear models.  A notable exception is Qin and 

Enders (2008) who use US data to compare the in-sample and out-of-sample 

properties of linear Taylor rules and a nonlinear one driven by large versus small 

values of past interest rates.   

 

This marks a significant point of departure for our paper: using inflation, output gap 

and a proxy for financial conditions as the main underlying variables, we examine, 

based on real-time as well as revised data, whether nonlinear Taylor rules can 

dominate standard linear Taylor rules both in-sample and out-of sample.  Second, 

we investigate how the response coefficients to inflation, output gap and financial 

conditions have varied across times and across regimes (high against low inflation 

rates) by providing recursive estimation of all policy rules. By using estimation over 

expanding windows of data to evaluate ECB monetary policy across individual as 

well as combined reaction functions, we believe we go some way towards 

addressing the point made by Bank of England Governor King (2007) that it is 

impossible to write down any stable reaction function. Third, it is known that 

significant in-sample evidence of predictability does not guarantee significant out-of-

sample predictability. This might be due to a number of factors such as the power of 
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tests (Inoue and Kilian, 2004). We therefore provide both in-sample and out-of-

sample results in order to shed light about the specification of the ECB policy rule 

and guidance about models to forecast interest rates in the Euro area. Forecasts 

generated from the Taylor-type models are compared to those of autoregressive and 

nonparametric/semiparametric models.  The latter models do not impose any 

distributional condition in interest rate modelling and are therefore able to reveal 

structure in data that might be missed by classical parametric linear and nonlinear 

models. 

 

The paper proceeds as follows.  Section 2 summarises the models.  Section 3 

discusses the data.  Section 4 reports the in-sample analysis and Section 5 presents 

our out-of-sample forecasting exercise.  Section 6 provides some robustness 

analysis.  Section 7 provides some concluding remarks and offers some policy 

implications. 

 

2. Monetary policy rules 

2.1. Linear and nonlinear Taylor rule models 

Existing Taylor (1993)-type rules take the form 

(1) * *ˆ ( ) _ ,t t t p y t t q f t t ri i E E y E fin index            

 

where *i  is the desired nominal interest rate, î  is the equilibrium nominal interest 

rate,   is the inflation rate expected at time (t+p), *  is the inflation target (or 

desired rate of inflation), y  is the output gap expected at time (t+q), _fin index  is a 

measure of financial conditions gap at time (t+r),   is the weight on inflation, y  is 

the weight on output gap, f  is the weight on the financial index, and p, q and r may be 

positive or negative.  Allowing for interest rate smoothing (e.g. Woodford, 2003) by 

assuming that the actual nominal interest rate, ti , adjusts towards the desired rate by 

(2) *
1( ) (1 ) ,t i t i ti L i i     

 

we write the empirical Taylor rule as 

(3)  1 0( ) (1 ) _ .t i t i t t p y t t q f t t r ti L i E E y E fin index                  
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where, 1

21 ...)(  n

iniii LLL  (we can use )1(ii   as a measure of interest 

rate persistence), *
0 î     , and t  is an error term.  Inclusion of the financial 

index is based on the assumption that policymakers have preferences for this index 

being close to equilibrium reflecting their desire to stabilise the financial system.  

Martin and Milas (2010b) discuss a theoretical model in which stability of the 

financial system enters the loss function of the policymakers; Papademos, 2009, re-

iterates that ECB aims at safeguarding financial stability in addition to achieving price 

stability.  An alternative theoretical justification for including the financial index in the 

policy rule is that the index determines movements in the differential between policy 

rates and 3-month interbank rates, the latter being the benchmark for private sector 

interest rates (see for example Martin and Milas, 2010a).   

 

Asymmetric preferences, instead, lead to a Taylor rule model in which the response 

of interest rates to inflation and/or output is different for positive and negative 

inflation and/or output deviations from their desired level.  A nonlinear policy rule also 

results from assuming a nonlinear Phillips curve; to the extent that nominal wages 

are downwards inflexible, inflation is a convex function of the unemployment rate 

(see e.g. Layard et al, 1991). This, by Okun‟s law, means that inflation is also convex 

in the output gap.  Combined with a quadratic loss function, the nonlinear aggregate 

supply leads to a policy rule where the response of interest rates to inflation is higher 

(lower) when inflation is above (below) target.  

The nonlinear policy rule we consider, takes the form 

(4)    1 0 1 2( ) (1 ){ ( ; , ) (1 ( ; , )) } ,
t tt i t i t t p t t t p t ti L i E M E M  
                    

 

where _jt j t t p jy t t q jf t t rM E E y E fin index         for j=1,2 and the function 

( ; , )
t t t pE 
     is the weight (defined below in (5)), at the beginning of period t, that 

inflation in period (t+p) will be less than   percent.  In this model (and following 

previous literature referred to in the Introduction), the response of interest rates to 

the lagged interest rates and the intercept is linear (in preliminary analysis, we 

allowed for these responses to be nonlinear; however we could not find such 

statistical evidence).  On the other hand, the response of interest rates to inflation, 
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the output gap and the financial index is allowed to differ between inflation regimes.  

1tM  is a linear function that represents the behavior of policymakers when inflation is 

expected to be less than   percent.  In effect,  1tM  is a Taylor rule specific to this 

regime.  2tM  is a Taylor rule that describes the behaviour of policymakers in the 

regime where inflation is expected to be more than   percent.  If 1 2   , 

1 2y y  , and 1 2f f   the model simplifies to the linear Taylor rule in (3).  If 

1 2    there is a deflation bias to monetary policy as the response to inflation is 

greater for larger inflation values.  The weight ( ; , )
t t t pE 
     is modelled using the 

logistic function (see e.g. van Dijk et al, 2002)  

(5) 
( )( )/

1
1

1

( ; , ) ,
t t p Et t p

t Et t p

e

E 




   


   

 
 

 


 

 

where the parameter  >0 determines the smoothness of the transition regimes.  

We follow Granger and Teräsvirta (1993) and Teräsvirta (1994) in making   

dimension-free by dividing it by the standard deviation of t t pE  .  The switch 

between regimes is endogenously determined as both   and the threshold   are 

estimated jointly with the remaining parameters. 

 

2.2. Nonparametric/semiparametric specifications 

In our forecasting exercise, forecasts generated by the models discussed above are 

compared to those of a simple autoregressive model of order n (AR(n)) and a 

nonparametric specification; the latter does not impose any distributional condition in 

modelling the interest rate and is therefore able to reveal structure in data that might 

be missed by classical parametric linear/nonlinear models.   

 

The paper employs a nonparametric (more precisely a semiparametric model is 

estimated in the exercise) specification that does not require the researcher to 

specify a functional form; rather it is local in nature and also based on data-driven 

techniques for „local averaging‟.  Linear and nonlinear parametric models might be 

inadequate in uncovering the true data generating process of the Central Bank‟s 

reaction function.  Rather than assuming that the functional form is known, 
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nonparametric specifications implement kernel estimation of regression functions 

and substitute less restrictive assumptions, such as smoothness and moment 

restrictions.  To this end, we carry out the Nadaraya-Watson local constant 

regression estimator and then consider a more popular extension, namely the local 

linear regression method (Li and Racine, 2004).  A key aspect to sound 

nonparametric regression estimation is choosing the correct amount of local 

averaging (bandwidth selection).  We therefore make use of two popular selection 

methods as a robustness check namely the least-squares cross validation of Hall et 

al (2004) and the Akaike Information Criterion (hereafter AIC) method of Hurvich et 

al (1998); our empirical calculations are made in the R np package of Hayfield and 

Racine (2008).  We employ a semiparametric model which is a compromise between 

fully nonparametric and fully parametric specifications; this is formed by combining 

parametric and nonparametric models to reduce the curse of dimensionality of 

nonparametric models.  We employ a popular regression-type model, namely, the 

partially linear model of Robinson (1988).  Adapted to a monetary policy setup, the 

semiparametric model is 

(6) 
1( ) ( , , _ ) ,t i t t t p t t q t t r ti L i f E E y E fin index         

 

where ( )i L  is the parametric part of the model (i.e., the response to lagged interest 

rates has often been assumed linear in the literature) and the unknown function (.)f  

is the nonparametric part.  Without imposing a known functional form for (.)f , the 

model addresses the difficulties of having a fixed rule or reaction function as implied 

by Taylor rule models currently dominating the monetary policy literature. 

 

3. Data description 

We use Eurozone data for the 1999:M1-2009:M6 period.  This covers the period 

over which the ECB has been operating.  The nominal interest rate is the Euro 

overnight index average lending rate (Eonia).  For inflation we use the rate targeted 

by the ECB (the ECB aims at keeping inflation below but close to 2% over the 

medium term); this is the annual change in the harmonized index of consumer 

prices. We use both real-time inflation and revised inflation measures.  We use three 

measures of the output gap series: (i) the difference between real-time industrial 

production and a Hodrick-Prescott (HP, 1997) trend, (ii) the difference between final 
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industrial production and a HP trend, and (iii) the difference between the economic 

sentiment indicator and a HP trend.   

