
FISCAL MULTIPLIERS IN RECESSIONS

M. Canzoneri, F. Collard, H. Dellas and B. Diba

Policy Practice

- Standard policy practice: Fiscal expansions during recessions as a means of stimulating economic activity.
- ▶ Example: The recent Great Recession.

Standard Theory

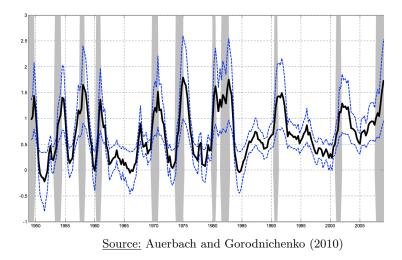
- Standard business cycle models do not support such practices.
 - An increase in government spending raises households' future tax burden.
 - Negative wealth effect: Private savings increase, private consumption decreases, curtailing the expansion of aggregate demand.
 - \implies Output fiscal multipliers are small, at best making it to around unity.
- ► The models do not imply asymmetric effects over the business cycle: Fiscal policy is **ineffective** even during very **severe downturns**.
- ▶ The criticism levelled at the Obama administration's stimulus plan had a sound theoretical basis.

Theory cont'ed

- ▶ Large body of research on "non-Ricardian equivalence" aiming at "killing" the negative wealth effect and producing large multipliers.
- Prominent examples:
 - 1. Financial frictions
 - 2. Finite lifetimes with no bequest motives
 - 3. Confusion about shocks (Canzoneri et al., 2008).

None has succeeded in producing sufficiently large multipliers.

Empirical evidence


- ► Until recently, the existing empirical evidence aligned with standard theory
- Estimated fiscal multipliers were small, often negative. At best around unity
- In light of theory and evidence, policy practices are puzzling!

Diversion: The empirical difficulty of estimating multipliers

More recent empirical evidence

- Multipliers seem to be quite large in recessions: $\mu_q^R > 2$
- ▶ and low in expansions: $\mu_g^E < 1$ Auerbach and Gorodnichenko (2010, 2011)
- \implies The data seem to be kind to Keynes and the widely followed fiscal policy practices during recessions.
 - ▶ In light of this evidence and the policy practices it is theory that is puzzling!

Empirical Evidence

Empirical Evidence

Total Spending			
$\max\{y_h\}$			
	Value	Std. dev.	
Linear	1.00	0.32	
Expansion	0.57	0.12	
Recession	2.48	0.28	

Source: Auerbach and Gorodnichenko (2010)

Empirical Evidence

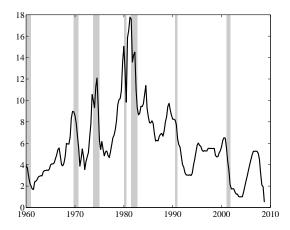
	$\max\{y_h\}$	
	Value	Std. dev.
Defense spending		
Linear	1.16	0.52
Expansion	0.80	0.22
Recession	3.56	0.74
Consumption spending		
Linear	1.21	0.27
Expansion	0.17	0.13
Recession	2.11	0.54
Investment spending		
Linear	2.12	0.68
Expansion	3.02	0.25
Recession	2.85	0.36

Source: Auerbach and Gorodnichenko (2010)

A CHALLENGE FOR STANDARD MODELS

Low multipliers

- These empirical results are also problematic for New-Keynesian models.
- Cogan et al. [2010] compute multipliers in the Smets Wouters [2007] model.
- ▶ Independent of
 - 1. The experiment (transitory, permanent, Obama fiscal stimulus ...)


2. The specification (zero bound, rule of thumb consumers,...) the maximum multiplier is about 1.

• Consumption and investment multipliers are negative.

