Emigration and Fiscal Austerity in a Depression

Guilherme Bandeira (NSW Treasury) Jordi Caballé (UAB and BSE) Eugenia Vella (AUEB)

June 2022

Financial support through the EU Horizon 2020 Marie Skodowska-Curie Grant 798015 (EuroCrisisMove) is gratefully acknowledged.

Motivation

Nearly half a million Greeks have become economic migrants since the crisis began, one of the biggest exoduses from any eurozone country.

(NYT, 5 June 2018: Greece May Be Turning a Corner. Greeks Who Fled Are Staying Put.)

- ► Fiscal austerity and emigration in the Greek Depression
 - economy shrank by a quarter
 - unemployment climbed up to 27%
 - biggest bailout in global history, conditional on austerity
 - ▶ 0.5 million emigrants (2010-2015) graph
 - ▶ half were previously employed (Labrianidis and Pratsinakis (2016))

Motivation

Nearly half a million Greeks have become economic migrants since the crisis began, one of the biggest exoduses from any eurozone country.

(NYT, 5 June 2018: Greece May Be Turning a Corner. Greeks Who Fled Are Staying Put.)

- ► Fiscal austerity and emigration in the Greek Depression
 - economy shrank by a quarter
 - unemployment climbed up to 27%
 - biggest bailout in global history, conditional on austerity
 - ▶ 0.5 million emigrants (2010-2015) graph
 - ▶ half were previously employed (Labrianidis and Pratsinakis (2016))
- ▶ Migration and macroeconomy: academic and policy debates
 - ▶ Brexit, EU accession of Eastern countries, shock absorption in Currency Union
 - assessment through macro model with endogenous migration?

▶ Questions:

- 1. Did the mass exodus exacerbate the recession?
- 2. Interplay between fiscal austerity and emigration?

- **▶** Questions:
 - 1. Did the mass exodus exacerbate the recession?
 - 2. Interplay between fiscal austerity and emigration?
- ▶ Develop a small open economy New Keynesian model with:
 - search and matching frictions & on-the-job search
 - endogenous migration
 - 1. of unemployed: acts as fiscal stabilizer
 - 2. of employed: erodes the tax base
 - Comparison with baseline economy (no migration)

- Questions:
 - 1. Did the mass exodus exacerbate the recession?
 - 2. Interplay between fiscal austerity and emigration?
- ▶ Develop a small open economy New Keynesian model with:
 - search and matching frictions & on-the-job search
 - endogenous migration
 - 1. of unemployed: acts as fiscal stabilizer
 - 2. of employed: erodes the tax base
 - Comparison with baseline economy (no migration)
- ▶ Part A: Austerity mix and emigration in Greek Depression: Simulations

- Questions:
 - 1. Did the mass exodus exacerbate the recession?
 - 2. Interplay between fiscal austerity and emigration?
- ▶ Develop a small open economy New Keynesian model with:
 - search and matching frictions & on-the-job search
 - endogenous migration
 - 1. of unemployed: acts as fiscal stabilizer
 - 2. of employed: erodes the tax base
 - Comparison with baseline economy (no migration)
- ▶ Part A: Austerity mix and emigration in Greek Depression: Simulations
- ▶ Part B: **Transmission** of austerity shocks with labour income tax hikes and spending cuts in the presence of emigration

Literature

Fiscal Austerity

- Erceg and Lindé (2012, 2013), Pappa et al. (2015), Philippopoulos et al. (2017), Bandeira et al. (2018), House et al. (2020), Alesina et al. (2015), Alesina et al. (2019)
- This paper: implications of emigration

▶ Greek Debt Crisis (micro-founded macro models)

- Gourinchas et al. (2017), de Cordoba et al. (2017), Chodorow-Reich et al. (2021), Economides et al. (2020), Papageorgiou et al. (2021)
- ► This paper: role of emigration
- Oikonomou (2021): extension with skill heterogeneity & CSC (without fiscal austerity)

Literature

Migration impact in host country

- Static, S&M: Ortega (2000), Chassambouli & Palivos (2014), Chassambouli & Peri (2015), Battisti et al. (2018), Iftikhar & Zaharieva (2018)
- Dynamic, S&M: Lozej (2018), Kiguchi & Mountford (2017), Braun & Weber (2021)
- ► This paper: (1) endogenous migration, (2) fiscal policy

► Migration between 2 countries

- ▶ no S&M: Mandelman & Zlate (2012), Farhi & Werning (2014)
- ► S&M: Hauser and Seneka (2022)
- ▶ This paper: (1) fiscal policy, (2) migration of employed