The economic sentiment indicator is based on surveys of firms and consumers at the 

national level; the index is not subject to revisions.  The economic sentiment 

indicator places a weight of 40% on the industrial confidence indicator, and a weight 

of 20% on each one of the consumer confidence, construction confidence and retail 

trade confidence indicators, respectively.  The index, which is discussed frequently in 

the ECB Monthly Bulletins, becomes available earlier than output data and correlates 

strongly with the Eurozone business cycle (Gali et al, 2004).  For consistency 

reasons, we de-trend the economic sentiment indicator based on the same method 

(i.e. the HP filter) we use for the remaining output measures.  However, we also note 

that other studies on ECB Taylor rules such as Sauer and Sturm (2007) simply 

consider the deviations of the indicator from its average as a measure of the 

economic sentiment output gap.  As pointed out by an anonymous reviewer, the 

application of the HP filter may also explain why the movements in the economic 

sentiment data are much more pronounced compared to the other two output gap 

measures. 

 

The financial index variable considered in our paper pools together relevant 

information provided by a number of financial variables.  As in Castro (2010), the 

index is constructed as a weighted average of (i) the real effective exchange rate 

(with the foreign exchange rate in the denominator), (ii) the real house price, (iii) the 

real stock price, (iv) the spread between the yield on the 10-year government bond 

and the yield on A or higher rated corporate bonds, and (v) the spread between the 

3-month Euribor interest rate futures contracts in the previous quarter and the 3-

month Euribor rate. The real effective exchange rate, stock price and house price 

variables are detrended by a HP filter.  To tackle the end-point problem in calculating 

the HP trend (see Mise et al, 2005a,b), we applied an AR(n) model (with n set at 4 to 

eliminate serial correlation) to each of the real-time and revised output measures and 

the components of the financial index.  The AR model was used to forecast twelve 

additional months that were then added to each of the series before applying the HP 

filter.   
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The constructed financial index is expressed in standardised form, relative to the 

mean value of 2000 and where the vertical scale measures deviations in terms of 

standard deviations; therefore, a value of 1 represents a 1-standard deviation 

difference from the mean.  The financial components of the index are rarely revised 

and as such, the index itself is not subject to revisions.  The index is also in the spirit 

of the UK financial conditions index provided by the Bank of England‟s Financial 

Stability Report (Bank of England, 2007).  All data are seasonally adjusted and with 

the exception of the house price index, are available from the ECB website and 

Datastream.  The European house price index is available from the Financial Times 

website. 

 

The evolution of the variables of interest over the period 1999M1-2009M6 is shown 

in Figure 1.  From Figure 1a), inflation rose in mid 2007 and then dropped sharply 

followed by drastic interest rate cuts.  There is little difference between real-time and 

final inflation data (revisions occur only to correct reported errors; see Coenen et al, 

2005).  From Figure 1b), movements in the economic sentiment data are much more 

pronounced compared to the industrial production output data.  The economic 

sentiment gap data indicate a much more severe downturn in 2008-early 2009; 

however, the economic sentiment appears to improve quickly towards mid-2009.  

Compared to the real-time industrial production data, final data suggest a stronger 

expansion shortly before the financial crisis, followed by a more severe economic 

downturn.  From Figure 1c), financial conditions deteriorated sharply from mid 2007, 

having improved steadily over the previous five years.  Movements in the financial 

index have a similar pattern to the interest rate (Figure 1a), which indicates a close 

link between the two variables.  

 

We consider six policy rule models.  Models 1 to 3 are linear Taylor rule versions of 

equation (2).  Models 4 to 6 are nonlinear Taylor rule versions of equation (4) using 

the logistic function (5).  For forecasting purposes, we consider six more models.  

Models 7 to 9 are semiparametric versions of equation (6) using real-time inflation 

and real-time industrial output, revised inflation and industrial output, and real-time 

inflation and economic sentiment data, respectively.  Model 10 is an AR(4) model 

(lag length chosen by the AIC).  The specification which fits the data best allows for 

one lag of the interest rate, p=12 for inflation, q=0 for the output gap (the 
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dependence of ECB monetary policy on current rather than expected output gaps 

agrees with the Euro Area Wide Model in Dieppe et al, 2004), and r=-1 for the 

financial index.  Assuming perfect foresight for inflation, we replace forecasts of real-

time inflation by real-time realizations of inflation and forecasts of final inflation by 

final realizations of inflation and then estimate by the Generalised Method of 

Moments (GMM).  The set of instruments includes a constant, 1-4, 9, 12 lagged 

values of inflation, the output gap, the 10-year government bond, M3 growth, and the 

financial index.  The implication of using real-time realizations of inflation values, 

when these were not available, is that Models 1, 3, 4, 6, 7, and 9 are not truly real-

time models, rather, these can be considered as “quasi” real-time models. In our 

forecasting exercise, we employ two straightforward procedures by taking the 

median forecasts from amongst all models. First, forecasts are constructed by taking 

the median forecast value from models that use real-time data, that is, models 1, 3, 

4, 6, 7, and 9; we call this Model 11.  Second, we use the median forecast from 

models that use final data, that is, models 2, 5, and 8; we call this Model 12. Our 

twelve models are summarised in Table 1. We also think it would be helpful to 

present a comparison of the forecasting performance of models with and without the 

financial conditions variable included. We perform this exercise in Section 6.  Models 

13 to 23 are linear, nonlinear logistic, semiparametric and median forecast models 

which exclude financial conditions. Table 1 lists the twenty-three models. 

 

We estimate over expanding windows of data, where the first data window runs from 

1999:M1 to 2005:M12, and each successive data window is extended by one 

observation, hence, the last data window runs from 1999:M1 to 2008:M6 (this setup 

delivers 31 expanding windows).  From a policy point of view, this allows us to 

identify the evolution of the estimated model parameters over time and across 

regimes.  For forecasting purposes, we generate out-of-sample forecasts for the 

Eurozone interest rate at forecasting horizons h=1,…,12.  Our setup delivers 30 one-

step ahead interest rate forecasts, 29 two-step ahead forecasts and so on, up to 19 

twelve-step ahead forecasts.  This is because we replace 12t tE   by actual values of 

inflation in our estimated models. 
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We use sequences of expanding windows in which the sample size for estimation is 

increased by one observation in each successive window, as opposed to sequences 

of fixed-length rolling windows, simply because the larger (increasing) windows help 

the estimation procedures for the various models which can be quite computationally 

intensive; this is arguably more so for the semiparametric models that partly use 

local averaging and therefore has a slower rate of convergence compared to a 

correctly specified parametric model, hence requiring more data to be equally as 

accurate as this (unknown) model.  For robustness reasons, however, our 

forecasting exercise also reports results based on a sequence of fixed-length rolling 

windows where each successive window is constructed by shifting the preceding 

window ahead by one observation.  

 

4. In-sample analysis 

To fix ideas, Table 2 reports estimates of the Taylor rule models 1 to 6 over the first 

data window, which runs from 1999:M1 to 2005:M12.  In all cases, and in line with 

previous literature (see e.g. Castro, 2010 and Gerdesmeier and Roffia, 2005), the 

inflation (  ) and output gap ( y ) effects are statistically significant.  For all models, 

the inflation effect   is higher than one, satisfying the “Taylor principle” that inflation 

increases trigger an increase in the real interest rate.  Model 1, which uses real-time 

industrial production and inflation data, records much stronger inflation and output 

gap effects compared to Model 2 (which uses revised data); a possible explanation 

is that the magnitude of the response using revised data could suffer from downward 

bias owing to the errors-in-variables problem.  The output gap effect is lower, but 

nevertheless significant, when the economic sentiment measure is considered (see 

Model 3). All linear models record a statistically significant response to the financial 

index ( f ); in all cases, a one standard deviation increase in the index relative to its 

mean triggers an interest rate increase in excess of one percentage point; the 

impact, as with the inflation and output gap ones, is higher for real-time Model 1.  For 

the semiparametric Models 7 to 9, we estimate 1 =0.97 (standard error=0.02), 

1 =0.91 (standard error=0.02) and 1 =0.90 (standard error=0.02), respectively.  

These models deliver adjusted R2 values of between 0.97 and 0.98.  For the 

autoregressive Model 10, we estimate 1   1.04 (standard error=0.11), 2   0.24 
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(standard error=0.11), 3  -0.14 (standard error=0.07) and 4   -0.18 (standard 

error=0.08).  The model delivers an adjusted R2 of 0.96. 

An estimate of the inflation target is derived as * 0î









 , where we rely on the 

sample mean of the interest rate (this is equal to 3.04%) as a proxy for the 

equilibrium nominal interest rate î .  From Table 2, all linear Models 1 to 3 deliver an 

implied target of approximately * =2%, which is consistent with ECB‟s aim of 

keeping inflation below but close to this very figure. 

 

For linear Models 1 to 3, the last three rows of Table 2 report the p-value of 

Hamilton‟s (2001) λ-test, and the p-values of the λA and g-tests proposed by Dahl 

and González-Rivera (2003).  Under the null hypothesis of linearity, these are 

Lagrange Multiplier test statistics following the χ2 distribution.  These tests are 

powerful in detecting nonlinear regime-switching behavior like the one considered by 

Models 4 to 6.  All three tests reject linearity. 