A CHALLENGE FOR STANDARD MODELS

No asymmetries over the business cycle

- ► Cogan et al. [2010] investigate the size of multipliers in recession
- \blacktriangleright Use a 6.5% output gap + endogenous zero–bound
- ▶ No effect on output multipliers; if anything, slightly smaller
- ▶ Zero–bound (Christiano, Eichenbaum, Rebelo, 2009): Multiplier $\gg 1$ when $R \sim 0$
- Ercerg–Lindé, 2010: Not so clear. Depends very much on the particular details of the model
- Furthermore, no evidence for R = 0

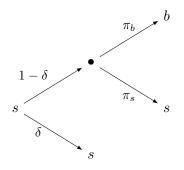
- What do we do in this paper?
- Construct a model that can generate:
 - 1. Cyclically asymmetric fiscal multipliers
 - 2. Large multipliers (greater than unity) during recessions and small (less than unity) during expansions
- ▶ **How**: Use a model with financial frictions (based on Curdia and Woodford), that are more severe during recessions.

Intuition

- ▶ During a recession, financial frictions worsen.
- ► An increase in government expenditures ameliorates the business cycle and mitigates these frictions.
- Crates a positive wealth effect for "credit constrained" households and for aggregate economy.
- Can generate a large multiplier.
- Negative wealth effects dominate in booms making multipliers small.
- ▶ This scenario is robust to a number of variations in the model.

ROADMAP

- 1. The Model: An extension of Curdia and Woodford
- 2. Calibration: Financial frictions
- 3. Main results: Large multipliers + Asymmetries
- 4. Robustness Analysis


A Model with Financial Frictions

- ▶ The model relies on Curdia and Woodford.
- ▶ Two types of agents: High (impatient, b) and low (patient, s) marginal utility.
- ▶ Type changes randomly over time.
- ▶ The patient save while the impatient borrow.
- ▶ Presence of a financial friction ⇒ Spread between the saving and the borrowing rate.
- ▶ Ricardian equivalence does not hold ⇒ Public debt matters.
- ► The rest of the model is standard: Monopolistic competition + calvo prices + Taylor rule.

CURDIA AND WOODFORD

Households

- Details regarding household types
- ▶ 2 classes of agents, $\tau = \{b, s\}$ of size π_b (resp. π_s)
- Evolution of household type

Households

▶ Household *i*'s preferences:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} \left[u^{\tau_{t+s}(i)}(c_{t+s}^{\tau_{t+s}(i)}(i);\xi_{t+s}) - \int_{0}^{1} v(h_{t+s}^{\tau_{t+s}(i)}(j);\xi_{t+s}) \mathrm{d}j \right]$$

where $\tau_t(i) \in \{b, s\}$ indicates household type in period t.

▶ A critical assumption: marginal utility of consumption of type *b* agents is larger than that of type *s* agents for any consumption level

$$u_c^b(c,\xi) > u_c^s(c,\xi)$$

• Agents b are relatively impatient.

- Households can deposit funds at /borrow from financial intermediaries.
 - Deposits pay a nominal interest rate, i_{t-1}^d
 - Loans pay an interest rate i_{t-1}^b $(i^b > i^d)$
- Type switching \implies Infinite \sharp histories
- Assumption: When selected to redraw a type, agents visit an insurance agency which wipes out debts and distributes assets equally. Departing agents of the same type are identical.
- Distribution of types does not matter: Simplifies aggregation

Firms: Standard New Keynesian Setting

• Final good:
$$y_t = \left(\int_0^1 y_t(j)^{\frac{\theta-1}{\theta}} dj\right)^{\frac{\theta}{\theta-1}}$$

- Intermediate goods: $y_t(j) = x_t h_t(j)^{\frac{1}{\varphi}}$ with $\varphi \ge 1$
- Calvo price setting

Banks

- Collect deposits, d_t , make loans, b_t , to the households.
- ▶ When making loans, b_t , banks face a resource cost, $C(b_t, \tilde{y}_t)$ where

$$\widetilde{y}_t = \frac{y_t - y^\star}{y^\star}$$

•
$$C_b(\cdot, \cdot) > 0, C_{bb}(\cdot, \cdot) > 0$$

- ▶ $C_{\widetilde{y}}(\cdot, \cdot) < 0$: Intermediation costs are higher in recessions.
- Mishkin, 2001: Cyclicality of firm net worth, of household liquidity etc. induces countercyclical variation in moral hazard and adverse selection problems.
- Gromb and Vayanos, 2011: When the wealth of financial intermediaries decreases, intermediation becomes less effective (more costly) because of margin constraints. Spreads increase.