► Fiscal implications of emigration

- Developing world or neo-classical: e.g., Desai et al. (2009), Wilson (2008)
- ▶ 2-way feedback with sovereign default: Alessandria et al. (2020)
- This paper: (1) fiscal policy, (2) migration of employed, (3) S&M dynamic setup

1. Simulations for Greek Depression

- ► Match (a) GDP fall, (b) emigration increase & composition
- ► Austerity: 1/3 of GDP fall, 13% of emigration
- Emigration: 1/6 of GDP fall, ↑ debt/GDP by 9 pp

1. Simulations for Greek Depression

- ▶ Match (a) GDP fall, (b) emigration increase & composition
- ► Austerity: 1/3 of GDP fall, 13% of emigration
- Emigration: 1/6 of GDP fall, ↑ debt/GDP by 9 pp

2. Impact of austerity on emigration

- ► Labour tax hikes: prolonged increase (↓ after-tax labour income)
- ► Spending cuts: milder, ambiguous effect (demand vs. wealth effect)

1. Simulations for Greek Depression

- ▶ Match (a) GDP fall, (b) emigration increase & composition
- ► Austerity: 1/3 of GDP fall, 13% of emigration
- Emigration: 1/6 of GDP fall, ↑ debt/GDP by 9 pp

2. Impact of austerity on emigration

- ▶ Labour tax hikes: prolonged increase (↓ after-tax labour income)
- Spending cuts: milder, ambiguous effect (demand vs. wealth effect)

3. Impact of emigration on austerity

- ▶ ↓ labour income tax base, VAT revenue
- ↑ required T hike & time for given debt reduction

1. Simulations for Greek Depression

- ▶ Match (a) GDP fall, (b) emigration increase & composition
- ► Austerity: 1/3 of GDP fall, 13% of emigration
- Emigration: 1/6 of GDP fall, ↑ debt/GDP by 9 pp

2. Impact of austerity on emigration

- ► Labour tax hikes: prolonged increase (↓ after-tax labour income)
- Spending cuts: milder, ambiguous effect (demand vs. wealth effect)

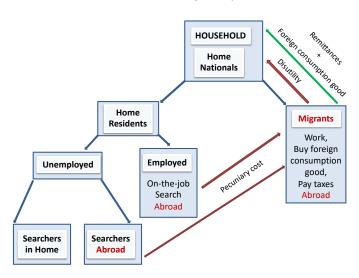
3. Impact of emigration on austerity

- ▶ ↓ labour income tax base, VAT revenue
- ↑ required T hike & time for given debt reduction

4. Emigration as fiscal shock absorber

- reversal of unemployment gains over time (higher T hikes required, higher wages sustained)
- mitigation of pc output costs for T hikes (reduction of population)

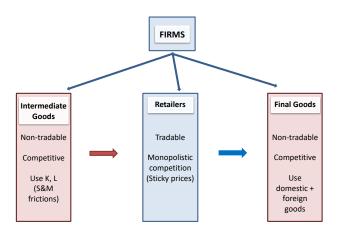
Outline


- 1. Overview of the model
- 2. Simulations: Austerity mix and emigration in Greek Depression
- 3. Mechanisms: Fiscal consolidation shocks and emigration
- 4. Conclusions

Outline

- 1. Overview of the model
- 2. Simulations: Austerity mix and emigration in Greek Depression
- 3. Mechanisms: Fiscal consolidation shocks and emigration
- 4. Conclusions

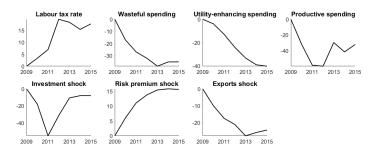
Model Overview: Household


strong family ties

The Model: Emigration

- ► Higher wages and lower unemployment exist abroad
- ightharpoonup A share of **unemployed** s_t apply to jobs **abroad**
 - subject to pecuniary cost $\varsigma(\tilde{s}_t \tilde{u}_t)$
- ► Employed workers exert search effort z_t to find a job abroad
 - subject to pecuniary cost $\phi(z_t)$
- Emigration entails a utility cost for the household
- Migrants pay taxes abroad, buy foreign consumption good, send remittances

Model Overview: Firms



Outline

- 1. Overview of the model
- 2. Simulations: Austerity and emigration in Greek Depression
- 3. Mechanisms: Fiscal consolidation shocks and emigration
- 4. Conclusions

Figure 1: Paths of fiscal instruments and of shocks

Growth rates in percentages relative to 2009.