 

From Table 2, Models 4 to 6 report time-varying inflation, output gap and financial 

index effects depending on whether inflation is higher or lower than an inflation 

threshold; the latter is estimated at  =2%, which is again consistent with ECB‟s 

policy goal.  The smoothness parameter   has an estimated value of around 10, 

indicating a rather abrupt switch from one regime to another.  For Models 4 and 5 

(but not for Model 6) we estimate that 1 2   ; hence, there is some weak evidence 

of a deflation bias to monetary policy as the response to inflation is larger when 

inflation exceeds 2%.  In contrast to revised-data Model 5, Models 4 and 6 estimate 

that 
1 2y y  , that is, a stronger response to the output gap when inflation exceeds 

the 2% threshold; for these models, the output response is insignificant at low 

inflation rates.  One could possibly argue that the central bank places high 

importance on inflationary pressures of output during periods of rising inflation.  In 

contrast with Models 4 and 6, Model 5 shows that given that the central bank already 

has a deflation bias to monetary policy as the response to inflation is larger when 

inflation exceeds 2%, the concern for inflationary pressures of output is mitigated. 
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All three nonlinear models estimate that 
1 2f f  , that is, a much stronger response 

to the financial conditions index when inflation rises above the 2% threshold.  

Financial conditions can indeed be closely related to inflation movements (see 

D‟Agostino and Surico, 2009).  Noting that inflation is positively correlated with the 

financial conditions index (with a correlation coefficient of 0.43), we shed more light 

on their possible link by estimating a Vector Autoregressive (VAR) system of order 2 

(the lag length is chosen by the AIC criterion) in inflation, output gap and the financial 

conditions index, and then apply Granger-causality tests.  These tests indicate 

causality from the financial conditions index to inflation (the F-test for testing the null 

of no causality delivers a p-value=0.00) and no evidence of causality from inflation to 

the financial conditions index (the F-test for testing the null of no causality delivers a 

p-value=0.37); results were similar based on real-time inflation and output gap data.  

Hence, a plausible explanation for the stronger response of monetary policy to the 

financial index at rising inflation rates is that booming financial conditions trigger an 

increase in inflationary pressures.  Also, on theoretical grounds, if policymakers have 

non-quadratic preferences for inflation in that they penalise more for inflationary 

rather than deflationary pressures (Nobay and Peel, 2003 have theoretically reported 

that the ECB has pursued such a practice), then one would expect that if financial 

conditions Granger cause inflation as suggested by our empirical results, 

policymakers would be reacting more aggressively to both inflation and financial 

conditions during high inflation periods.  

 

We have also attempted linear and nonlinear versions of Models 1 to 6 that exclude 

the financial index variable.  Rudebusch (2002) raises the issue of an omitted 

variables problem by pointing out that the significance of interest rate persistence in 

the policy rule could be due to omitting a financial spread variable from the estimated 

regression.  Gerlach-Kirsten (2003) and English et al (2003) find that inclusion of a 

financial spread reduces the empirical importance of interest rate smoothing 

(amongst others, Estrella and Mishkin (1997) analyse the influence of a term 

structure variable in policy rules).  Keeping this in mind, our empirical models that 

exclude the financial index variable performed very poorly compared to the models 

reported here in terms of the AIC criterion and the lagged interest rate effect turned 

out to be slightly higher than the one reported here, therefore providing some 
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support for an omitted variables problem. It is also worth noting that initial in-sample 

analysis (in terms of regression AIC and R-bar squared) for the parametric linear and 

nonlinear models does not suggest superiority of the model with separate asset 

variables relative to the model with the composite financial conditions index. 

Furthermore, the model with the composite index outperforms any other model that 

includes each asset price as a separate regressor (detailed results are available 

from the authors upon request). We decided to be as parsimonious as possible with 

the number of variables in both the in-sample and the forecasting exercise and 

therefore use the best performing model which is the one that includes the 

composite index.  We conclude that the ECB pays close attention to financial 

conditions when setting the Eurozone interest rate.  We return to this issue in section 

6 where we compare the forecasting performance of models with and without the 

financial conditions variable included. 

 

There is very little to discriminate amongst the estimated Taylor rule models in terms 

of the adjusted R2 and the regression standard error.  Model 3 (with real-time data 

and the economic sentiment variable) records the lowest Akaike Information 

Criterion (AIC).  Amongst the estimated nonlinear models, Model 6 (i.e. the nonlinear 

version of Model 3) has the best in-sample fit as it records the lowest AIC.  Within 

sample we would expect the fit of such alternative models to be barely 

distinguishable, given the high correlations between the interest rate and its lags.  

However, the key distinguishing feature amongst linear and nonlinear models lies in 

their forecast implications, namely that the equilibrium to which the reaction function 

returns depends on the size of the shocks/inflation states.  For the nonlinear model, 

small shocks/low inflation do not alter the central bank‟s reaction function.  However, 

at a low interest rate, large positive shocks to inflation drive the interest rate to a high 

level consistent with the higher regime reaction function, while at a high interest rate, 

negative inflation shocks drive it back to a low interest rate.  A linear Taylor type rule 

model will forecast the interest rate to stay roughly where it is if non-stationary; or, if 

stationary, to revert to some deterministic equilibrium.  Thus the forecast implications 

of linear as opposed to nonlinear models are quite different.  We keep this in mind 

when forecasting out-of-sample in section 5 below.  
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To get an idea of how the response parameters  , y , and f  evolve over time, 

Figure 2 plots their recursive estimates (plus/minus 2*standard errors) over 

expanding data windows for Model 3 which has the best in-sample fit amongst all 

models.  Figure 3 plots recursive estimates (plus/minus 2*standard errors) of the 

response parameters j , jy , jf  (j=1,2) for Model 6 which has the second-best in-

sample fit amongst all models and the best in-sample fit amongst nonlinear models.  

We also note that recursive plots of the remaining models are qualitative similar to 

the ones reported below. 

 

From Figure 2, the inflation response is relatively stable until late 2006 after which it 

drops sharply and rises again from late 2007 onwards.  The response to the output 

gap is relatively stable; it rises in late 2006 and then reverts slowly towards its earlier 

values.  The response to the financial index remains relatively stable until late 2007, 

after which it drops slightly.  Overall, and compared to the output gap and financial 

index responses, the inflation response is markedly unstable and statistically 

insignificant during the financial crisis period; at the same time, the increasingly 

turbulent period has somewhat widened the confidence intervals of all response 

estimates.  Notice also that the timing of the sharp drop in the inflation response 

coincides with that of the rise in the output gap response.  A tentative economic 

interpretation (bearing in mind the issue of instability) is that from early 2007, ECB 

monetary policy shifted its focus from inflation to output stabilisation, while 

responding to financial conditions in a relatively consistent manner.  We return to this 

issue shortly. 

 

Figure 3 plots the recursively estimated response coefficients 1 , 1y , 1 f , 2 , 

2 y , and 2 f  for nonlinear Model 6.  In this model, the policy response switches 

from 1 , 1y  and 1 f  to 2 , 2 y  and 2 f , respectively depending on whether 

expected inflation is below or above the 2% threshold.  The recursively estimated 

values of the inflation threshold and the smoothness parameter are remarkably 

similar to those reported in Table 2.  There is reasonable information for capturing 

the dynamics of the nonlinear model as 44 out of the 126 inflation observations (or 

35%) over the 1999:M1-2009:M6 period are below the 2% estimated threshold. 
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The recursively estimated inflation coefficients 1  and 2  are fairly similar 

suggesting neither deflationary nor inflationary bias in ECB monetary policy.  From 

early 2007 onwards and as we move into the financial crisis period, the policy 

response to inflation becomes smaller and largely insignificant.  The response to the 

output gap at low inflation rates is lower than the output gap response at high 

inflation rates (i.e. 
1 2y y  ).  The former response is insignificant at the earlier part 

of the sample, but becomes significant as the financial crisis progresses and takes it 

toll on the economy; at the same time, monetary policy becomes more responsive to 

output gap fluctuations irrespectively of the inflation state.  The financial index 

response above the 2% inflation threshold is three times as large as the response 

below (i.e. 
1 2f f  ) prior to the financial crisis.  As the financial crisis unfolds at the 

peak of forecasted inflation around mid 2007 and gains pace even with inflation 

falling, stabilisation of the financial conditions becomes equally important 

irrespectively of the state of inflation; indeed, the response to the financial index 

emerges the same by the end of our sample.  Our nonlinear estimates therefore 

indicate that ECB policymakers used notable discretion post 2006 as the financial 

crisis saw a shift from inflation targeting to output stabilisation and a shift, from an 

asymmetric policy response to financial conditions at high inflation rates, to a more 

symmetric response irrespectively of the state of inflation; however, these results 

should be read with some caution as the confidence intervals of the recursive 

nonlinear responses get relatively wider with the financial crisis unfolding.  To get an 

idea of the statistical difference amongst the estimated coefficients reported for 