Banks select amount of loans that maximizes

$$D_t^{\mathrm{I}} = P_t(d_t - b_t - C(b_t, \widetilde{y}_t))$$

▶ The revenues from lending, $(1 + i_t^b)b_t$, have to finance the payments on deposits, $(1 + i_t^d)d_t$

$$(1+i_t^d)d_t = (1+i_t^b)b_t$$

• Define ω_t as the spread: $1 + i_t^b = (1 + \omega_t)(1 + i_t^d)$

Profits

$$\omega_t b_t - C(b_t, \widetilde{y}_t)$$

The spread satisfies

$$\omega_t = C_b(b_t, \widetilde{y}_t)$$

- ► Use values (and functional forms) from Curdia and Woodford
- ▶ Differences from Curdia and Woodford
 - 1. Allow for endogenous debt: Requires lump sum transfers that stabilize debt: $T_t = -\rho(b_t^g b^{g^{\star}}) \ (\rho = 0.02).$
 - 2. Extend the form of the financial cost

$$C(b_t, \tilde{y}_t; \xi_{\varphi, t}) = \exp(\xi_{\varphi, t}) b_t^\eta \exp(-\alpha \tilde{y}_t)$$

where $\tilde{y}_t \equiv (y_t - y^*)/y^*$

▶ Use results from regressions:

$$\widehat{\omega}_t = cst + (\theta_b - 1)\widehat{b}_t - \theta_y \widehat{y}_t + \sum_{i=1}^{\ell} \gamma_i \widehat{\omega}_{t-i}$$

where $\hat{x}_t = (x_t - x^*)/x^*$.

- Output and total loans are linearly detrended.
- ▶ Long-run elasticities are obtained as

$$\eta_x = \frac{\theta_x}{1 - \sum_{i=1}^{\ell} \gamma_i}$$

1960Q1-2008Q4	AAA-FFR	BAA-FFR	AAA-TBILL	BAA-TBILL
η	5.60	7.23	6.46	7.88
	(4.94)	(3.79)	(3.99)	(3.56)
α	37.45	30.90	24.39	23.11
	(15.29)	(11.33)	(11.81)	(9.82)
Lags	2	2	4	4
\overline{R}^2	0.82	0.83	0.85	0.86
D.W.	1.95	1.90	1.96	1.89
1982Q3-2008Q4	AAA-FFR	BAA-FFR	AAA-TBILL	BAA-TBILL
η	3.86	6.77	4.34	6.25
	(3.20)	(4.30)	(3.16)	(3.31)
α	24.90	27.99	18.15	21.21
	(12.08)	(13.19)	(9.40)	(9.67)
Lags	2	2	2	2
\overline{R}^2	0.89	0.89	0.89	0.89
D.W.	2.08	1.96	2.17	1.898

- ▶ Set the mean of ξ_{φ} s.t. annual premium is 2%
- Set $\eta = 6.5$ and $\alpha = 23$:

Amplitude	Recession	Expansion
1.0%	2.6%	1.5%
2.5%	3.8%	0.9%

CUMULATIVE MULTIPLIERS

▶ $\mu_h^z(x)$: Cumulative multiplier of z at horizon h after a shock to x

$$\mu_h^z(x) = \frac{\sum_{i=0}^h (z_{t+i}(x,g) - z_{t+i}(x))}{\sum_{i=0}^h (g_{t+i} - g^\star)}$$

TYPICAL EXPERIMENT

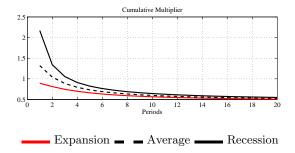
▶ Positive (negative) shock to the financial cost