- Annual data (Eurostat)
 - Wasteful G : government consumption (except wage bill)
 - ► Productive G: gross capital formation
 - Utility-enhancing G: health & education (net of GCF)
 - Effective tax rates computed following Mendoza et al. (1994)

Calibration: Greece around 2009

Table 1: Annual calibration: Labour market more

unemployment rate	u/(u+n)	0.12
stock of migrants	m_e/\hat{n}	0.10
job-finding probability abroad	ψ_H^{\star}/ψ_H	1.60
wage premium abroad	w*/w	1.10
vacancy-filling probability	$\psi_{ extsf{ iny F}}$	0.70
job-finding probability	ψ_{H}	0.60
firm's bargaining power	ϑ	0.38
vacancies matching elasticity	μ_2	ϑ
net replacement rate	$b/[(1-\tau_n) w]$	0.41
termination rates	σ, σ^{\star}	0.072

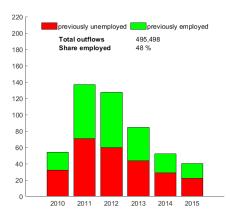
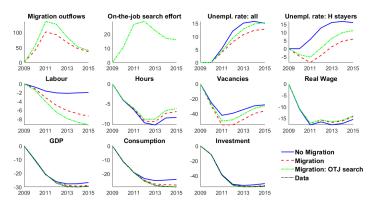
Calibrated jointly:

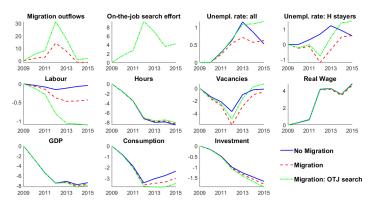
- ▶ risk premium shocks to match the response of C
- ▶ investment efficiency shocks to match the response of *I*
- external demand shocks (to Greek exports) to match GDP

Calibration of costs for job search abroad:

 match magnitude and composition of migration outflows in Greece (Labrianidis and Pratsinakis (2016))

Figure 2: Who left?


Figure 3: Baseline Simulations

Notes: Responses for migration outflows are in levels (thousand persons). All other responses are in percent deviations from steady state. Consumption refers to the domestic good. Unempl. rate: H stayers excludes the unemployed targeting a job abroad. OTJ denotes on the job.

Figure 4: Counterfactual: Effects of Austerity Alone

Notes: Responses for migration outflows are in levels (thousand persons). All other responses are in percent deviations from steady state. Consumption refers to the domestic good. Unempl. rate: H stayers excludes the unemployed targeting a job abroad. OTJ denotes on the job.

Austerity accounts for 1/3 of GDP fall and 13% of emigration increase.

Simulations: Policy Experiments

Table 4: The debt-to-GDP ratio and total emigration under different migration and fiscal scenarios

Simulation Scenario	Debt (% GDP), 2015	Emigrants, 2010-2015
Actual fiscal policy mix with emigration	176.70	495,498
Actual fiscal policy mix without migration	167.87	0
Labour tax hikes only	185.61	1,617,090
Spending cuts only (balanced)	182.44	546,547
Mostly wasteful spending cuts	177.72	502,886
Mostly utility-enhancing spending cuts	181.71	492,411
Mostly productive spending cuts	187.78	682,672
Wasteful and utility-enhancing spending cuts	177.20	455,610
Milder consolidation	195.74	462,963

Notes: "emigration" concerns both the unemployed and the employed. Each time, the same size of fiscal adjustment is achieved (in terms of nominal value). "balanced" means that the three expenditure components are cut by the same amount (%). Cuts mostly in wasteful spending, utility-enhancing, and productive spending means that they are three times bigger than cuts in other expenditure. With "Milder consolidation", all four instruments move by half of what they actually did.

Since the same nominal size of consolidation is achieved each time, differences in the path of debt-to-GDP ratio are due to differences in the path of GDP.

Policy Experiments: In Progress

We are revising the previous table to include the following:

- ▶ Benchmark (actual fiscal policy mix with emigration)
- Counterfactual without migration
- Counterfactual without fiscal consolidation
- ► Counterfactual without fiscal consolidation and without emigration

Outline

- 1. Overview of the model
- 2. Simulations: Austerity and emigration in Greek Depression
- 3. Mechanisms: Fiscal consolidation shocks and emigration
- 4. Conclusions

The Model: Government

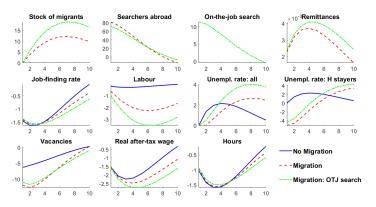
- ▶ Consider one **fiscal instrument** at a time: $\Psi \in \{\tau^n, g_f\}, f = w, c, y$
 - ▶ Labour income tax: τ^n
 - ▶ Gov't spending: wasteful: g_w , utility-enhancing: g_c , productive: g_y
- ► Fiscal rule:

$$\Psi_{t} = \Psi^{(1-\beta_{\Psi \mathbf{0}})} \Psi_{t-1}^{\beta_{\Psi \mathbf{0}}} \left[\left(\frac{\tilde{b}_{g,t}}{b_{g,t}^{T}} \right)^{\beta_{\Psi \mathbf{1}}} \left(\frac{\Delta \tilde{b}_{g,t+1}}{\Delta b_{g,t+1}^{T}} \right)^{\beta_{\Psi \mathbf{2}}} \right]^{(1-\beta_{\Psi \mathbf{0}})}$$
(1)