Model 6, Figure 4 plots, over the expanding data windows, the recursively calculated 

p-values associated with testing the hypothesis (via an F-test) that 1 = 2 ,
 

1y = 2 ,y
 
and 1 f = 2 ,f  respectively, together with the 5% critical value line.  The 

test shows no statistical difference between 1  and 2  and no significant 

difference between 1y
 
and 2 ,y  except towards the end of the sample period as 

the ECB seems to be responding to output more if the probability of inflation is 

higher. The test shows no statistical difference between 1 f
 
and 2 ,f

 
for most of the 

sample period although the ECB does show higher response to financial conditions 

at higher level of inflation at the beginning of the sample period.  
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5. Forecasting analysis 

To generate dynamic out-of-sample forecasts from the nonlinear models, we adopt 

at each forecast step a bootstrap method where errors used at step h (h 1) are the 

average errors obtained from simulating the nonlinear model at step h one thousand 

times (e.g. Granger and Teräsvirta 1993).  Forecasting performance is evaluated 

using the Mean Squared Prediction Error (MSPE) and Median Squared Prediction 

Error (MedSPE) criteria.  To compare the equal accuracy of alternative forecasts, we 

employ the modified Diebold and Mariano DM* test (for more details, see Harvey et 

al, 1997, and Diebold and Mariano, 1995).  We also employ two extensions of the 

test, proposed by van Dijk and Franses (2003).  The first extension refers to the left-

tailed W-DM* test statistic.  In our exercise, this focuses on the ability of the 

competing models to forecast small interest rate values, which is generally 

interpreted as evidence of periods of low inflation.  The second extension refers to 

the right-tailed W-DM* statistic.  This focuses on the ability to forecast large interest 

rate values, which is generally interpreted as evidence of periods of high inflation.   

 

Table 3 presents the individual forecasting ranks for the different forecasting 

horizons and the average out-of-sample forecasting rankings across the recursive 

windows and twelve forecasting horizons of the twelve models according to two 

evaluation criteria, the mean squared prediction error (MSPE) and the median 

squared prediction error (MedSPE); “better” or “higher ranked” forecasting methods 

have “lower” numerical ranks.  The average out-of-sample forecasting rank of a 

model is computed as the average of the rankings of a particular model across all its 

forecasting horizons under a particular evaluation criterion.  The key result is that the 

three semiparametric models 7, 8, and 9 are ranked higher than any other model 

according to both the MSPE and the MedSPE, with Model 8, the semiparametric 

model with final data, being the top-ranked forecasting model (Model 8 forecasts at 

least as well as semiparametric Model 7 according to the MedSPE).  The AR model 

is ranked fourth whereas Model 11, which pools forecasts from all models with real-

time data, is ranked fifth.  According to the MSPE, nonlinear Models 4, 5, and 6 are 

ranked higher than the corresponding linear Models 1, 2, and 3, respectively, with 

nonlinear Model 4 (which uses real-time inflation and real-time industrial production 
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data) ranked higher than the remaining linear and nonlinear Taylor rule models.  

According to the MedSPE, Models 4 and 1 have the same average rank).  Models 3 

and 6, the models with the best in-sample fit amongst all linear and nonlinear policy 

rules, have very low out-of-sample forecasting ability compared to the remaining 

models.  According to the MSPE, Models 3 and 6 are ranked ninth and eighth, 

respectively; according to the MedSPE, these are ranked eleventh and ninth, 

respectively.  With reference to the individual forecasting horizons, we note from 

Table 3 that semiparametric Models 7, 8, and 9 do better than the remaining models 

for almost all forecasting horizons.  Notice also that two or more models are ranked 

equally when they achieve the same MSPE (or MedSPE).  Whether the MSPE 

(Table 3A) or MedSPE (Table 3B) criterion is used, Model 7 is ranked higher than 

any other model for most of the forecasting horizons. 

 

Our modified Diebold-Mariano (DM*) test results appear in Table 4.  These examine 

the statistical significance of MSPE reductions with uniform weight placed on 

forecast losses.  Left-tailed and right-tailed W-DM* tests in Tables 5 and 6 examine 

the statistical significance of MSPE reductions with greater weight placed on forecast 

losses associated with, respectively, low interest rate values and large interest rate 

values.  Recalling that Model 8 is ranked first, we see that its forecasting superiority 

over the remaining models is much stronger when it comes to predicting large 

interest rate values.  Indeed, as we move from left-tail weighting to right-tail 

weighting, Model 8 increases its forecasting dominance over seven models (that is, 

Models 1,3,4,9,10,11, and 12) and reduces its forecasting dominance over only two 

models (that is, Models 2 and 5).  As we move from uniform weighting to right-tail 

weighting, Model 8 increases its forecasting dominance over five models (that is, 

Models 1,9,10,11, and 12) and reduces its forecasting dominance over only two 

models (that is, Models 2 and 5).  This observation is most striking by comparing 

Model 8 with Model 10 (the AR model).  Model 8 generates significant MSPE 

reductions, at the 10% significance level, relative to the AR model (Model 10) at 

8.3% of the forecasting horizons with left-tail weighting (see Table 5) and at 66.7% of 

the forecasting horizons with uniform weighting (see Table 4).  With greater weight 

given to large interest rate values, however, Model 8 generates significant MSPE 

reductions relative to the AR model at 75% of the forecasting horizons (see Table 6).   
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Model 10 (the AR model) is the only model to deliver a statistically lower MSPE 

relative to the top-ranked Model 8 for the very short-term forecasting horizon.  In 

particular, the MSPE of Model 10 is significantly lower, at the 10% significance level, 

than the MSPE of Model 8 at 8.3% of the forecasting horizons; investigation of these 

results at the individual forecast steps reveals this significant MSPE reduction occurs 

at h=1 step, that is, at the very short term.  This is the case with all uniform, left-tail, 

and right-tail weightings placed on the forecast loss differentials.  Model 11, which 

pools forecasts from models with real-time data, generates significant MSPE 

reductions relative to Model 12 (which pools forecasts from models with final data) at 

16.7% of the forecasting horizons with right-tail weighting (see Table 6).  When it 

comes to predicting low interest rates, however (i.e. with left-tail weighting), its ability 

to forecast better than Model 12 increases to 83.3% of the forecasting horizons (see 

Table 5). 

 

To sum up, our forecasting results show that semiparametric models are flexible 

enough to forecast better than any other linear or nonlinear Taylor rule model; 

semiparametric model forecasts are also superior to pooled forecasts and 

autoregressive models‟ forecasts.  Semiparametric model 8, which uses final data, 

forecasts better (based on the MSPE) or at least as well (based on the MedSPE) as 

semiparametric Model 7 (which uses real-time data) and better than any other 

model.  This is more so during periods of high inflation rates (associated with large 

interest rate values).  The relative forecasting superiority of models that use final as 

opposed to real-time data is not uncommon; for instance, Orphanides and van 

Norden (2005) report similar findings in forecasting the relationship between inflation 

and the output gap in the US.  The forecasting superiority of semiparametric Model 8 

with final data might be due to the revision process; real-time data might be subject 

to "noise" that degrades the accuracy of their out-of-sample forecasts relative to 

those obtained with final data.   

 

Our analysis points to forecasting superiority of the semiparametric models.  To get a 

visual idea of how the semiparametric models forecast movements in the interest 

rate, Figure 5 plots the interest rate together with the forecasts from Models 7, 8 and 

9.  To save space, we do this for selected forecasting horizons (h=1, h=4, h=8, and 

h=12). At low forecasting horizons (h=1 and h=4), the three models forecast the 
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interest rate quite well. Their forecasting performance deteriorates markedly at h=12.  

At h=12, all models over-predict interest rate movements quite strikingly in 2006-

2007.  Notice also that although Model 7 under-predicts (at h=4 and h=8) interest 

rate movements in early 2008, it still forecasts better or equally well compared with 

the remaining models at these very horizons based on the MedSPE criterion (see 

Table 3B).  

 

6. Robustness analysis 

We assess the sensitivity of our findings to alternative data definitions and model 

specifications.  We consider the 3-month Euribor and the main refinancing 

operations fixed rate as alternative measures of the interest rate.  In the case of the 

3-month Euribor (this has a correlation of 0.96 with the Eonia interest rate), we find 

that the response to inflation is lower than the estimates reported in Table 2, but no 

qualitative difference in terms of the out-of-sample forecasting rankings.  When the 

main refinancing operations interest rate is used instead (this has a correlation of 

0.47 with the Eonia interest rate), the impact of all inflation, output gap and financial 

index variables turns out to be very weak in statistical terms.  This is probably 

happening because the main interest rate is fixed at 4.25% for most of the 2000-

2008 period.  Turning to the inflation measure, we note that the ECB website 

provides inflation forecasts from the Survey of Professional Forecasters (SPF) on a 

quarterly basis up to 5 years ahead; to overcome this we assume a constant inflation 

forecast for each month within the same quarter.  Empirical results using these 

inflation forecasts turn out to be very unsatisfactory both on economic and statistical 

grounds.  As far as the financial index is concerned, the current paper uses equal 

weights on the individual financial variables (discussed in Section 3).  We have also 

tried a measure of the financial index where the weights of the individual 

components are constructed based on each variable‟s significance as a financial 

indicator in the policy rule.  This more sophisticated measure of the financial index 

was less successful as the one reported in the current paper producing higher 

regression standard errors for all estimated regressions.   