- ▶ Makes bank lending more (less) costly
- Increases (decreases) the premium $(r_t^b \gg r_t^d)$
- ▶ Triggers a recession (expansion)
- ▶ Size of the shock set s.t. 2.5% recession (expansion)
- ▶ Then 1% positive shock on government expenditures
- Preserve non–linearities in the model (Non–linear solution method)

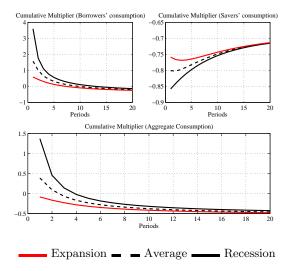
OUTPUT MULTIPLIERS: MECHANISM

- An increase in G has a negative wealth effect
- Agents increase hours worked
- ▶ Higher output decreases the spread
- ▶ Lower spread has a positive wealth effect on the borrower
- ▶ If the total wealth effect on the borrower is positive and it exceeds the negative wealth effect on the saver, aggregate consumption increases
- Multiplier exceeds unity

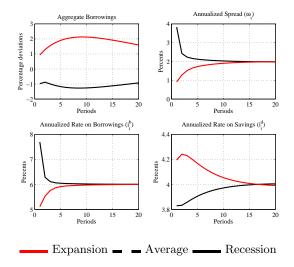
FIGURE: Spread–Government Expenditures Correlation



<u>Note:</u> Dark plain line (marks): Booms, Red plain line (marks): Recession. A "recession" is identified with periods during which the cyclical component of output (obtained from the HP filter) is negative. Period: 1960Q1-2008Q1.

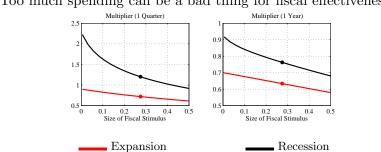

TABLE: Correlation Spread–Share of Government Spending

	AAA-FFR	BAA-FFR	AAA-TBILL	BAA-TBILL
Boom	-0.2244	-0.2631	-0.2795	-0.3136
Recession	-0.4888	-0.5041	-0.6493	-0.6017


OUTPUT MULTIPLIERS

Consumption Multipliers

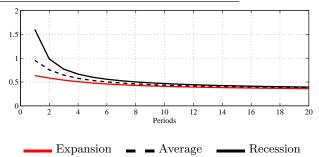
MECHANISM

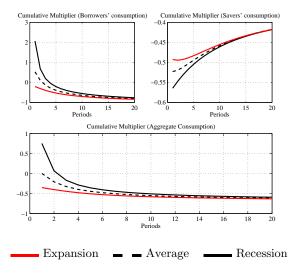


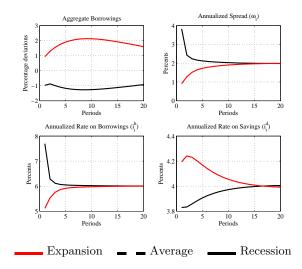
OUTPUT MULTIPLIERS

The model

- Possesses the type of asymmetries in multipliers found in the data
- ▶ Matches the size of the multipliers reported in empirical evidence
- ▶ Does not require a zero–bound effect