- ▶ discrepancy between $\tilde{b}_{g,t} \equiv \frac{b_{g,t}}{gdp_t}$ and $b_{g,t}^T$ and between changes (Δ)
- $\beta_{\Psi 1}, \beta_{\Psi 2} > 0$ for $\Psi = \tau^n$ and $\beta_{\Psi 1}, \beta_{\Psi 2} < 0$ for $\Psi = g_f$

The Model: Government

▶ AR(2) for **debt/GDP target** $b_{g,t}^T$ (Erceg & Lindé (2013)):


$$\log b_{g,t}^T - \log b_{g,t-1}^T = \rho_1 (\log b_{g,t-1}^T - \log b_{g,t-2}^T) + \rho_2 (\log \bar{b} - \log b_{g,t-1}^T) - \varepsilon_t^b \ \ (2)$$

- \bar{b} : steady-state debt/GDP, ε_t^b : fiscal austerity shock
- ho_2 : strong inertia (simulate gradual, effectively permanent reduction)

Exercise

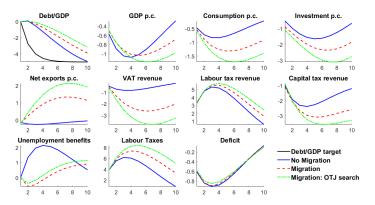

- Three model variants:
 - 1. no migration: assume a 5% fall in the debt/GDP target, met by the actual debt/GDP in 10 years, through calibration of fiscal rule
 - 2. migration of unemployed
 - 3. migration of unemployed and employed
- ► For comparability, we work with (3), keeping migration variables fixed at the steady state when considering (1)-(2)

Figure 5: Labour Tax Hikes: Migration and Labour Market Variables

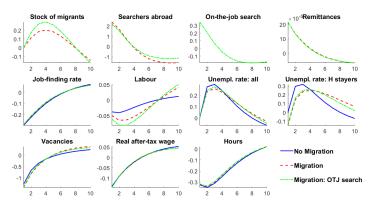

Notes: Responses for the job-finding rate are in levels. All other responses are in percent deviations from steady state. Unempl. rate: stayers excludes the unemployed targeting jobs abroad. OTJ denotes on the job.

Figure 6: Labour Tax Hikes: Output and Fiscal Variables

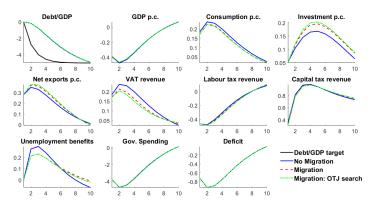

Notes: Responses for net exports are in levels. All other responses are in percent deviations from steady state. Consumption refers to consumption of the domestic good. OTJ denotes on the job and p.c. denotes per capita.

Figure 7: (Wasteful) Spending Cuts: Migration and Labour Market Variables

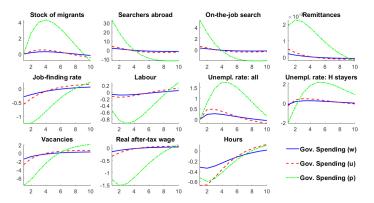

Notes: Responses for the job-finding rate are in levels. All other responses are in percent deviations from steady state. Unempl. rate: stayers excludes the unemployed targeting jobs abroad. OTJ denotes on the job.

Figure 8: (Wasteful) Spending Cuts: Output and Fiscal Variables

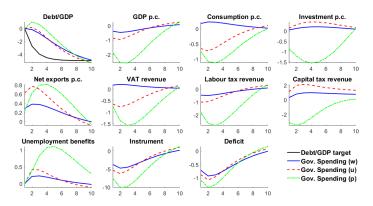

Notes: Responses for net exports are in levels. All other responses are in percent deviations from steady state. Consumption refers to consumption of the domestic good. OTJ denotes on the job and p.c. denotes per capita.