 

An important contribution of the paper is that the ECB takes financial conditions into 

account when setting interest rates. So far, the evidence for this (the significant 

reaction coefficient) is mainly in-sample.  To assess the usefulness of the financial 
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index variable out-of-sample, we estimate Models 1 to 9 without including the 

financial variable index.  In this case, Table 1 includes 23 Models in total, where 

Model 22 refers to the median forecast from all models with real-time data (that is, 

models 13, 15, 16, 18, 19, 21) without the financial index variable included and 

Model 23 refers to the median forecast from all models with final data (that is, 

models 14, 17, 20) without the financial index variable included.     

 

Table 7 shows how each of the twenty three models ranks individually against all the 

other models across different forecast horizons (one through twelve months). 

Columns (i)-(ii) present the average out-of-sample forecasting ranking using 

recursive windows for the twenty three models, according to two evaluation criteria, 

the mean squared prediction error (MSPE) and the median squared prediction error 

(MedSPE). As before, better or higher-ranked forecasting methods have lower 

numerical ranks. What we find, is that amongst the models without the financial 

index variable included, the three semi-parametric models are ranked higher than 

the remaining models.  In particular, the semi-parametric model that uses real-time 

inflation and real-time industrial production is ranked (on average) higher than the 

semiparametric model with real-time inflation and the economic sentiment indicator, 

which in turn, is ranked higher than the semiparametric model that uses final inflation 

and final industrial production.  All models that abstract from the financial index are 

ranked (on average) lower than the corresponding models with financial index with 

the exception of the linear models.  Therefore, our forecasting exercise concludes 

that all models that include the financial condition variable forecast-out-of-sample 

better than all models that exclude the financial variable index.  Further, whether or 

not the financial index is included, semi-parametric models dominate the remaining 

models. 

 

In all our estimated models, the lagged interest rate parameter estimate is around 

0.9.  Because of this, the forecasted interest rates are largely driven by past interest 

rates and not so much by the “Taylor rule part” of the model.  Re-estimating the 

models without interest rate smoothing made no qualitative difference to the relative 

rankings of the different model specifications reported in Section 5. 
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In the nonlinear model the different regimes are defined via a threshold for the 

inflation rate.  Since the focus of the paper lies on the financial crisis, we consider 

the financial index as possible transition variables in the weight function (5).  In such 

a specification, the observed shift from inflation targeting to output stabilization 

behaviour could be directly related to the financial crisis.  This nonlinear model 

provided very poor parameter estimates both in statistical and economic terms. 

 

We also note that we have tried other pooled forecasts, such as pooled forecasts 

from all Taylor rule models (Models 1 through 6) and pooled forecasts from all 

models (Models 1 through 10).  None of these forecasts was ranked any higher than 

the pooled forecasts reported in the paper.  In the interest of robustness, Table 8 

reports our forecasting rankings based on sequences of fixed-length rolling windows.  

According to the MSPE criterion (see Table 8A), semiparametric Model 9 is, on 

average, the top-ranked model followed by Model 10 (the AR model) and then by 

Model 11 (the model that pools forecasts from models with real-time data).  In fact, 

Model 9 is ranked either first or second across the individual forecasting horizons.  

According to the MedSPE criterion (see Table 8B), semiparametric models 7, 9, and 

8 are ranked, on average, first, second, and third, respectively.  Therefore, rolling 

estimates confirm to some extent the forecasting superiority of semiparametric 

models based on the sequence of expanding windows discussed earlier on.   

 

7. Conclusions 

This paper shows that linear and nonlinear Taylor rule models are empirically 

indistinguishable within sample, whereas model specifications with real-time data 

provide the best description of in-sample ECB interest rate setting behavior.  The 

2007-2009 financial crisis witnesses a shift from inflation targeting to output 

stabilisation and a shift, from an asymmetric policy response to financial conditions 

at high inflation rates, to a more symmetric response irrespectively of the state of 

inflation.  Semiparametric models, that relax the assumption of a Taylor rule 

specification are flexible enough to forecast out-of-sample better than any linear or 

nonlinear Taylor rule model.  

 

The response of ECB policymakers to financial conditions arguably has important 

policy implications as it might shed some light on why the 2007-2009 downturn in the 
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Eurozone area appears to be less severe than in the US where financial conditions 

do not feature in the Federal Reserve Bank‟s reaction function.  According to OECD 

calculations, annual US real output gap dropped from 1.1% in 2006 to -0.9% in 2008 

and to -4.9% in 2009.  On the other hand, annual real GDP output gap in the 

Eurozone area dropped from 1.0% in 2006 to 0.7% in 2008 and to -4.5% in 2009 

(estimates available from OECD‟s website).  Although the Eurozone economic 

structure is less flexible than the US one, therefore providing more protection against 

bad economic outcomes (Trichet, 2009), targeting financial conditions might also be 

an additional reason.  Although our results offer some preliminary support to this 

argument, they are far from definitive (indeed, the OECD estimates that output gap 

in the Eurozone area remains at -4.5% in 2010 as opposed to a more optimistic 

estimate of -3.9% for the US).  To further assess the importance of targeting financial 

conditions for economic stability, a more detailed study would allow for linear and 

regime switching behaviour in joint estimates of the policy rate, aggregate supply 

and aggregate demand equations within a structural Vector Autoregressive (VAR) 

system in the interest rate, inflation, output gap and the financial index.  With this in 

mind, we note recent work by Castro and Sousa (2010) that assesses the response 

of monetary policy to developments in asset markets using both a simultaneous 

system approach in a Bayesian environment and a nonlinear regime-switching 

model.  It is also our intention to assess the in-sample and out-of-sample behaviour 

of the ECB interest rate by focussing on alternative measures of inflation forecasts.  

For instance, Gorter et al (2008) use Eurozone inflation forecasts from Consensus 

Economics which are available on a monthly basis.  We intend to address these 

issues in future research. 

 

References 

Aksoy, Y., A. Orphanides, D. Small, V. Weiland and D. Wilcox (2006). A Quantitative 

Exploration of the Opportunistic Approach to Disinflation, Journal of Monetary 

Economics, 53, 1877-1893. 

Bank of England (2007). Financial Stability Report 21 (April): 1-78. 

Bernanke, B. and M. Gertler (2001). Should Central Banks Respond to Movements 

in Asset Prices?. American Economic Review, 91, 253-257. 



 
23 

 

 
 

Castro, V. (2010). Can central banks' monetary policy be described by a linear 

(augmented) Taylor rule or by a nonlinear rule? Journal of Financial Stability, 

forthcoming. 

Castro, V. and, R.M. Sousa (2010). How Do Central Banks React to Wealth 

Composition and Asset Prices? NIPE Working Paper, WP 26/2010, University of 

Minho, Portugal. Available from:  

   http://www3.eeg.uminho.pt/economia/nipe/docs/2010/NIPE_WP_26_2010.pdf 

Clarida, R.J., M. Galí and M. Gertler (2000). Monetary policy rules and 

macroeconomic stability: evidence and some theory, Quarterly Journal of 

Economics, 115, 147–180. 

Coenen, G., A. Levin and V. Wieland (2005).  Data uncertainty and the role of money 

as an information variable for monetary policy. European Economic Review, 49, 

975-1006.  

Cukierman, A. and A. Muscatelli (2008). Nonlinear Taylor Rules and Asymmetric 

Preferences in Central Banking: Evidence from the United Kingdom and the United 

States. The B.E. Journal of Macroeconomics, 8, Iss. 1 (Contributions), Article 7. 

D‟Agostino, A. and P. Surico (2009). Does global liquidity help to forecast US 

inflation?, Journal of Money, Credit and Banking, 41, 479-489. 

Dahl, C.M. and G. González-Rivera (2003). Testing for neglected nonlinearity in 

regression models based on the theory of random fields. Journal of Econometrics, 

114, 141-164. 

De Grauwe, P. (2007). Central banks should prick asset bubbles. Article in The 

Financial Times, Thursday, Nov 1, 2007. 

Diebold, F.X. and R.S. Mariano (1995). Comparing predictive accuracy, Journal of 

Business and Economic Statistics, 13, 253-263. 

Dieppe, A., K. Kuster and P. McAdam (2004). Optimal Monetary Policy Rules for the 

Euro Area: An Analysis Using the Area Wide Model, ECB Working Paper No. 360, 

European Central Bank, Frankfurt.  

Dolado, J., R. María Dolores and F.J. Ruge-Murcia (2004). Non-linear monetary 

policy rules: Some new evidence for the US, Studies in Nonlinear Dynamics and 

Econometrics, 8, article 2. 

Dolado, J., Maria-Dolores, R. and Naveira, M. (2005). Are monetary-policy reaction 

functions asymmetric?: The role of nonlinearity in the Phillips curve, European 

Economic Review, 49, 485-503. 

http://www3.eeg.uminho.pt/economia/nipe/docs/2010/NIPE_WP_26_2010.pdf


 
24 

 

 
 

English, W.B., W.R. Nelson and B.P. Sack (2003). Interpreting the significance of the 

lagged interest rate in estimated monetary policy rules. Contributions to 

Macroeconomics, Vol. 3, Article 5. 