THE SIZE OF THE FISCAL INTERVENTION

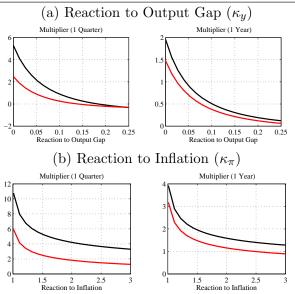

Too much spending can be a bad thing for fiscal effectiveness


SENSITIVITY ANALYSIS

Tax vs Debt finance: Balanced budget

Consumption Multipliers

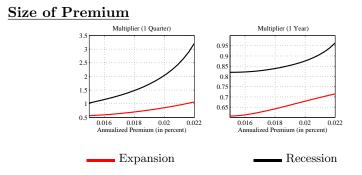
Source of the cycle


TABLE: Multipliers: Sensitivity to the Source of the Business Cycle

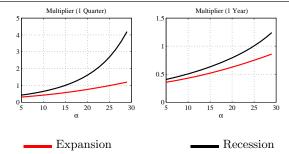
Shock	1 Quarter		1 Y	1 Year		2 Years		5 Years	
	Е	R	E	R	_	Ε	R	 \mathbf{E}	R
$\xi^b_{c,t}$	1.02	1.86	0.73	0.87		0.61	0.67	0.51	0.54
$\xi_{c,t}^s$	0.95	2.00	0.70	0.90		0.59	0.68	0.51	0.55
$\xi_{h,t}$	0.94	1.94	0.69	0.90		0.59	0.68	0.51	0.55
$\xi_{\Psi,t}$	0.89	2.17	0.70	0.91		0.59	0.69	0.51	0.55
$\xi_{y,t}$	0.94	1.94	0.69	0.90		0.59	0.68	0.51	0.55
$\xi_{i,t}$	1.06	1.85	0.76	0.86		0.62	0.67	0.51	0.54

<u>Note:</u> The table reports the cumulative multipliers of output obtained in a 2.5% expansion (E) and in a 2.5% recession (R) generated by each of the considered shock.

Multipliers and the Conduct of Monetary Policy


Role of Financial Frictions

▶ Key to the result: financial frictions


$$\omega_t = C'(b_t) = \eta \exp(\xi_{\varphi,t}) b_t^{\eta-1} \exp(-\alpha \widetilde{y}_t)$$

Investigate

- 1. Role of the size of the distortion: ω^{\star} (*i.e.* ξ_{ω}^{\star})
- 2. Role of cyclical friction : α

The role of the cyclicality in the financial friction

CONCLUDING REMARKS

- ► Policy practice: Countercyclical fiscal policy
- ► Empirical evidence: Multipliers are larger (> 1) in recessions than in booms
- ► Theory: Existing models have difficulty generating large and asymmetric multipliers
- ▶ We have provided a model that can do this
- ▶ Key element: Countecyclical financial frictions
- Financial frictions can be --indirectly-- relaxed by fiscal policy
- ▶ Extra mileage from violation of Ricardian Equivalence

THANKS !

Appendix

Parameter		Value		
Household				
Discount Factor	β	0.9874		
Intertemp. Elasticity (Borrowers)	σ_b	12.2209		
Intertemp. Elasticity (savers)	σ_s	2.4442		
Inverse Frischian Labor Elasticity	ν	0.1048		
Disutility of Labor param. (Borrowers)	ψ_b	1.1492		
Disutility of Labor param. (Savers)	ψ_s	0.9439		
Probability of Drawing Borrowers type	π_b	0.5000		
Probability of Keeping Type		0.9750		
Share of Borrowings	b/y	4×0.8		
Preference Shock (Average, Borrowers)	$\frac{\overline{\xi}_{c}^{b}}{\overline{\xi}_{c}^{s}}$	8.0133		
Preference Shock (Average, Savers)		0.8123		

Appendix

Parameter		Value		
Production				
Elasticity of Subst. btw. goods	θ	7.6667		
Inverse labor Elasticity	$1/\varphi$	0.7500		
Nominal Aspects				
Annual Premium (Gross)	$(1 + \omega)^4$	1.0200		
Degree of Nominal Rigidities	γ	0.6667		
Persistence (Taylor Rule)	$ ho_i$	0.8000		
Reaction to Inflation (Taylor Rule)	κ_{π}	1.5000		
Reaction to Output (Taylor Rule)	κ_y	0.0500		

→ Go Back

Appendix

Parameter		Value		
Financial Costs				
Borrowing Elasticity	η	6.5000		
Output Gap Elasticity		23.0000		
Constant		1.2720e-06		
Shocks				
Government Shock (Persistence)	$ ho_g$	0.9700		
Government Share		0.2000		
Persistence (Other shocks: x)		0.9500		
Debt feedback		0.0200		

→ Go Back