Figure 9: More Spending Instruments: Migration and Labour Market Variables

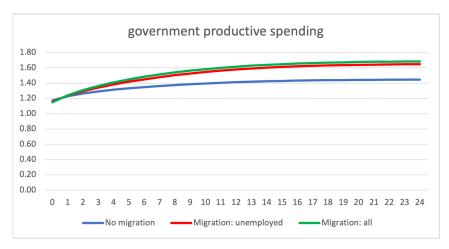
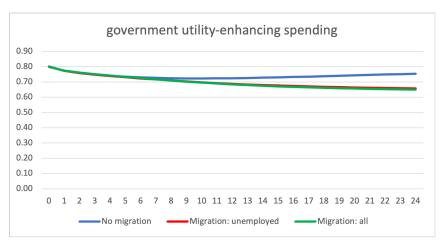

Notes: Responses for the job-finding rate are in levels. All other responses are in percent deviations from steady state. Unempl. rate: stayers excludes the unemployed targeting jobs abroad. OTJ denotes on the job.

Figure 10: More Spending Instruments: Output and Fiscal Variable

Notes: Responses for net exports are in levels. All other responses are in percent deviations from steady state. Consumption refers to consumption of the domestic good. OTJ denotes on the job and p.c. denotes per capita.

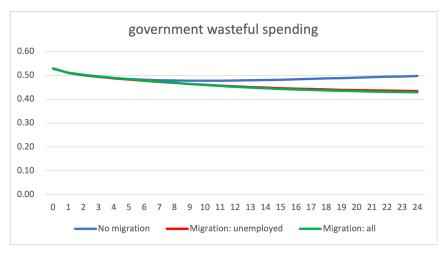
Cumulative Multipliers and Emigration



The horizontal axis refers to the year after the AR(1) fiscal shock.

multipliers $> 1 \rightarrow$ increased incentive to emigrate following the cuts \rightarrow high emigration \rightarrow multipliers differ in the presence of emigration (amplified due to intensified C change)

Cumulative Multipliers and Emigration



The horizontal axis refers to the year after the AR(1) fiscal shock.

multipliers $<1 \to$ little incentive to emigrate following the cuts \to low emigration \to multipliers differ little (decrease in size) in the presence of emigration

Cumulative Multipliers and Emigration

The horizontal axis refers to the year after the AR(1) fiscal shock.

multipliers $< 1 \rightarrow$ little incentive to emigrate following the cuts \rightarrow low emigration \rightarrow multipliers differ little (decrease in size) in the presence of emigration

Outline

- 1. Overview of the model
- 2. Simulations: Austerity and emigration in Greek Depression
- 3. Mechanisms: Fiscal consolidation shocks and emigration
- 4. Conclusions

Concluding remarks

Summary

- 1. Effects of fiscal austerity on emigration
- 2. Implications of emigration for fiscal austerity
- 3. Emigration as absorber of fiscal austerity shocks

Policy Implications

- Implications of emigration for fiscal multipliers and adjustment
- especially for labour T hikes and productive G cuts
- Need for carefully targeted spending cuts

Extensions

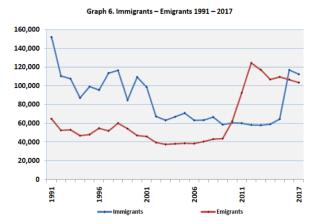
- Skills mismatch and emigration
- Emigration and inequality
- Automation and migration in 2-country model

Thank you!

Outline

- 1. Overview of the model
- 2. Simulations: Austerity and emigration in Greek Depression
- 3. Mechanisms: Fiscal consolidation shocks and emigration
- 4. Conclusions
- 5. Supplementary material

History of Greek Emigration


Figure 11: Emigration waves in Greek history (all ages) return1

source: Lazaretou (2016) return2

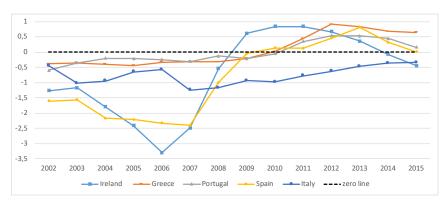

Emigration and Immigration in Greece

Figure 12: Migration flows in Greece, source: Hellenic Statistic Authority

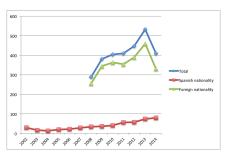

Net Migration in the Periphery

Figure 13: Net migration flows (= outflows - inflows, % active population), source: Eurostat

Migration Outflows from Spain

- ▶ Since 2010, annual outflows have exceeded 400K
 - highest level of emigration historically
 - comparable to annual immigrant flow of 485K during 2000-2006 boom
- ► Sources:
 - ► Estadística de Variaciones Residenciales since 2002: municipal registers
 - ► Estadística de Migraciones by the INE since 2008: alternative surveys