Estrella, A. and F.S. Mishkin (1997). The predictive power of the term structure of 

interest rates in Europe and the United States: Implications for the European 

Central Bank. European Economic Review, 41, 1375-1401. 

Gali, J., S. Gerlach, J. Rotemberg, H. Uhlig and M. Woodford (2004). The Monetary 

Policy Strategy of the ECB Reconsidered. Centre for Economic Policy Research, 

London.  

Gerlach-Kristen, P. (2004). Interest-Rate Smoothing: Monetary Policy Inertia or 

Unobserved Variables?. Contributions to Macroeconomics, Vol. 4, Article 3. 

Gerdesmeier, D. and B. Roffia (2005). The relevance of real-time data in estimating 

reaction functions for the euro area. North American Journal of Economics and 

Finance, 16, 293-307. 

Gorter, J., J. Jacobs, and J. de Haan (2008). Taylor Rules for the ECB using 

Expectations Data, Scandinavian Journal of Economics, 110, 473-488. 

Granger, C.W.J., and T. Teräsvirta (1993).  Modelling nonlinear economic 

relationships. Oxford University Press, Oxford. 

Hall, P., Racine, J.S., and Q. Li (2004). Cross-Validation and the Estimation of 

Conditional Probability Densities, Journal of the American Statistical Association, 

99(468), 1015--1026. 

Hamilton, J.D. (2001). A parametric approach to flexible nonlinear inference. 

Econometrica, 69, 537-573. 

Hansen, L.P. (1982). Large Sample Properties of Generalized Method of Moments 

Estimators, Econometrica, 82, 1029–1054. 

Harvey, D., S. Leybourne and P. Newbold (1997). Testing the equality of prediction 

mean squared errors, International Journal of Forecasting, 13, 281-291. 

Hayfield T. and J.S. Racine (2008). Nonparametric Econometrics: The np Package, 

Journal of Statistical Software, 27, 1-32. 

Herrmann, H., A. Orphanides and P.L. Siklos (2005). Real-time data and monetary 

policy, North American Journal of Economics and Finance, 16, 271-276 

Hodrick, R.J. and E.C. Prescott (1997). Postwar U.S. business cycles: An empirical 

investigation, Journal of Money, Credit, and Banking, 29, 1–16. 



 
25 

 

 
 

Hurvich, C.M., Simonoff, J.S., and C.L. Tsai (1998). Smoothing Parameter Selection 

in Nonparametric Regression using an improved Akaike information criterion, 

Journal of the Royal Statistical Society Series B, 60, 271-293. 

Inoue, A., and L. Kilian. (2004). In-sample or out-of-sample tests of predictability: 

Which one should we use? Econometric Reviews, 23, 371-402. 

King, M. (2007). The MPC ten years on. Lecture delivered to the Society of Business 

Economists, 2 May 2007. Available at: 

http://www.bankofengland.co.uk/publications/speeches/2007/speech309.pdf. 

Layard, R., S. Nickell and R. Jackman (1991). Unemployment, Oxford: Oxford 

University Press. 

Li Q. and J.S. Racine (2004). Cross-Validated Local Linear Nonparametric 

Regression. Statistica Sinica, 14, 485-512. 

Martin, C. and C. Milas (2010a). The Sub-Prime Crisis and UK Monetary Policy. 

International Journal of Central Banking, 6, 119-144. 

Martin, C. and C. Milas (2010b). Financial stability and monetary policy.  Rimini 

Centre for Economic Analysis Working Paper No. 12-10.  Available at: 

   http://www.rcfea.org/RePEc/pdf/wp12_10.pdf 

Meyer, L.H., E.T. Swanson and V. Wieland (2001). NAIRU uncertainty and nonlinear 

policy rules, American Economic Review, 91, 226–231. 

Mise, E., T-H. Kim and P. Newbold (2005a). On the Sub-Optimality of the Hodrick-

Prescott Filter. Journal of Macroeconomics, 27, 53-67. 

Mise, E., T-H. Kim and P. Newbold (2005b). Correction of the Distortionary end-

effect of the Hodrick-Prescott Filter: Application. Mimeo. Available from: 

   http://www.le.ac.uk/economics/staff/em92.html. 

Mishkin, F.S. (2008). How Should We Respond to Asset Price Bubbles? Speech at 

the Wharton Financial Institutions Center and Oliver Wyman Institute's Annual 

Financial Risk Roundtable, Philadelphia, Pennsylvania. Available from:  

  http://www.federalreserve.gov/newsevents/speech/mishkin20080515a.htm. 

Nobay, R. and D. Peel (2003). Optimal discretionary monetary policy in a model of 

asymmetric central bank preferences, Economic Journal, 113, 657-665. 

Orphanides, A. (2001). Monetary policy rules based on real-time data, American 

Economic Review, 91, 964-985. 

http://www.rcfea.org/RePEc/pdf/wp12_10.pdf


 
26 

 

 
 

Orphanides, A. and S. van Norden (2005). The reliability of inflation forecasts based 

on output gap estimates in real time, Journal of Money, Credit, and Banking, 37, 

583-601. 

Papademos, L. (2009). Monetary policy and the „Great Crisis‟: Lessons and 

challenges. Speech at the Conference “Beyond the Crisis: Economic Policy in a 

New Macroeconomic Environment”, Vienna, 14 May 2009. Available from: 

http://www.ecb.int/press/key/date/2009/html/sp090514.en.html. 

Qin, T. and W. Enders (2008). In-sample and out-of-sample properties of linear and 

nonlinear Taylor rules, Journal of Macroeconomics, 30, 428-443. 

Robinson, P.M. (1988). Root-N Consistent Semiparametric Regression, 

Econometrica, 56, 931-954. 

Rudebusch, G.D. (2002). Term structure evidence on interest rate smoothing and 

monetary policy inertia. Journal of Monetary Economics, 49, 1161-1187. 

Sauer, S., and J.-E. Sturm (2007). Using Taylor Rules to Understand European 

Central Bank Monetary Policy, German Economic Review, 8, 375-398. 

Smets, F. and R. Wouters (2003). An estimated stochastic dynamic general 

equilibrium model of the Euro area. Journal of the European Economic Association, 

1, 1123-1175. 

Swamy, P.A.V.B., G.S. Tavlas and I-Lok Chang (2005). How stable are monetary 

policy rules: estimating the time-varying coefficients in monetary policy reaction 

function for the US, Computational Statistics and Data Analysis, 49, 575-590.  

Taylor, J. (1993). Discretion versus policy rules in practice, Carnegie-Rochester 

Conference Series on Public Policy, 39, 195-214. 

Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition 

autoregressive models, Journal of the American Statistical Association, 89, 208–

218. 

Trichet, J.C. (2005). Asset price bubbles and monetary policy. Speech at the 

Monetary Authority of Singapore, 8 June 2005. Available from: 

http://www.ecb.int/press/key/date/2005/html/sp050608.en.html. 

Trichet, J.C. (2009). The financial crisis and our response so far. Speech at the 

Chatham House Global Financial Forum, New York, 27 April 2009. Available from: 

http://www.ecb.int/press/key/date/2009/html/sp090427.en.html. 



 
27 

 

 
 

van Dijk, D. and P.H. Franses (2003).  Selecting a nonlinear time series model using 

weighted tests of equal forecast accuracy, Oxford Bulletin of Economics and 

Statistics, 65, 727-744. 

van Dijk, D., T. Teräsvirta, and P.H. Franses (2002).  Smooth transition 

autoregressive models – a survey of recent developments, Econometric Reviews, 

21, 1-47. 

Walsh, C. (2009). Using monetary policy to stabilize economic activity. Financial 

Stability and Macroeconomic Policy, Federal Reserve Bank of Kansas City, 

Jackson Hole Symposium, 245-296. 

Woodford, M. (2003). Interest and prices: Foundations of a theory of monetary 

policy, Princeton: Princeton University Press. 



 
28 

 

 
 

Table 1: Model definitions  

1  1 1 1 0 12 1(1 ) _ .t t t t y t f t ti i E y fin index                 

Linear model: It uses real-time inflation and real-time industrial production.  

2  1 1 1 0 12 1(1 ) _ .t t t t y t f t ti i E y fin index                 

Linear model: It uses final inflation and final industrial production. 

3  1 1 1 0 12 1(1 ) _ .t t t t y t f t ti i E y fin index                 

Linear model: It uses real-time inflation and economic sentiment.  

4 
1 1 1 0 12 1 12 2(1 ){ ( ; , ) (1 ( ; , )) } .

t tt t t t t t t t ti i E M E M  
                    

where 
12 1_jt j t t jy t jf tM E y fin index        for j=1,2 and 

12t tE 
 is the 

transition variable.   
Nonlinear logistic model: It uses real-time inflation and real-time industrial 
production. 

5 
1 1 1 0 12 1 12 2(1 ){ ( ; , ) (1 ( ; , )) } .

t tt t t t t t t t ti i E M E M  
                    

where 12 1_jt j t t jy t jf tM E y fin index        for j=1,2 and 12t tE   is the 

transition variable.   
Nonlinear logistic model: It uses final inflation and final industrial production. 

6 
1 1 1 0 12 1 12 2(1 ){ ( ; , ) (1 ( ; , )) } .

t tt t t t t t t t ti i E M E M  
                    

where 12 1_jt j t t jy t jf tM E y fin index        for j=1,2 and 12t tE   is the 

transition variable.   
Nonlinear logistic model: It uses real-time inflation and economic sentiment.  

7 
1 12 1( ) ( , , _ ) .t i t t t t t ti L i f E y fin index        

Semiparametric model: It uses real-time inflation and real-time industrial 
production.  

8 
1 12 1( ) ( , , _ ) .t i t t t t t ti L i f E y fin index        

Semiparametric model: It uses final inflation and final industrial production.  

9 
1 12 1( ) ( , , _ ) .t i t t t t t ti L i f E y fin index        

Semiparametric model: It uses real-time inflation and economic sentiment. 

10 
0 1 1 2 2 3 3 4 4 .t t t t t ti i i i i               

Linear Autoregressive model (AR) of order 4. 

11 Median forecast from models with real-time data, models 1, 3, 4, 6, 7, and 9. 

12 Median forecast from models with final data, that is, models 2, 5, and 8. 

 Note: Models 13 to 23 are linear, nonlinear logistic, semiparametric and 
median forecast models  which exclude financial conditions. 

13 Linear Model: It uses real-time inflation and real-time industrial production. 

14 Linear model: It uses final inflation and final industrial production. 

15 Linear model: It uses real-time inflation and economic sentiment. 

16 Nonlinear logistic model: It uses real-time inflation and real-time industrial 
production. 

17 Nonlinear logistic model: It uses final inflation and final industrial production. 

18 Nonlinear logistic model: It uses real-time inflation and economic sentiment. 

19 Semiparametric model: It uses real-time inflation and real-time industrial 
production. 

20 Semiparametric model: It uses final inflation and final industrial production. 

21 Semiparametric model: It uses real-time inflation and economic sentiment. 

22 Median forecast from models with real-time data, models 13, 15, 16, 18, 19 
and 21. 

23 Median forecast from models with final data, that is, models 14, 17 and 20. 



Table 2: Model estimates, 1999:M1-2005:M12 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

0   -2.305 (1.33)   0.038 (0.56)  -1.070 (0.56)  -0.295 (1.64)   0.472 (0.89)  -2.062 (1.21) 

1    0.961 (0.01)   0.902 (0.01)   0.941 (0.01)   0.950 (0.01)   0.898 (0.01)   0.938 (0.01) 

    2.621 (0.61)   1.459 (0.25)   1.930 (0.26)    

y    1.679 (0.57)   0.583 (0.05)   0.201 (0.02)    

f    2.037 (0.22)   1.076 (0.09)   1.392 (0.10)    

1       1.460 (0.65)     1.210 (0.50)   2.467 (0.69) 

1y       0.076 (0.38)     0.522 (0.09)   0.050 (0.06) 

1 f       1.116 (0.29)     0.344 (0.10)   0.566 (0.21) 

2       1.702 (0.68)     1.288 (0.38)   2.303 (0.51) 

2 y       1.916 (0.50)     0.443 (0.19)   0.194 (0.03) 

2 f       2.185 (0.20)     1.474 (0.13)   1.551 (0.11) 

        2.04 (0.65)    2.11 (0.64)   2.07 (0.45) 

      10.21 (4.32)  9.97 (3.91)  10.15 (4.43) 

Implied 
*    2.04%   2.05%   2.12%    

AIC -1.315  -1.346  -1.374  -1.279   -1.287  -1.334 

Regression  

standard error  

 0.120   0.119   0.117   0.121    0.120   0.117 

2R   0.985   0.986   0.986   0.985    0.986   0.986 

J-stat   0.33   0.35   0.36   0.34    0.36   0.37 

λ-test   0.01   0.01   0.01    

λA-test   0.00   0.01   0.01    

g-test   0.01   0.00   0.00    

Notes: Numbers in parentheses are standard errors. The implied target 
*  is derived as 

* 0î 








, where î = 3.04%.  AIC is the 

Akaike Information Criterion.  J stat is the p-value of a chi-square test of the model’s overidentifying restrictions (Hansen, 1982).  The set 
of instruments includes a constant, 1-4, 9, 12 lagged values of inflation, the output gap, the 10-year government bond, M3 growth, and the 

financial index.  The table also reports bootstrapped p-values of the λ, λA, and g tests based on 1000 re-samples.   

 

 



Table 3: Out-of-sample forecasting ranks 

A) MSPE rank (recursive estimates) 
 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 Average 

rank 

Model 
i 

             

1 3 6 6 7 7 7 7 7 7 7 7 7   6.8 

2 4 11 10 11 12 12 12 12 12 12 12 12 11.5 

3 2 7 8 12 11 11 10 10 10 9 8 8   9.1 

4 6 8 5 6 6 5 5 5 5 5 5 6   6.2 

5 6 12 9 10 10 10 11 11 11 11 11 11 10.8 

6 3 9 5 8 8 8 8 8 8 8 9 9   8.0 

7 5 2 2 4 2 1 1 2 1 1 3 1   2.6 

8 3 4 1 1 1 2 2 1 2 2 1 2   2.2 

9 3 3 1 2 3 3 3 3 3 3 2 3   2.8 

10 1 1 3 3 4 4 4 4 4 4 4 4   3.4 

11 2 5 4 5 5 6 6 6 6 6 6 5   5.3 

12 5 10 7 9 9 9 9 9 9 10 10 10   9.4 

Notes: The Table reports the out-of-sample forecasting ranks of Model i across the recursive windows and forecasting  
horizons h=1,…,12, using the Mean Squared Prediction Error (MSPE). The last column reports the average forecasting rank.   
See Table 1 for the forecasting model definitions. 

 



  

 

 

Table 3 (continued): Out-of-sample forecasting ranks 

 
B) MedSPE rank (recursive estimates) 
 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 Average 

rank 

Model 
i 

             

1 4 7 6 6 6 9 8 7 8 7 7 7   7.3 

2 6 5 11 10 10 11 11 10 11 11 11 11 10.8 

3 2 9 10 12 11 12 10 9 10 10 8 8   9.8 

4 8 8 7 8 7 8 6 5 5 5 6 6   7.3 

5 8 11 12 11 8 7 5 4 7 9 10 10   9.5 

6 3 10 9 9 9 10 9 8 9 8 9 9   9.1 

7 4 3 1 1 1 1 2 2 1 1 1 1   1.8 

8 1 2 1 2 2 2 1 2 2 2 2 2   1.8 

9 4 3 3 3 3 3 3 3 3 3 3 3   3.4 

10 1 1 4 4 4 4 4 1 4 4 4 4   3.6 

11 5 4 5 5 6 6 7 6 6 6 5 5   6.3 

12 7 6 8 7 5 5 5 4 7 9 10 10   7.4 

Note: The Table reports the out-of-sample forecasting ranks of Model i across the recursive windows and forecasting  
horizons h=1,…,12, using the Median Squared Prediction Error (MedSPE). The last column reports the average forecasting rank.   
See Table 1 for the forecasting model definitions. 

 

 



  

 

Table 4: Pair-wise out-of-sample forecast comparison using DM* 

 Model j 

Model i 1 2 3 4 5 6 7 8 9 10 11 12 

1 - 100.0 75.0 16.7 41.7 33.3 0.0 0.0 0.0 0.0 0.0 33.3 

2 0.0 - 0.0 8.3 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.0 16.7 - 8.3 16.7 25.0 0.0 0.0 0.0 0.0 0.0 8.3 

4 8.3 66.7 25.0 - 25.0 41.7 0.0 0.0 0.0 0.0 0.0 16.7 

5 0.0 33.3 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6 0.0 50.0 33.3 8.3 25.0 - 0.0 0.0 0.0 0.0 0.0 8.3 

7 83.3 91.7 91.7 83.3 91.7 83.3 - 0.0 16.7 16.7 83.3 91.7 

8 83.3 91.7 91.7 100.0 100.0 91.7 0.0 - 0.0 66.7 75.0 91.7 

9 91.7 91.7 91.7 91.7 100.0 91.7 0.0 0.0 - 41.7 91.7 100.0 

10 50.0 75.0 75.0 100.0 83.3 100.0 8.3 8.3 8.3 - 50.0 83.3 

11 50.0 91.7 91.7 25.0 41.7 100.0 0.0 0.0 0.0 0.0 - 50.0 

12 0.0 58.3 0.0 8.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 - 
Notes: The Table presents pair-wise out-of-sample forecast comparisons for the 12 forecasting models and expanding windows, across forecasting horizons h = 1,…,12, using the modified (DM*) 
Diebold-Mariano MSPE statistic of Harvey et al. (1997). The entries in the Table show the percentage of forecasting horizons for which the DM* test rejects the null hypothesis that Model i's forecast 
performance as measured by MSPE is not superior to that of Model j at the 10% significance level. See Table 1 for the forecasting model definitions. 