The Model: Labour Market

▶ Home nationals \hat{n} include residents N_t and migrants $n_{e,t}$:

$$\hat{n} = N_t + n_{e,t} \tag{3}$$

- \triangleright variations in $n_{e,t}$: cross-border movements
- Residents are employed or unemployed:

$$N_t = n_t + u_t \tag{4}$$

Evolution of resident employment:

$$n_{t+1} = (1 - \sigma - \psi_H^{\star} \varphi(z_t)) n_t + \psi_{H,t}((1 - s_t)u_t)$$
 (5)

- $\psi_{H,t} \equiv m_t/((1-s_t)u_t)$: job-finding probability
- $\varphi(z_t)$: productivity of on-the-job search effort
- Evolution of migrant employment:

$$n_{e,t+1} = (1 - \sigma^*) n_{e,t} + \psi_H^* \left(\mathbf{s}_t u_t + \varphi \left(\mathbf{z}_t \right) n_t \right)$$
 (6)

▶ Jobs are created through a matching function: $m_t = m(v_t, (1 - s_t)u_t)$

The Model: Household's Utility

Consumption bundle 1: purchases by residents c_t and emigrants $c_{e,t}$

$$C_t \equiv c_t + c_{e,t} \tag{7}$$

Consumption bundle 2 : with public expenditure g_t^c

$$\Phi_t \equiv \left[\left(1 - \alpha_1 \right) \left(C_t \right)^{\alpha_2} + \alpha_1 \left(g_t^c \right)^{\alpha_2} \right]^{\frac{1}{\alpha_2}} \tag{8}$$

- Edgeworth complementarity between C_t and g_t^c (Buakez and Roubei (2007), Feve et al. (2013))
- **▶** Utility function:

$$U(C_{t}, g_{t}^{c}, h_{t}, n_{e,t}) = \frac{\Phi_{t}^{1-\eta}}{1-\eta} - \chi \frac{\left(h_{t}^{1+\xi} n_{t} + h_{e}^{1+\xi} n_{e,t}\right)}{1+\xi} - \Omega \frac{\left(n_{e,t}\right)^{1+\mu}}{1+\mu}$$
(9)

The Model: Household's Budget Constraint

► Migrants budget:

$$(1 + \tau^{c\star}) c_{e,t} = (1 - \tau^{n\star}) w^{\star} h_e n_{e,t} - \Xi_t$$
 (10)

► Remittances (altruistic compensation mechanism):

$$\Xi_t = \varrho \left(\frac{(1 - \tau^{n\star}) \, w^{\star}}{(1 - \tau_t^n) \, w_t} \right)^{\rho_{\Xi}} \tag{11}$$

► Household's budget constraint:

$$(1 + \tau^{c}) c_{t} + i_{t} + \frac{b_{g,t+1}}{r_{t}} - \frac{e_{t}b_{f,t+1}}{r_{f,t}} + \phi(z_{t}) n_{t} + \varsigma(\tilde{s}_{t}\tilde{u}_{t}) s_{t}u_{t}$$

$$\leq (1 - \tau^{n}_{t}) w_{t}h_{t}n_{t} + \left[r^{k}_{t} - \tau^{k}(r^{k}_{t} - \delta_{t})\right] x_{t}k_{t} + bu_{t} + \Pi^{r}_{t} + T_{t}$$

$$+ b_{g,t} - e_{t}b_{f,t} + e_{t} \equiv_{t}$$

$$(12)$$

The Model: Household's Optimization

Fraction of unemployed searching abroad, s_t: considers migration costs & country differences in net wage income and job-finding probs:

$$\psi_{H}^{\star} \lambda_{e,t} - \lambda_{c,t} \varsigma \left(\tilde{s}_{t} \tilde{u}_{t} \right) = \psi_{H,t} \lambda_{n,t}$$
 (13)

- ▶ equalized values of employment in Home and abroad $\lambda_{n,t}$ and $\lambda_{e,t}$, the latter including the utility-adjusted moving cost
- ▶ On-the-job effort, z_t : also considers the cost of the on-the-job search:

$$\psi_{H}^{\star}(\lambda_{e,t} - \lambda_{n,t}) = \lambda_{c,t} \frac{\phi'(z_{t})}{\varphi'(z_{t})}$$
(14)

excess value of working abroad equal to utility-adjusted MC of on-the-job search

The Model: Intermediate Goods Firms

▶ Production function:

$$y_t = \left(h_t n_t\right)^{1-a} \left(x_t k_t\right)^a \left(g_t^y\right)^{\nu}$$