 

Table 5: Pair-wise out-of-sample forecast comparison using left-tailed W-DM* 

 Model j 

Model i 1 2 3 4 5 6 7 8 9 10 11 12 

1 - 100.0 75.0 8.3 33.3 33.3 0.0 0.0 0.0 0.0 0.0 33.3 

2 0.0 - 0.0 8.3 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.0 58.3 - 8.3 25.0 25.0 0.0 0.0 0.0 0.0 0.0 8.3 

4 0.0 91.7 0.0 - 66.7 33.3 0.0 0.0 0.0 0.0 0.0 25.0 

5 0.0 33.3 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6 0.0 83.3 16.7 8.3 16.7 - 0.0 0.0 0.0 0.0 0.0 8.3 

7 91.7 100.0 91.7 100.0 91.7 91.7 - 0.0 0.0 0.0 91.7 83.3 

8 75.0 91.7 83.3 91.7 100.0 91.7 0.0 - 0.0 8.3 75.0 83.3 
9 91.7 100.0 91.7 83.3 91.7 91.7 0.0 0.0 - 0.0 91.7 83.3 
10 16.7 75.0 50.0 58.3 75.0 66.7 0.0 8.3 8.3 - 16.7 66.7 
11 58.3 100.0 91.7 25.0 91.7 91.7 0.0 0.0 0.0 0.0 - 83.3 

12 0.0 83.3 0.0 8.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 - 
Notes: The Table presents pair-wise out-of-sample forecast comparisons for the 12 forecasting models and expanding windows, across forecasting horizons h = 1,…,12, using the left-tailed 
modified Diebold-Mariano MSPE statistic of van Dijk and Franses (2003) (W-DM*).  The entries in the Table show the percentage of forecasting horizons for which the left-tailed W-DM* test rejects 
the null hypothesis that Model i's forecast performance as measured by MSPE is not superior to that of Model j at the 10% significance level. See Table 1 for the forecasting model definitions. 

 



  

 

Table 6: Pair-wise out-of-sample forecast comparison using right-tailed W-DM* 

 Model j 

Model i 1 2 3 4 5 6 7 8 9 10 11 12 

1 - 50.0 83.3 16.7 33.3 33.3 0.0 0.0 0.0 0.0 0.0 8.3 

2 0.0 - 0.0 8.3 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.0 16.7 - 8.3 16.7 8.3 0.0 0.0 0.0 0.0 0.0 8.3 

4 16.7 41.7 25.0 - 25.0 58.3 0.0 0.0 0.0 0.0 0.0 0.0 

5 0.0 33.3 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6 0.0 25.0 25.0 8.3 25.0 - 0.0 0.0 0.0 0.0 0.0 8.3 

7 83.3 83.3 83.3 83.3 83.3 83.3 - 0.0 16.7 50.0 83.3 83.3 

8 91.7 83.3 91.7 100.0 91.7 91.7 0.0 - 8.3 75.0 91.7 100.0 

9 91.7 83.3 91.7 100.0 91.7 91.7 0.0 0.0 - 58.3 91.7 100.0 

10 91.7 83.3 100.0 100.0 58.3 100.0 8.3 8.3 8.3 - 83.3 41.7 

11 16.7 66.7 75.0 25.0 33.3 100.0 0.0 0.0 0.0 0.0 - 16.7 

12 0.0 41.7 0.0 8.3 41.7 0.0 0.0 0.0 0.0 0.0 0.0 - 

Notes: The Table presents pair-wise out-of-sample forecast comparisons for the 12 forecasting models and expanding windows, across forecasting horizons h = 1,…,12, using 
the right-tailed modified Diebold-Mariano MSPE statistic of van Dijk and Franses (2003) (W-DM*).  The entries in the Table show the percentage of forecasting horizons for 
which the right-tailed W-DM* test rejects the null hypothesis that Model i's forecast performance as measured by MSPE is not superior to that of Model j at the 10% significance 

level. See Table 1 for the forecasting model definitions. 



  

 

Table 7: Average out-of-sample forecasting ranks 

Model i (i) 
MSPE rank 
(recursive 
estimates) 

(ii) 
MedSPE 
rank 
(recursive 
estimates) 

1 11.5 12.7 

2 18.8 19.3 

3 15.3 17.9 

4 10 12.2 

5 18.1 15.6 

6 12.9 16 

7 2.9 1.9 

8 2.8 1.9 

9 3.7 4.4 

10 5.7 5.8 

11 8.1 11 

12 15.8 12.6 

13 11.3 11.1 

14 22.2 22.8 

15 12.5 13.8 

16 16.6 14.8 

17 22.5 21 

18 17 15.3 

19 4.1 3.3 

20 8.8 6.5 

21 5.4 6.3 

22 8.7 10.3 

23 20.7 18.1 

Notes: Columns (i)-(ii) report the average out-of-sample forecasting ranks of Model i across the recursive windows and forecasting horizons h=1,…,12, using the Mean 

Squared Prediction Error (MSPE) and Median Squared Prediction Error (MedSPE) criteria. See Table 1 for the forecasting model definitions. 

 

 

 

 



  

 

Table 8: Out-of-sample forecasting ranks 

A) MSPE rank (rolling estimates) 
 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 Average 

rank 

Model 
i 

             

1 2 3 6 7 6 7 6 7 7 7 7 7   6.2 

2 4 7 11 12 11 12 11 12 12 12 12 12 11.2 

3 2 4 9 9 9 10 9 10 10 10 9 8   8.6 

4 3 4 4 4 3 5 4 5 5 5 5 5   4.8 

5 7 9 10 10 10 11 10 11 11 11 11 11 10.7 

6 3 5 5 5 5 8 7 8 9 9 10 10   7.5 

7 6 10 12 11 7 1 1 2 1 1 1 1   5.0 

8 7 8 7 6 12 4 12 3 3 3 3 3   6.5 

9 2 1 1 1 1 2 2 1 2 2 2 2   1.8 

10 1 1 2 2 2 3 3 4 4 4 4 4   2.9 

11 2 2 3 3 4 6 5 6 6 6 6 6   4.7 

12 5 6 8 8 8 9 8 9 8 8 8 9   8.3 

Notes: The Table reports the out-of-sample forecasting ranks of Model i across the rolling windows and forecasting  
horizons h=1,…,12, using the Mean Squared Prediction Error (MSPE). The last column reports the average forecasting rank.   
See Table 1 for the forecasting model definitions. 

 



  

 

Table 8: Out-of-sample forecasting ranks 

 
B) MedSPE rank (rolling estimates) 
 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 Average 

rank 

Model 
i 

             

1 3 4 6 7 8 9 9 8 7 7 7 7   7.6 

2 4 6 10 12 11 12 12 11 11 11 11 11 11.3 

3 2 8 9 10 12 11 11 10 9 9 8 9   9.5 

4 5 3 5 4 4 5 5 5 5 5 5 6   5.5 

5 6 10 8 11 9 7 8 7 8 10 10 10   9.8 

6 3 9 6 8 10 10 10 9 10 8 9 8   8.9 

7 3 1 1 1 1 2 1 1 1 1 1 1   1.5 

8 4 1 3 6 3 3 3 3 3 3 3 3   3.7 

9 1 2 4 2 2 1 2 2 2 2 2 2   2.3 

10 2 2 2 5 6 4 4 4 4 4 4 4   3.9 

11 2 5 3 3 5 6 7 6 6 6 6 5   5.4 

12 5 7 7 9 7 8 6 8 8 10 10 10   8.7 

Note: The Table reports the out-of-sample forecasting ranks of Model i across the rolling windows and forecasting  
horizons h=1,…,12, using the Median Squared Prediction Error (MedSPE). The last column reports the average forecasting rank.   
See Table 1 for the forecasting model definitions. 

 

 

 



Figure 1: Interest rate, inflation, output gap measures and the financial index 

a) Interest rate and inflation measures 
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b) Output gap measures  
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c) Financial conditions index 
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Figure 2: Recursive inflation, output gap, and financial index coefficients, Model 3 

a) Inflation coefficient   
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b) Output gap coefficient y  (economic sentiment measure) 
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c) Financial conditions index coefficient f  
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Figure 3: Recursive inflation, output gap, and financial index coefficients, Model 6 

a) Inflation coefficients 1  and 2  
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b) Output gap coefficients 1y  and 2 y  (economic sentiment measure) 
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c) Financial conditions index coefficients 1 f  and 2 f  
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Figure 4: Recursive p-values associated with testing the hypothesis that 1 = 2 ,
 

1y = 2 ,y
 
and 1 f = 2 ,f  respectively for Model 6. 
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Figure 5: Semiparametric forecasts and interest rate 

a) h=1 
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b) h=4 
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Figure 5 (continued): Semiparametric forecasts and interest rate 

c) h=8 
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d) h=12 

3.4

3.6

3.8

4.0

4.2

4.4

12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06

2006 2007 2008

Model 7, h=12 Model 8, h=12

Model 9, h=12 Interest rate  

Note: For definitions of Models 7, 8, and 9, see Table 1. 
 