- g_t^y : productive public expenditure, h_t : hours worked, x_t : utilization
- **▶** Evolution of employment:

$$n_{t+1} = (1 - \sigma - \psi_H^* \varphi(z_t)) n_t + \psi_{F,t} v_t$$

- $\psi_{F,t} \equiv m_t/v_t$: job-filling probability (taken as given)
- ► FOC wrt vacancies:

$$\frac{\kappa}{\psi_{F,t}} = \mathsf{E}_t \beta_{t+1} \left[\mathsf{MPL}_{t+1} - w_{t+1} h_{t+1} + \left(1 - \sigma - \psi_H^{\star} \varphi \left(\mathbf{z}_{t+1} \right) \right) \frac{\kappa}{\psi_{F,t+1}} \right] \tag{15}$$

 $ightharpoonup \kappa$: vacancy cost, $\psi_H^* \varphi \left(\mathbf{z}_{t+1} \right)$: termination due to cross-border matches

The Model: Capital Accumulation

▶ The household owns the capital stock:

$$k_{t+1} = \epsilon_{i,t} \left[1 - \frac{\omega}{2} \left(\frac{i_t}{i_{t-1}} - 1 \right)^2 \right] i_t + (1 - \delta_t) k_t,$$
 (16)

 i_t : investment, $\epsilon_{i,t}$: investment efficiency shock, ω : investment adjustment costs parameter

▶ The depreciation rate δ_t depends on capital utilization x_t :

$$\delta_t = \bar{\delta} x_t^{\iota} \,, \tag{17}$$

where $\bar{\delta}$, $\iota > 0$

The Model: Wage-Hours Nash Bargaining

► Equilibrium wage income:

$$w_{t}h_{t} = (1 - \vartheta) \left(MPL_{t} + \underbrace{(1 - \varphi(z_{t}))\frac{\psi_{H,t}}{\psi_{F,t}}}_{\text{Firm's continuation value}} \right)$$

$$\frac{\vartheta}{(1 - \tau_{t}^{n})} \left\{ b + \frac{\chi}{\lambda_{c,t}} \frac{h_{t}^{1+\xi}}{1+\xi} + \phi(z_{t}) - \varphi(z_{t}) \varsigma(\tilde{s}_{t}\tilde{u}_{t}) \right\}$$
(18)

- The prob that workers resign $\varphi(z_t)$ due to on-the-job search pushes down on wages.
- ▶ Term weighted by the firm's bargaining power includes the outside option of the unemployment benefit, the disutility from hours, and the costs of on-the-job search $\phi(z_t)$ net of the benefit from a match abroad of not incurring the search cost as unemployed $\varphi(z_t) \varsigma(\tilde{s}_t \tilde{u}_t)$.
- ► Hours:

$$\chi \frac{h_t^{1+\xi}}{\lambda_{c,t}} = (1-\tau^n) (1-\alpha)^2 \frac{p_{y,t} y_t}{n_t}$$
 (19)

return

こ 4 周 と 4 至 と 4 至 と 一 至

Closing the Model

- ► Tradable goods: $y_{r,t} = y_{l,t} + y_{m,t}^{\star}$
- ▶ Non-tradable final good:

$$y_{f,t} = \left[\left(\varpi\right)^{\frac{1}{\gamma}} \left(y_{l,t}\right)^{\frac{\gamma-1}{\gamma}} + \left(1-\varpi\right)^{\frac{1}{\gamma}} \left(y_{m,t}\right)^{\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

- ▶ Resource constraint: $y_{f,t} = c_t + i_t + g_t + \kappa v_t + \phi(z_t) n_t + \varsigma(\tilde{s}_t \tilde{u}_t) s_t u_t$
- ▶ GDP (units of final good): $gdp_t = y_{f,t} + nx_t$
- ▶ Net exports: $nx_t \equiv p_{r,t}y_{m,t}^* e_t p_r^* y_{m,t}$
- Exports:

$$y_{m,t}^{\star} = \left(\frac{p_{r,t}}{e_t}\right)^{-\gamma_{\kappa}} \overline{y_m^{\star}} \, \epsilon_{y_m^{\star},t}$$

- ▶ Net foreign assets: $e_t(r_{f,t-1}b_{f,t-1}-b_{f,t})=nx_t+e_t\Xi_t$
- ▶ Risk premium: $r_{f,t} = r^* exp \left\{ \Gamma \left(\frac{e_t b_{f,t+1}}{g d p_t} \frac{\overline{e} \overline{b_f}}{\overline{g} d p} \right) + \epsilon_{r,t} \right\}$
- ▶ Fisher equation: $r_t = \frac{R_t}{E_t \pi_{t+1}}$

Calibration

Table 2: Calibration: Migration (return)

on-the-job search effort	Ī	1.00
on-the-job search abroad cost	ϕ_{z1},ϕ_{z2}	0.0017, 3.40
on-the-job effort productivity	$\varphi_{z1}, \varphi_{z2}$	0.0047, 3.00
unemployed's search abroad cost	$\varsigma_{s1}, \varsigma_{s2}$	0.6485, 1.15
disutility of migration	Ω, μ	0.64, 1.00

where:

cost of job search abroad for unemployed and employed:

$$\varsigma\left(\tilde{s}_{t}\tilde{u}_{t}\right)=\varsigma_{s1}\left(\tilde{s}_{t}\tilde{u}_{t}\right)^{\varsigma_{s2}}$$
 and $\phi\left(z_{t}\right)=\phi_{z1}\left(z_{t}\right)^{\phi_{z2}}$

- ▶ productivity of on-the-job search effort: $\varphi(z_t) = \varphi_{z1}(z_t)^{\varphi_{z2}}$
 - S₅₂, φ_{z2}: match magnitude and composition of migration outflows in Greece (Lazaretou (2016), Labrianidis and Pratsinakis (2016))
 - $ightharpoonup \varphi_{z2}$ such that in simulations on-the-job effort fluctuates reasonably
 - lacktriangle without **utility costs** μ , pecuniary costs in simulations too high
 - \triangleright ς_{s1} , ϕ_{z1} , φ_{z1} and Ω : pinned down in steady state

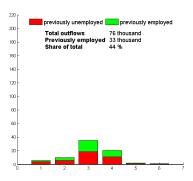

Calibration

Table 3: Calibration: Other return

National accounts:		
per capita real GDP	gdp	1.00
private consumption / GDP	C/gdp	0.62
private investment / GDP	i/gdp	0.18
imports / GDP	y_m/gdp	0.25
net foreign assets / GDP	b_f/gdp	0.10
remittances / GDP	\equiv /gdp	0.03
Utility:	,	
discount factor	β	0.96
intertemporal elasticity	η	1.01
external habits in consumption	ζ	0.75
home bias in consumption	$\overline{\omega}$	0.75
elasticity home/imported goods	γ	1.20
elasticity exports	γ_{x}	0.20
elasticity hours worked	ξ	1.00
weight hours worked	χ	1.68
Production:		
capital share in production	α	0.33
capital depreciation rate	$ar{\delta}$	0.088
investment adjustment costs	ω	4.00
price monopolistic elasticity	ϵ	11
price Calvo lottery	λ_p	0.25

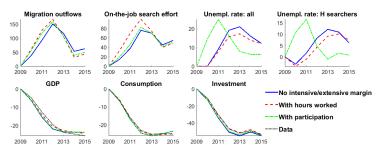
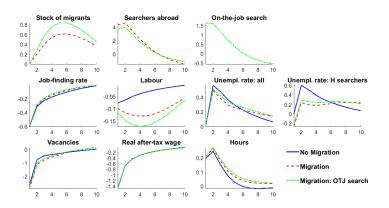

Simulations: Effects of Austerity Alone

Figure 15: Who left?

Simulations: Sensitivity Analysis

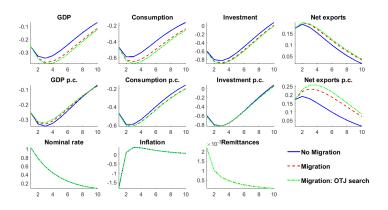
Figure 16: Intensive and extensive margin



Blue: no hours/no participation; Red: with hours; Green: with participation. Unempl. rate: all and Unempl. rate: H searchers denote measures of the unemployment rate including and excluding, respectively, the share of unemployed that look for a job abroad. Responses for the unemployment rate are in levels. All other responses are in percent deviations from steady state.

Unemployment peaks earlier: initially many enter the labour force because of the negative income effect of the risk premium shock.

Business Cycles and Emigration


Figure 17: Risk premium shock: labour market and migration

Blue: no migration; Red: migration of job-seekers; Green: migration of job-seekers and on-the-job search. Unempl. rate: It searchers denote measures of the unemployment rate including and excluding, respectively, the share of unemployed that look for a job abroad. Responses for the unemployment rate and the job-finding rate are in levels. All other responses are in percent deviations from steady state.

Business Cycles and Emigration

Figure 18: Risk premium shock: aggregates

Blue: no migration; Red: migration of job-seekers; Green: migration of job-seekers and on-the-job search. Responses for net exports are in levels. All other responses are in percent deviations from steady state.

Mechanisms

1. Migration of unemployed:

- ▶ unemployment ↓
- ▶ fiscal stabilizer: unemployment benefits ↓

2. Migration of the employed:

- vacancies ↑ ⇒ migration of unemployed ↓
- ▶ tax base ↓

3. Both

- ▶ aggregate demand ↓ ⇒ deficit ↑
- wages ↑ ⇒ unemployment ↑